
Chapter 8

Quantum theory of matter-wave
lasers

If a cooling time is not negligible compared to a condensate particle escape time from
a trap, such a system is necessarily dynamical and must be treated as a non-equilibrium
open dissipative system rather than a thermal equilibrium closed system. The steady state
population of a ground state in such a system has the pump (reservoir particle injection)
rate dependence as shown in Fig. 8.1. At very low pump rates, injected particles are shared
by many states so that the probability of finding them in the ground state, which is defined
here as a quantum efficiency, is much lower than one. At a certain pump rate, the average
population in the ground state reaches one, which is called a quantum degeneracy point.
Once the pump rate exceeds this critical point a bosonic final state stimulation accelerates
a cooling process of the reservoir particles into the ground state and the ground state
population increases nonlinearly. Eventually the quantum efficiency approaches to one at
well above threshold (quantum degeneracy point). In this case all injected particles are
condensed into the ground state before they escape from a trap. This behavior is similar
to the laser phase transition based on the stimulated emission of photons also shown
in Fig. 8.1, so that such a dynamical condensate is often referred to as a matter-wave
laser [1, 2]. A matter-wave laser is distinct from a photon laser, since the temperature and
chemical potential can be defined and play important roles in the formation of an order,
while such concepts do not exist in a photon laser. A matter-wave laser is also distinct
from BEC, since the amplitude and phase fluctuate dynamically so that the finite spectral
linewidth (first-order temporal coherence) and higher-order temporal coherence functions
can be defined [3].

How is the quantum theory of matter-wave lasers distinct from the classical treatment?
So far we have treated the condensate order parameter ψ0 as a c-number since there is
a macroscopic population in the ground state. The populations of the Bogoliubov quasi-
particles at all energies are identically equal to zero at T = 0. Is this treatment compatible
with quantum mechanics even if we consider a finite lifetime for the condensate particles?
Suppose the condensate particles decay from a trap with a rate γ. Then the Heisenberg
equation of motion for the field operator ψ̂0 must satisfy

d

dt
ψ̂0 = −iωψ̂0 − γ

2
ψ̂0, (8.1)
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Figure 8.1: Ground state population N0 vs. pump rate P of a matter-wave (polariton)
laser and photon laser [2].

d

dt
ψ̂+

0 = iωψ̂+
0 −

γ

2
ψ̂+

0 . (8.2)

Here µ = ~ω is the chemical potential of the condensate. From (8.1) and (8.2), we have
the time dependence of the commutator bracket:

[
ψ̂0(t), ψ̂+

0 (t)
]

=
[
ψ̂0(0), ψ̂+

0 (0)
]
e−γt. (8.3)

Even though we assume a proper bosonic commutation relation at t = 0, i.e.
[
ψ̂0(0), ψ̂+

0 (0)
]

=
1, the commutator bracket is not conserved as a time evolves (t > 0). What was wrong
with our Heisenberg equations (8.1) and (8.2)? A mistake is that we have neglected the
coupling between the condensate and external reservoir fields, which are responsible for a
particle loss from a trap. The reservoirs inject ”noise” whenever the system (the conden-
sate in our case) dissipates into the reservoirs. This relation is the quantum mechanical
analogue of the fluctuation-dissipation theorem [4, 5]. The classical counterpart of this
problem is well established in satistical mechanics [6]. The quantum noise injected by the
external reservoirs is an ultimate origin for the spectral linewidth and incomplete temporal
coherence of the condensate formed in a matter wave laser.

8.1 Heisenberg-Langevin equation for an open dissipate trap

8.1.1 Derivation of the equation

The Hamiltonian of a total system consisting of the condensate in a trap and the external
reservoir field outside of a trap should have the same form as that for a photon laser
system with an open-dissipate cavity [7],

Ĥ = ~ω0ψ̂
+
0 ψ̂0 +

∑
p

~ωpφ̂
+
p φ̂p + ~

∑
p

(
gpψ̂

+
0 φ̂p + g∗pψ̂0φ̂

+
p

)
. (8.4)
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The Heisenberg equations of motion for the condensate field operator ψ̂0 and the reservoir
field operator φ̂p are

d

dt
ψ̂0 =

1
i~

[
ψ̂0, Ĥ

]
= −iω0ψ̂0 − i

∑
p

gpφ̂p, (8.5)

d

dt
φ̂p =

1
i~

[
φ̂p, Ĥ

]
= −iωpφ̂p − ig∗pψ̂0. (8.6)

We can formally integrate (8.6) and substitute the result, φ̂p(t) = φ̂p(0)e−iωpt−ig∗p
∫ t
0 dt′ψ̂0(t′)e−iωp(t−

t′) into (8.5) to obtain the integro-differential equation:

d

dt
ψ̂0(t) = −iω0ψ̂0(t)−

∫ t

0
dt′

∑
p

|gp|2ψ̂0(t′)e−iωp(t−t′) − i
∑

p

gpφ̂p(0)e−iωpt. (8.7)

The summation over the momentum p in (8.7) can be approximated by the integral over
p,

∑
p → V

(2π~)3
∫

d3p, where V is a quantization volume. We can introduce the slowly

varying field operator by ψ̂0(t) = Φ̂0(t)e−iω0t. Substituting these relations, (8.7) can be
rewritten as

d

dt
Φ̂0(t) = − V

(2π~)3

∫
d3p|gp|2

∫ t

0
dt′Φ̂0(t′)e−i(ωp−ω0)(t−t′)

−i
V

(2π~)3

∫
d3pgpφ̂p(0)e−i(ωp−ω0)t. (8.8)

The first term of R.H.S of (8.8) is simplified by introducing

Γ(τ) =
V

(2π~)3

∫
d3p|gp|2e−i(ωp−ω0)τ

=
∫

dωpD(ωp)|g(ωp)|2e−i(ωp−ω0)τ

= 2πD(ω0)|g(ω0)|2δ(τ), (8.9)

where τ = t − t′ and D(ωp) = V
(2π~)3 is the energy density of states for reservoir modes.

Substituting (8.9) into the first term of R.H.S of (8.8) results in

−
∫ ∞

0
dτΓ(τ)Φ̂0(t− τ) = −γ

2
Φ̂0(t), (8.10)

where γ = 2πD(ω0)|g(ω0)|2 is the Fermi’s golden rule decay rate of the condensate parti-
cles [7].

The second term of R.H.S. of (8.8) constitutes the noise operator

F̂ (t) = −i
V

(2π~)3

∫
d3pgpφ̂p(0)e−i(ωp−ω0)t. (8.11)
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The two-time correlation function of this operator can be calculated as
〈
F̂+(t)F̂ (t′)

〉
=

∑
p

∑

p′
g∗pgp′

〈
φ̂+

p (0)φ̂p′(0)
〉

ei(ωp−ω0)t−i(ωp′−ω0)t′

=
∑

p

|gp|2
〈
N̂R

〉
ei(ωp−ω0)(t−t′)

= γ
〈
N̂R

〉
δ(t− t′), (8.12)

where
〈
N̂R

〉
= 1

exp[(ε0−µR)/kBTR]−1 is the reservoir particle population at the energy ε0.
Here µR and TR are the chemical potential and temperature of the reservoir. Similarly we
obtain 〈

F̂ (t)F̂+(t′)
〉

= γ
(
1 +

〈
N̂R

〉)
δ(t− t′). (8.13)

Using (8.10) and (8.11), (8.8) is rewritten as

d

dt
Φ̂0(t) = −γ

2
Φ̂0(t) + F̂ (t), (8.14)

where the noise operator F̂ (t) satisfies the two-time correlation functions (8.12) and (8.13).
This is the Heisenberg-Langevin equation, in which the dynamics of the external reservoirs
is decoupled from the system (condensate). An important and implicit assumption behind
the above derivation is that the average population

〈
N̂R

〉
of the reservoir can be evaluated

independently from the system dynamics and it is determined by the thermal equilibrium
properly of the reservoirs. This is called a reservoir approximation.

8.1.2 Commutator bracket conservation

We can write the time evolution of the condensate field operator as

ψ̂0(t) = ψ̂0(t− τ) +
∫ t

t−τ
dt′

[
d

dt
ψ̂0(t′)

]

= ψ̂0(t− τ) +
∫ t

t−τ
dt′

[(
−iω0 +

γ

2

)
ψ̂0(t′) + f̂(t′)

]
, (8.15)

where f̂(t′) = F̂ (t′)e−iω0t′ . Using the above expression, we can evaluate the expectation
values of the following product operators at equal time:

〈
ψ̂+

0 (t)f̂(t)
〉

=
〈
ψ̂+

0 (t− τ)f̂(t)
〉

+
∫ t

t−τ
dt′

〈[(
iω0 +

γ

2

)
ψ̂+

0 (t′) + f̂+(t′)
]
f̂(t)

〉

=
∫ t

t−τ
dt′

〈
f̂+(t′)f̂(t)

〉

=
1
2
γ

〈
N̂R

〉
, (8.16)

〈
f̂+(t)ψ̂0(t)

〉
=

1
2
γ

〈
N̂R

〉
, (8.17)
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〈
ψ̂0(t)f̂+(t)

〉
=

〈
f̂(t)ψ̂+

0 (t)
〉

=
1
2
γ

(
1 +

〈
N̂R

〉)
. (8.18)

Here we used the facts that the past system operator ψ̂+
0 (t′) does not depend on the future

reservoir operator f̂(t) and that there is no order parameter in the reservoir, so that
〈
ψ̂+

0 (t′)f̂(t)
〉

=
〈
ψ̂+

0 (t′)
〉〈

f̂(t)
〉

= 0. (8.19)

Using (8.16)-(8.18), we can now evaluate the time evolution of the commutator bracket:

d

dt

〈[
ψ̂0(t), ψ̂+

0 (t)
]〉

=
〈

˙̂
ψ0(t)ψ̂

+
0 (t) + ψ̂0(t)

˙̂
ψ

+

0 (t)− ˙̂
ψ

+

0 (t)ψ̂0(t)− ψ̂+
0 (t) ˙̂

ψ0(t)
〉

= −γ
〈[

ψ̂0(t), ψ̂+
0 (t)

]〉
+

〈
f̂(t)ψ̂+

0 (t) + ψ̂0(t)f̂+(t)
〉
−

〈
f̂+(t)ψ̂0(t) + ψ̂+

0 (t)f̂(t)
〉

= γ
{

1−
〈[

ψ̂0(t), ψ̂+
0 (t)

]〉}
. (8.20)

Equation (8.20) guarantees that if the commutator bracket is conserved at a time t, it is
conserved at all later time. The noise operator f̂(t) (or F̂ (t)) is needed to conserve the
proper commutator bracket in such an open dissipative system.

8.1.3 Einstein relation between drift and diffusion coefficients

The Heisenberg-Langevin equation for a system operator Âµ has a general form

d

dt
Âµ(t) = D̂µ(t) + F̂µ(t), (8.21)

where D̂µ(t) and F̂µ(t) are drift and diffusion (noise) operators, respectively. The coeffi-
cient for the drift operator can be obtained from the classical equation of motion for the
same system, i.e. 〈

D̂µ(t)
〉

=
d

dt

〈
Âµ(t)

〉
. (8.22)

We can define the diffusion coefficient Dµν by
〈
F̂µ(t)F̂ν(t′)

〉
= 2Dµνδ(t− t′). (8.23)

Let us evaluate the following product of two system operators that satisfy the Heisenberg-
Langevin equation.

d

dt

〈
Âµ(t)Âν(t)

〉
=

〈 ˙̂
Aµ(t)Âν(t) + Âµ(t) ˙̂

Aν(t)
〉

=
〈
D̂µ(t)Âν(t)

〉
+

〈
F̂µ(t)Âν(t)

〉

+
〈
Âµ(t)D̂ν(t)

〉
+

〈
Âµ(t)F̂ν(t)

〉
. (8.24)

The second and fourth terms of the above equation are already evaluated in (8.16) and
equal to Dµν . Therefore, the diffusion coefficient Dµν can be given by

2Dµν = −
〈
D̂µ(t)Âν(t)

〉
−

〈
Âµ(t)D̂ν(t)

〉
, (8.25)

5



where we assume the steady state condition, d
dt

〈
Âµ(t)Âν(t)

〉
= 0. Equation (8.25) is

called the Einstein relation between the drift and diffusion coefficients.
The Einstein relation allows us to derive the Heisenberg-Langevin equation and the

two-time correlation function of the noise operators if we already know the corresponding
classical equation of motion.

8.2 Heisenberg-Langevin equations for dynamical conden-
sates

8.2.1 Derivation of the equations

The classical equations of motion for a dynamical condensate are an open dissipative
Gross-Pitaevskii equation (7.30) for the condensate order parameter and a rate equation
(7.31) for the pump reservoir population. Please note that the pump reservoir is different
from the external reservoir treated in Sec. 8.1. The conceptual diagram for the particle
flow is shown in Fig. 8.2. Before we quantize those equations, we separate the condensate

pump

reservoir

external

pump source

condensate

noise

System

external

reservoir

loss

heating

cooling

Reservoir

Figure 8.2: The dynamical condensate coupled to the pump reservoir and the external
reservoir.

order parameter into the product of the excitation amplitude and the spatial wavefunction:

ψ0(r, t) = a(t)u0(r) = A(t)e−iω0tu0(r). (8.26)

Here the ground state spatial wavefunction u0(r) and the oscillation frequency ω0 (or
the chemical potential ~ω0) are determined by the balance between the kinetic energy
− ~2

2m∇2, the confining potential Vext(r) and the particle-particle interaction. We neglect
the condensate-condensate and condensate-reservoir interaction terms except for their con-
tribution to u0(r) and ω, i.e. gc = gR = 0 for simplicity. Similarly we can split the pump
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reservoir population into the product of the time dependent and space dependent parts:

nR(r, t) = n(t)vR(r). (8.27)

The normalization conditions for u0(r) and vR(r) are given by
∫
|u0(r)|2dr =

∫
|vR(r)|2dr = 1. (8.28)

The classical equation of motions for A(t) and n(t) are now rewritten as

d

dt
A(t) = −1

2
[γc − Γn(t)]A(t), (8.29)

d

dt
n(t) = p(t)− γRn(t)− Γn(t)|A(t)|2. (8.30)

Here p(t) is the (time dependent) pump rate and Γ = R
∫

u0(r)vR(r)dr is the effective gain
coefficient. The Heisenberg-Langevin equation can be obtained by replacing A(t), n(t) and
Nc = |A(t)|2 by the operators Â(t), n̂(t) and Â+(t)Â(t) + 1, respectively, and adding the
noise operators:

d

dt
Â(t) = −1

2
[γc − Γn̂(t)] Â(t) + F̂A(t), (8.31)

d

dt
n̂(t) = p(t)− γRn̂(t)− Γn̂(t)

[
Â+(t)Â(t) + 1

]
+ F̂n(t). (8.32)

The two-time correlation functions of the noise operators can be obtained using the Ein-
stein relation:

〈
F̂+

A (t)F̂A(t′)
〉

= δ(t− t′)
[
γc

〈
N̂R

〉
+ Γ 〈n̂〉

〈
Â+Â

〉]
, (8.33)

〈
F̂A(t)F̂+

A (t′)
〉

= δ(t− t′)
[
γc

(〈
N̂R

〉
+ 1

)
+ Γ 〈n̂〉

(〈
Â+Â

〉
+ 1

)]
, (8.34)

〈
F̂n(t)F̂n(t′)

〉
= δ(t− t′)2

[
p + γR 〈n̂〉+ Γ 〈n̂〉

(〈
Â+Â

〉
+ 1

)]
. (8.35)

The Heisenberg-Langevin equation for the condensate population N̂c ≡ Â+Â can be
derived for (8.31),

d

dt
N̂c(t) = −γcN̂c(t) + Γn̂(t)

[
N̂c(t) + 1

]
+ F̂N (t). (8.36)

Here the two-time correlation functions for the new noise operator are given by
〈
F̂N (t)F̂N (t′)

〉
= δ(t− t′)2

[
γc

〈
N̂c

〉
+ Γ 〈n̂〉

(〈
N̂c

〉
+ 1

)]
, (8.37)

〈
F̂N (t)F̂n(t′)

〉
= −δ(t− t′)2Γ 〈n̂〉

(〈
N̂c

〉
+ 1

)
. (8.38)

Equations (8.32) and (8.36) constitute the quantum mechanical rate equations for the
condensate population operator N̂c(t) and the reservoir population operator n̂(t), where
the two corresponding noise operators are negatively correlated as shown in (8.38). We
will see the important consequence of this fact in the next section.
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8.2.2 Linearization and noise spectrum

When the pump rate is well above the critical (quantum degeneracy) point (see Fig. 8.1),
the condensate forms an order parameter with well-stabilized amplitude and phase except
for small fluctuations, so that we can expand the excitation amplitude as

Â(t) =
[
Ac + ∆Â(t)

]
e−i∆φ̂(t), (8.39)

when Ac is a c-number average amplitude while ∆Â(t) and ∆φ̂(t) are the amplitude
and phase noise operators. Using (8.39) we can also linearize the condensate population
operator as

N̂c(t) = A2
c + 2Ac∆Â(t) = Nc + ∆N̂(t). (8.40)

The pump reservoir population operator can be similarly linearized

n̂(t) = nR + ∆n̂(t). (8.41)

If we substitute (8.40) and (8.41) into (8.32) and (8.36), take the ensemble averages and
assume d

dt

〈
N̂c

〉
= d

dt 〈n̂〉 = 0, we have the following steady state solutions

γc = ΓnR, (8.42)

p = ΓnRA2
c = γcA

2
c , (8.43)

where we assumed γR ¿ ΓA2
c , i.e. the pump reservoir population is mostly depleted by

the stimulated scattering into the condensate. The physical meaning of these relations
is clear. Equation (8.42) indicates that the loss rate of the condensate particles must be
balanced by the gain rate (stimulated scattering rate) from the pump reservoir particles.
Equation (8.43) shows that all injected particles per second, p, is extracted as the leakage
condensate particles per second, γcA

2
c , which suggests the quantum efficiency is equal to

one at well above condensation threshold.
The equations of motion for the fluctuation operators ∆Â,∆φ̂ and ∆n̂ can be obtained

by using (8.39), (8.41), (8.42) and (8.43) in the Heisenberg-Langevin equations,

d

dt
∆Â(t) =

1
2Acτst

∆n̂(t) +
1
2

[
F̂A(t)ei∆φ̂(t) + e−i∆φ̂(t)F̂+

A (t)
]
, (8.44)

d

dt
∆φ̂(t) =

i

2Ac

[
F̂A(t)ei∆φ̂(t) − e−i∆φ̂(t)F̂+

A (t)
]
, (8.45)

d

dt
∆n̂(t) = −

(
1
τst

+
1

τsp

)
∆n̂(t)− 2γcAc∆Â(t) + F̂n(t). (8.46)

Here τsp = 1
γR

is the spontaneous decay time of the pump reservoir population and
τst = 1

ΓA2
c

is the stimulated decay time. The Fourier analysis of (8.44)-(8.46) provides
the amplitude and phase noise spectra as well as the pump reservoir population spectrum.
At well above threshold, the amplitude spectrum is reduced to the Lorentzian

S∆A(Ω) =
γc

Ω2 + γ2
c

. (8.47)

8



Using the Parseval theorem
〈
∆Â2

〉
=

∫∞
0

dΩ
2π S∆A(Ω), the variance of the amplitude noise

operator ∆Â (or the population noise operator ∆N̂) is equal to
〈
∆Â2

〉
=

1
4
, (8.48)

〈
∆N̂2

〉
= 4A2

c

〈
∆Â2

〉
= Nc. (8.49)

The amplitude noise is equal to that of a coherent state and the condensate particle
statistics obey the Poisson distribution. This result supports posteriori the assumption and
argument on the phase-locking between the condensate and excitations that are presented
in the previous chapter. The finite amplitude noise

〈
∆Â2

〉
= 1/4 and particle number

noise
〈
∆N̂2

〉
= Nc in the condensate are traced back to the zero-point fluctuation (vacuum

field) injected from outside of the trap, which appears as the diffusion coefficient γc in eq.
(8.34), and the pump fluctuation, which appears as the diffusion coefficient p in (8.35).
Their contributions are equal at well above threshold. We assumed that no particles are
injected from the external reservoir outside the trap,

〈
N̂R

〉
= 0, and the pump rate obeys

the Poisson point process with full shot noise. All the other noise sources are canceled
out due to the negative correlation between the condensate noise source and the pump
reservoir noise source, represented by (8.38)

At well above threshold, the phase noise spectrum is given by

S∆φ(Ω) =
γc

Ω2A2
c

. (8.50)

The phase noise spectrum is inversely proportional to squared frequency, which is a char-
acteristic of the random walk phase diffusion and called the Wiener-Levy process [7]. The
coupled equations (8.44) and (8.46) for ∆Â(t) and ∆n̂(t) provide the stabilization force
for the amplitude which counteracts the noise driving forces F̂A and F̂n. As a result of
this competition, the amplitude noise becomes identical to that of the coherent state. The
equation of motion (8.45) for ∆φ̂(t) does not have such a restoring force and consequently
the phase diffuses freely: 〈

∆φ̂2(t)
〉

= 2Dφt, (8.51)

where the diffusion constant is given by

2Dφ =
γc

2A2
c

. (8.52)

The spectral lineshape of the condensate is calculated by the correlation function,

I(ω) =
∫ ∞

−∞
dτe−iωτ

〈
Â+(t)Â(0)

〉

∝
∫ ∞

0
dτe−iωτe−〈∆φ̂(τ)2〉. (8.53)

Because of the above phase diffusion process with an exponential decay, the condensate en-
ergy (or frequency) is broadened to a Lorentzian shape with a full width at half-maximum
(FWHM) of 2Dφ [7].
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8.2.3 Excess particle number noise and higher-order coherence functions

The Heisenberg-Langevin equations (8.32) and (8.36) assume that the stimulated and
spontaneous cooling rate into the condensate, Γn̂(t)

[
N̂c(t) + 1

]
is proportional to the

pump reservoir population n̂(t). In order to satisfy the energy conservation, the difference
in the pump reservoir particle energy and the condensate particle energy must be absorbed
in a third physical system. In the case of an exciton-polariton condensate, this energy
conservation is satisfied by phonon emission [8]. In fact, this is not a sole cooling channel
and there is an extra cooling mechanism, four wave mixing, in which two pump reservoir
particles scatter into one condensate particle and one hot particle with the momentum and
energy conservation satisfied. This second cooling mechanism is a dominating channel over
the first one and results in the heating of the pump reservoir particles when a quantum
degeneracy point is exceeded and the stimulated four wave mixing is switched on. As a
result of the heating of the pump reservoir particles, the clumping of the pump reservoir
population above the condensate threshold is not perfect but remains mild as shown in
Fig. 8.3[8].

Figure 8.3: Pump reservoir population nR (left) and condensate population Nc (right) vs.
normalized pump rate p/γc [8].

This imperfect gain clumping means that the negative correlation between F̂N (t) and
F̂n(t) in (8.38) never cancel the noise associated with the stimulated and spontaneous
cooling processes completely. Because of the imperfect gain clumping, the particle number
noise

〈
∆N̂2

c

〉
is below that of the thermal state,

〈
N̂c

〉(〈
N̂c

〉
+ 1

)
, but considerably

higher than the Poisson limit,
〈
N̂c

〉
, as shown in Fig. 8.4 even at well above the condensate

threshold [8].
The excess particle number noise is experimentally characterized by the measurement
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Figure 8.4: The particle number noise
〈
∆N̂2

c

〉
vs. the average particle number

〈
N̂c

〉
of

an exciton-polariton condensate [8].

of higher-order coherence functions g(n)(0) defined by [9]

g(n)(0) =
〈ψ̂+

1 (0)ψ̂+
2 (0) · · · ψ̂+

n (0)ψ̂n(0) · · · ψ̂1(0)〉
〈ψ̂+

1 (0)ψ̂1(0)〉〈ψ̂+
2 (0)ψ̂2(0)〉 · · · 〈ψ̂+

n (0)ψ̂n(0)〉 , (8.54)

where ψ̂i(0) is the field operator in front of a particle detector i at time t = 0. The
advantage of measuring g(n)(0) rather than 〈∆N̂2

c 〉 is that g(n)(0) is independent of particle
loss between the trap and the particle detector, while the direct measurement of 〈∆N̂2

c 〉
suffers from the evolution of the noise power according to

〈∆N̂2〉 = L2〈∆N̂2
c 〉+ L(1− L)〈N̂c〉, (8.55)

where L is the particle loss including the quantum efficiency of the particle detector [10].
Figure 8.5 shows the measured g(2)(0) and g(3)(0) vs. the pump rate p/pth for an exciton-
polariton condensate [11]. The experimental results agree well with the theoretical predic-
tions at well above the condensate threshold. The discrepancy between the experimental
and theoretical results near the threshold is an experimental artifact: the response time
of the particle detector is larger than the correlation time of the particle number noise so
that the real g(2)(0) and g(3)(0) values of the condensate are washed out by the integration
effect of measurement.

If the condensate is in a coherent state, the particle number statistics obey a Poisson
distribution and the coherence functions are coherent in all orders:

g(n)(0) = 1 (coherent state). (8.56)

On the other hand, if the condensate is in a thermal state, the particle number statistics
features a super-Poisson distribution and the coherence functions are

g(n)(0) = n! (thermal state). (8.57)
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Figure 8.5: The theoretical and experimental second- and third-order coherence functions
g(2)(0) and g(3)(0) of an exciton-polariton condensate [11].

The theoretical and experimented results, g(2)(0) ∼ 1.4 and g(3)(0) ∼ 2.6, shown in Fig. 8.5
indicate the condensate is not a simple thermal state but not close to a coherent state,
either. The results are compatible with the results shown in Fig. 8.4.

8.2.4 Excess phase noise and spectral linewidth

So far we have neglected the self-phase modulation term, gc|ψ0(r, t)|2ψ0(r, t), and the
cross-phase modulation term, gRnR(r, t)ψ0(r, t), in the open dissipative Gross-Pitaevskii
equation. If we keep these two terms in the quantization of the Gross-Pitaevskii equation,
the R.H.S. of the Heisenberg-Langevin equation (8.45) is supplemented by these two terms:

d

dt
∆φ̂(t) =

i

2Ac

[
F̂A(t)ei∆φ̂(t) − e−i∆φ̂(t)F̂+

A (t)
]

+
3gc

~
∆N̂(t) +

gR

~
∆n̂R(t). (8.58)

The phase is not only modulated by the intrinsic Langevin noise source F̂A(t) but also by
the condensate population noise ∆N̂(t) and the pump reservoir population noise ∆n̂R(t)
through the condensate-condensate and condensate-pump reservoir repulsive interactions.
As shown in Fig. 8.4, both

〈
∆N̂2

〉
and

〈
∆N̂2

R

〉
increase with the pump rate, while the

intrinsic phase diffusion noise decrease with the pump rate (see (8.52)). Such an expected
behavior is demonstrated in Fig. 8.6, where the spectral linewidth decreases according
to the Schawlow-Townes linewidth at just above the threshold but increases due to the
population fluctuations ∆N̂(t) and ∆n̂R(t) at well above the threshold.

The unique behavior of the spectral linewidth of a dynamical condensate was exper-
imentally confirmed as shown in Fig. 8.7[12]. In this particular experiment, the injected
pump reservoir particles (exciton-polaritons) are spin unpolarized (a) and polarized (b).
When the pump reservoir has a mixture of up-spin and down-spin species, the cooling
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Figure 8.6: The spectral linewidth vs. condensate population for an exciton-polariton
condensate [8].

process is more efficient so that the gain clumping becomes more perfect and the particle
number noise is well suppressed. Consequently, the linewidth broadening at well above
the condensate threshold is rather mild (Fig. 8.7(a)). On the other hand, when the pump
reservoir has single spin species, the cooling process is less efficient so that the gain clump-
ing becomes less perfect and the particle number noise is not well suppressed. As a result
of this, the line broadening at well above the condensate threshold is severe (Fig. 8.7(b)).

Figure 8.7: (a) The measured spectra near zero momentum (|kx| < 0.55 µm−1) for linearly
polarized pumping (θp = 90◦, θd = 0◦) as a function of polariton density. (b) Same spectra
for left-circularly polarized pump and right-circularly polarized detection [12].
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8.2.5 Input-output formalism

When we probe the quantum statistical properties of a dynamical condensate, our detector
interacts with the output field leaked out of the trap rather than internal field inside the
trap. This fact requires us to take one more step of calculation. The result of such
theoretical analysis is somewhat surprising: the quantum statistics of the output field is
different from those of the internal field, which is truly a quantum mechanical effect.

The output field operator r̂(t) is related to the internal field operator Â(t) and the
incident vacuum field f̂(t) by [5, 10]

r̂(t) =
√

γcÂ(t)− f̂(t), (8.59)

where 〈r̂+r̂〉 and
〈
f̂+f̂

〉
are normalized to the average particle flux per second while〈

Â+Â
〉

is normalized to the dimension-less particle number. We can express the output

field operator as r̂(t) = Âe(t)e−i∆φ̂e(t). At well above threshold, the spectrum of the
amplitude noise ∆Âe(t) is reduced to the white noise

S∆Ae(Ω) =
1
2
. (8.60)

A shown in Fig.8.8(a), the amplitude noise spectrum at frequencies lower than γc stems
from the pump noise, while that at frequencies higher than γc is traced back to the incident
vacuum field fluctuation. We can calculate the spectrum of the particle flux operator
N̂e = r̂+r̂ by using the linearization, N̂e ' γcA

2
c + 2

√
γcAc∆Âe = Ne + ∆N̂e

S∆Ne(Ω) = 4γcA
2
cS∆Ae(Ω) = 2Ne. (8.61)

This is the full shot noise without any cut-off frequency. This means that if we integrate
the output particles for an arbitrary time interval τ , the statistics is always Poissonian.

(a) (b)

vacuum 

fluctuation

phase diffusion

noise
vacuum 

fluctuation

pump

noise

Figure 8.8: (a) The amplitude noise spectrum and (b) phase noise spectrum of the output
particle field from the matter-wave laser.

At well above threshold, the spectrum of the phase noise ∆φ̂e(t) is given by

NeS∆φe(Ω) =
1
2

(
1 +

2γ2
c

Ω2

)
, (8.62)
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where the first term of R.H.S. of (8.62) is due to the incident vacuum field fluctuation and
the second term is contributed by the random walk phase diffusion noise studied in the
previous section. In the sprit of the linearization, i.e. the small fluctuations around the
large average value, the phase noise can be calculated using (8.62). At frequencies well
above γc, the product of S∆Ae(Ω) and NeS∆φe(Ω) is equal to 1/4, which is the spectral
minimum uncertainty product and the unique property of a broadband coherent state [10].
At frequencies well below γc, the random-walk phase diffusion noise enhances the phase
noise so that the minimum uncertainty product is not satisfied.
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