
Chapter 7

Several non-trivial issues in
Bose-Einstein condensation

This chapter reviews several important but subtle issues of Bose-Einstein condensation
that are often overlooked in the standard argument. We will discuss such issues as con-
densate fragmentation, population fluctuations and phase-locking, dimensionality, and
dynamical effects due to finite condensate lifetime.

7.1 Condensate fragmentation

The standard argument of BEC, presented in Chapters 3 and 4, leaves one central question
unanswered: Why do the condensate particles accumulate in a single state? Why don’t
they share between several states that are degenerate or nearly degenerate, so that it
makes no difference in the thermodynamic limit? The answer is non-trivial: it is the
exchange interaction energy (Fock term) that makes condensate fragmentation costly [1].

Let us consider the interaction Hamiltonian (See eq.(3.6))

ĤI =
1

2V

∑

p,p′,q

Vqâ
+
p â+

p′ âp′−qâp+q. (7.1)

for two cases:

Case 1: Single state condensation

If all N particles are condensed in the lowest energy state

|ψ0〉 =
1√
N !

(
â+

0

)N |0〉 = |N〉, (7.2)

the corresponding interaction energy is

E0 ≡
〈
ψ0|ĤI |ψ0

〉
=

V0

2V

〈
N |â+2

0 â2
0|N

〉

=
V0

2V
N(N − 1)

' V0

2V
N2. (7.3)
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Case 2: Two state condensation
On the other hand, if the condensate is fragmented into two states 1 and 2, with popula-
tions N1 and N2 (N1 + N2 = N)

|ψ12〉 =
1√

N1!N2!

(
â+

1

)N1
(
â+

2

)N2 |0〉 = |N1〉1|N2〉2, (7.4)

where the kinetic energies of both states are close to that of the ground state 0 and thus
the difference in the kinetic energies between (7.2) and (7.4) is negligible. The interaction
energy involves all possible contractions of operators, which consists of the Hartree (or
direct) terms with (i)p = p′ = p1, q = 0, (ii)p = p′ = p2, q = 0, (iii)p = p1, p

′ = p2, q = 0,
(iv)p = p2, p

′ = p1, q = 0, and Fock (or exchange) terms with (v)p = p1, p
′ = p2, q = p2−p1,

(vi)p = p2, p
′ = p1, q = p1 − p2. Hence

E12 ≡
〈
ψ12|ĤI |ψ12

〉
=




1
2
V0N

2
1 +

1
2
V0N

2
2 + V0N1N2

︸ ︷︷ ︸
Hartree term

+ VqN1N2︸ ︷︷ ︸
Fock term


 /V

' 1
2V

V0N
2 +

1
V

VqN1N2. (7.5)

Since V0 ' Vq > 0 (repulsive interaction), condensate fragmentation costs a macroscopic
exchange energy. Genuine Bose-Einstein condensation is not an ideal gas effect but is due
to exchange interaction (Fock energy).

It may be questioned that the use of the particle number state as the ground state is
not justified. Indeed, the repulsive interaction leads to a quantum depletion, i.e. N0 < N
even at T = 0, so that the ground state is complicated. The above argument against
condensate fragmentation nevertheless remains true, as it relies on the comparison of two
situations with the same amount of quantum depletion. The exchange interaction energy
is reduced slightly by quantum depletion but it remains substantial.

If a Bose system is dynamical due to a finite particle lifetime, however, the above
thermodynamic argument does not apply. Instead, condensate fragmentation is often
unavoidable. We will come back to this problem in the next chapter.

7.2 Population fluctuations and phase locking

We gain the exchange interaction energy by a non-fragmented condensate as discussed in
the previous section. Actually we can further reduce the exchange interaction energy by
allowing the population fluctuations and, in return, introducing the localized phase into
the condensate [1]. Let us introduce a Glauber’s coherent state [2] for the ground state:

|ψ0〉 = eφâ+
0 −φ∗â0 |0〉 = eφâ+

0 |0〉 ≡ |φ〉, (7.6)

where φ is a complex number excitation amplitude whose phase θ = arg(φ) is stabilized to
a specific value. The population and phase of the coherent state have finite fluctuations

〈
∆N̂2

〉
=

〈
N̂

〉
= |φ|2, (7.7)
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〈
∆θ̂2

〉
=

1

4
〈
N̂

〉 =
1

4|φ|2 . (7.8)

N̂ and θ̂ are the canonically conjugate observables, and thus the phase is stabilized,〈
∆θ̂2

〉
¿ 1, only at a cost of the increased population fluctuation

〈
∆N̂2

〉
À 1. We

compare such a coherent state with the particle number eigenstate

|N〉 =
∫ 2π

0
dθe−iNθ|φ(θ)〉. (7.9)

Equation (7.9) shows that the particle number state |N〉 is constructed as a coherent
superposition of coherent states with different eigenvalues as shown in Fig. 7.1(a). The
constructive and destructive interferences result in the fixed particle number but the phase
is completely spread out. Similarly, the coherent state is expanded by the coherent super-
position of the particle number eigenstates:

|φ〉 =
∑

N

e−|φ|2/2φN

√
N !

|N〉. (7.10)

As shown in Fig. 7.1(b), the constructive and destructive interferences among different
particle number eigenstates result in the stabilized phase but the finite particle number
noise. The interaction energy among the condensate is the same for the two states, (7.9)
and (7.10), since both states have identical average particle number

〈
N̂

〉
= N .

constructive

interference
(a) (b)

destructive

interference

constructive

interference

destructive

interference

constructive

interference
(a) (b)

destructive

interference

constructive

interference

destructive

interference

Figure 7.1: (a) A particle number eigenstate |N〉0 constructed by the coherent superposi-
tion of coherent states. (b) A coherent state |φ〉0 constructed by the coherent superposition
of particle number eigenstates.

The situation is different when we consider the quantum depletion (Bogoliubov) term
of the Hamiltonian:

ĤB =
1

2V

∑
q

Vqâ
+
0 â+

0 âqâ−q + h.c., (7.11)

which allows virtual excitations of two particles out of the condensate. In order to take
such a quantum depletion into account, let us consider a variational state:

|ψ0〉 = eφâ+
0 +

∑
q λq â+

q â+
−q |0〉
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= |φ〉0 ⊗
∑

q

[|0〉q|0〉−q + λq|1〉q|1〉−q + · · ·] , (7.12)

where a variational parameter λq is determined so that the interaction energy is minimized.
The modulus |λq| is determined as

|λq|2 ' Nq =
q2/2m + V0

2ε(q)
− 1

2

'
√

mgn

2q

=
1

2
√

2kξ
(7.13)

The Bogolibov interaction energy is given by

EB ≡
〈
ψ0|ĤB|ψ0

〉
=

∑
q

Vq

2V

(
φ∗20 λq + c.c.

)
, (7.14)

where we used 〈φ|â+
0 = φ∗〈φ| and âqâ−q|1〉q|1〉−q = |0〉q|0〉−q, and higher order terms such

as |2〉q|2〉−q, |3〉q|3〉−q · · · are neglected. If we express the complex excitation amplitudes
as φ = |φ|eiθ0 and λq = |λq|eiθq , (7.14) becomes

EB =
∑

q

Vq

V
|φ|2|λq| cos (2θ0 − θq) . (7.15)

The Bogoliubov interaction energy is minimum when 2θ0 − θq = π. It is energetically
favorable that the condensate has a well-defined phase and the excitations are phase-
locked to the condensate with a 180◦ phase difference. The reduced energy is macroscopic,
Vq

V |φ|2|λq| ∼ gn0

√
Nq, where n0 = |φ|2/V and Nq is the average population of the exci-

tation modes (see Chapter 4). From (7.13), Nq is on the order of one if kξ . 1. In fact,
the quantum depletion is bound to occur due to the Bogoliubov Hamiltonian. Then, the
phase stabilization of the condensate is prefered and the phase locking 2θ0− θq = π is im-
plemented simultaneously. This argument does not answer a following question: If (7.15)
is negative and proportioned to |λq|, does the system perfer the continuous grow of the
excitations at a cost of substantial quantum depletion of the condensate? Actually, the
π-phase difference between the condensate and the excitations guarantees this does not
happen and the quantum depletion is kept a minimum level that the quantum mechanics
allows. The situation is analogous to the parametric deamplification in quantum optics
[3].

Population fluctuations and phase stabilization of the condensate, which are caused by
phase locking between the condensate and excitations, are genuine signatures of sponta-
neous symmetry breaking [4], which is distinct from the standard picture of Bose-Einstein
condensation of a non-interacting ideal gas. The stabilized phase is responsible for super-
fluidity, in which a superfluid current is generated by the gradient of the phase as discussed
in Chapter 6.
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7.3 Dimensionality

Bose-Einstein condensation does not occur in uniform, infinite 1D and 2D systems since the
energy density of states ρ(ε) does not vanish in the limit of ε → 0 [5, 6] (see also Chapter3).
However, BEC can be restored in 1D and 2D systems of an appropriate confining potential
is implemented. The energy density of states in a d-dimensional uniform system with a
system size L is

ρ(ε) = Ωd

(
L

2π

)d 1
2

(
2m

~2

) d
2

ε
d
2
−1, (7.16)

Ωd =





1(d = 1)
2π(d = 2)
4π(d = 3)

.

If there is a confirming potential V (r) as shown in Fig. 7.2, a system size L becomes
energy-dependent.

0

Figure 7.2: A confining potential V (r) introduces an energy-dependent system size L(ε).

For a particular form of the potential V (r) = V0

( |x|
L

)η
, the system size at an energy

ε is given by L(ε) = L
(

ε
V0

)1/η
. Therefore, the energy density of states is proportioned

to ρ(ε) ∝ Ldε
d
2
−1 ∝ ε

d
η
+ d

2
−1. The new exponent d

η + d
2 − 1 can be made positive, so

that ρ(ε → 0) = 0, by properly choosing the confining potential profile η for arbitrary
dimensions. That is, the BEC is restored for 0 < η < 2 in a one-dimensional system and
for η > 0 in a two-dimensional system.

7.3.1 An ideal Bose gas in one-dimensional systems

A. General case
Let us assume a symmetric one-dimensional confirming potential

V (x) = V0

( |x|
L

)η

, (7.17)

for which the system size for a particle with a kinetic energy ε is given by

l(ε) = L

(
ε

V0

)1/η

. (7.18)
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The energy density of states for such a system is then calculated as [7]

ρ(ε) =
√

2m

h

∫ l(ε)

−l(ε)

dx√
ε− V (x)

=
√

2m

h
L

ε
1
η
− 1

2

V
1
η

0

F (η), (7.19)

where

F (η) =
∫

y
1−η

η

√
1− y

dy. (7.20)

Note that ρ(ε) → 0 in the limit of ε → 0 if η < 2.
Thermal equilibrium distribution of total N particles in such a one-dimensional system

is

N = N0 +
∫ ∞

0
ρ(ε)

1
e(ε−µ)/kBT − 1

dε

= N0 +
√

2m

h
L

F (η)

V
1/η
0

(kBT )
1
η
+ 1

2 g1

(
η,

µ

kBT

)
. (7.21)

Here g1

(
η, µ

kBT

)
is a one-dimensional Bose function defined by

g1(η, x) =
∫ ∞

0

y
− 1

η
− 1

2

e(y−x) − 1
dy, (7.22)

which has a finite value for x = 0 only if η < 2. In this case, N remains finite at µ = 0
and T 6= 0. Thus, BEC is recovered. The BEC critical temperature Tc can be obtained
by assuming N0 = 0 and µ = 0 in (7.21),

kBTc =

[
h

2mL

V
1/η
0

F (η)
1

g1(η, 0)
N

]2η/(2+η)

. (7.23)

A one-dimensional Bose gas features a BEC phase transition if the external potential is
more “confining” than a parabolic potential, i.e. 0 < η < 2.

B. Parabolic confining potential

If a confining potential is parabolic,

V (x) =
1
2
mω2x2, (7.24)

the eigen-energy of the trapped mode is

E = ~ω (nx + 1/2) , (7.25)
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where nx is the quantum number. Since we are interested in the BEC in such a parabolic
potential, the following condition is satisfied:

kBT À {−µ, ~ω} . (7.26)

Then, the total number of particles is split into the condensate and excited states:

N = N0 +
kBT

~ω

M∑

nx=1

1
nx − µ/~ω

+
∞∑

nx=M+1

1
exp [(~ωnx − µ) /kBT ]− 1

. (7.27)

The first term of R.H.S. in (7.27) is the condensate population in the ground state with
nx = 0. The second term is the population in the excited states in the energy range,

1 ¿ M ¿ kBT

~ω
. (7.28)

If we use the expression for the chemical potential,

µ ' −kBT/N0, (7.29)

(7.27) is reduced to

N ' N0 +
kBT

~ω
ln

kBT

~ω
. (7.30)

At a critical temperature Tc, N0 = 0 and N ' kBTc/~ω so that we obtain

N ' kBTc

~ω
ln

kBTc

~ω

' kBTc

~ω
lnN

∼ O

(
kBTc

~ω

)
, (7.31)

or
kBTc ∼ O (N~ω) . (7.32)

At a temperature below Tc, the fractional condensate is expressed as

N0

N
' 1− 1

N

kBTc

~ω
ln

(
kBT

~ω

)

∼ 1− T

Tc
. (7.33)

Here we used N~ω ' kBTc and ln
(

kBTc

~ω

)
' 1. The particle density at BEC threshold is

n1D =
N

2Leff

'
√

mkBTc

8~2
, (7.34)
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where the effective trap size Leff at BEC threshold is determined through the relation:

kBTc =
1
2
mω2Leff . (7.35)

Since the thermal de Broglie wavelength at BEC threshold is

λTc =

√
2π~2

mkBTc
(7.36)

the phase space density at BEC threshold satisfies the following quantum degeneracy
relation:

n1DλTc =
√

π

4
' 1. (7.37)

7.3.2 An interacting Bose gas in one-dimensional systems

A. Long range order in one-dimensional systems

The phase correlation function of the order parameter in an interacting Bose gas is written
as

χ(s) =
2mc

n1D

∫ (
Np +

1
2

)
eip·s/~

p
· dp

2π~
, (7.38)

where s = |x − x′| is the distance between two spatial points, and the population of the
Bogoliubov quasi-particles at momentum p is given by

Np =
1

ecp/kBT − 1
. (7.39)

At low temperatures, the quantum depletion is dominant, i.e. Np is much smaller than
1/2. In this limit, (7.38) is reduced to

χ(s) =
mc

n1D

∫ ~/ξ

0

eips/~ω

p

dp

2π~
. (7.40)

The first-order spatial coherence for a large s value is now evaluated as

g(1)(s) = exp [χ(s)− χ(0)]

'
(

ξ

s

)ν

, (7.41)

where ν = mc
2π~n1D

, which is much smaller than one for a large n1D value. Therefore, the
phase coherence extends up to a macroscopic distance s À ξ for an interacting Bose gas
in a uniform one-dimension system.

At high temperatures, the thermal depletion is dominant, i.e. Np is much greater than
1/2. In this limit, Np ' kBT/cp and the first-order spatial coherence is expressed as

g(1)(s) = exp (−s/r0) , (7.42)
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where
r0 = 2n1D~2/kBTm. (7.43)

This result indicates that the spatial coherence length r0 is much larger than the average
inter-particle distance d = 1/n1D is the quantum degeneracy condition,

kBT <
~2

m
n2

1D, (7.44)

is satisfied.

B. Tonks-Girardeau gas

The interaction energy per particle is expressed as I = gn, while the kinetic energy of a
particle confined solitary is given by

K =
~2

m

(
1
r̄

)2

=
~2

m
n2, (7.45)

where r̄ = 1
n is the average distance between particles and n is the 1D density (see Fig. 7.3).

The ratio of the interaction energy to the kinetic energy is defined by

γ =
I

K
=

mg

~2n
. (7.46)

Figure 7.3: A Tonks-Girardeau gas in a one-dimensional system.

When γ ¿ 1, the healing length ξ = ~√
mgn is much lager than r̄ = 1/n, so that such a

system tries to minimize the kinetic energy. This is a BEC regime or weakly interacting
regime. When γ À 1, ξ is much smaller than r̄ so that such a system tries to minimize
the interaction energy. This is a Tonks-Giraudeau regime or strong interacting regime.
Bosons cannot penetrate each other and behave as fermions.

In a Tonks-Giraudeau gas, the chemical potential is given by

µ =
~2

2m
k2

eff =
~2

2m
(πn1D)2 , (7.47)

where keff = π/r̄ = πn1D is the effective wavenumber consumed to confine a particle in a
spacial region of r̄. The sound velocity is expressed as

c =
√

n1D

m

∂µ

∂n1D
=

π~n1D

m
, (7.48)
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while the healing length is reduced to

ξ =
~

mc
=

1
πn1D

=
r̄

π
. (7.49)

The first-order coherence function of the interacting 1D Bose gas is given by (7.41), i.e.
g(1)(s) = (ξ/s)ν , where the exponent is

ν =
mc

2π~n1D
=

1
2
. (7.50)

The inverse-Fourier transform of g(1)(s) results in the particle distribution in the excited
states:

n(p) ' N√
2πpF

(
pF

p

)1/2

. (7.51)

The Tonks-Giraudeau gas is characterized by the inverse-square-root dependence of g(1)(s)
and n(p).

7.3.3 An ideal Bose gas in finite two-dimensional systems

A. General case

Next let us assume an isotopic two-dimensional confirming potential

V (r) = V0

(r

a

)η
, (7.52)

for which the normalized system size for a particle with kinetic energy ε is given by

r∗ ≡ r(ε)
a

=
(

ε

V0

)1/η

. (7.53)

Thus, the energy density of states is calculated by [7]

ρ(ε) =
2πm

h2

∫ r(ε)

0
2πrdr =

2π2ma2

h2

(
ε

V0

) 2
η

. (7.54)

Thermal equilibrium distribution of total N particles in such a two-dimensional system is

N = N0 +
2π2ma2

h2V
2/η
0

(kBT )
2
η
+1

g2

(
η,

µ

kBT

)
, (7.55)

where a two-dimensional Bose function is defined by

g2(η, x) =
∫ ∞

0

y2/η

e(y−x) − 1
dy. (7.56)

Note that g2(η, 0) has a finite value for all positive values of η. The BEC critical temper-
ature is obtained by substituting N0 = 0 and µ = 0 in (7.55)

kBTc =

[
h2V

2/η
0 N

2π2ma2g2(η, 0)

] 2
2+η

, (7.57)
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which has a maximum value at η = 2 (parabolic potential). A two-dimensional Bose gas
features a BEC phase transition as far as a trap potential (η > 0) is implemented.

The confining potential of the form, given by (7.52), does not describe a finite trap
with an infinite and sudden barrier. The BEC critical temperature in such finite 2D and
1D systems are discussed in reference [8].

As mentioned already in Chapter 3, the BEC is a phenomenon of macroscopic popula-
tion in a ground state at a temperature satisfying kBTc ≥ kBT À ε1−ε0, where ε0 and ε1

are the kinetic energies of the ground state and first excited state. If confining potential is
too strong and the system size is too small to satisfy the above condition, then the concept
of BEC is irrelevant. The discussion of this section applies when the two conditions are
simultaneously satisfied: 1) a confining potential is strong enough, so that ρ(ε → 0) = 0 in
the limit of ε → 0, and 2) a confining potential is not too strong, so that ε1 − ε0 ¿ kBTc.

B. Parabolic confining potential

When the confining potential is isotopically parabolic, i.e. η = 2 in (7.52), we can write
the potential energy and quantized energy as

V (r) =
1
2
mω2(x2 + y2), (7.58)

E = ~ω (nx + ny + 1) . (7.59)

Thermal equilibrium distribution of N particles in such a system is expressed as

N = N0 +
∫ ∞

0
dερ(ε)

dε

e(ε−µ)/kBT − 1
, (7.60)

where the energy density of states is given by

ρ(ε) = ε/(~ω)2. (7.61)

Using (7.61) in the second term of R.H.S of (7.52) together with µ ' 0, the energy integral

is reduced to ∼ π2

6

(
kBT
~ω

)2
. At a BEC threshold, we can assume N0 = 0 so that we obtain

kBTc '
√

6N

π2
~ω. (7.62)

The particle density at BEC threshold is written as

n2D ≡ N

S
=

(
kBTc

~ω

)2
· π2

6(
2πkBTc

mω2

)

=
π

12
· kBTcm

~2
. (7.63)

If we recall the thermal de Broglie wavelength is λT =
√

2π~2
mkBTc

, the phace space density
at BEC threshold is reduced to

n2Dλ2
T =

π2

6
∼ 1.5, (7.64)
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and we recover the quantum degeneracy condition once again.
At T < Tc, the total number of particles in the excited states becomes smaller than

the total number of particles by N ×
(

T
Tc

)2
. Using this relation to (7.60), we have the

fractional condensate
N0

N
= 1−

(
T

Tc

)2

. (7.65)

This result is compared to N0
N = 1− T

Tc
for a 1D harmonic potential and N0

N = 1−
(

T
Tc

)3

for a 3D harmonic potential.

7.3.4 Berezinskii-Kousterlitz-Thouless (BKT) phase transition

A. BKT phase transition temperature

The energy cost of a quantized vortex in a 3D superfield,

Ev = Lπρ3s

(
~
m

)2

ln

(
R

rc

)
, (7.66)

is macroscopic since it is proportional to the length L of the cylinder. Here ρ3s is the 3D
superfield mass density. Therefore, thermal creation of quantized vorcities is not possible
in a cold 3D Bose gas, but it is possible in a cold 2D Bose gas. Certain of a quantized
vortex is thermodynamically profitable if the total free energy of the system would be
decreased by the appearance of a quantized vortex. The free energy is expressed as

Fv = Ev − TS, (7.67)

where the vortex energy cost and the entropy are given by

Ev = πρ2s

(
~
m

2)
ln

(
R

rc

)
, (7.68)

S = kBln

(
R2

r2
c

)
. (7.69)

Here rc ' ξ is the core size of the vortex, ρ2s is the 2D superfluid mass density and R2/r2
c

is the number of possible states for the creation of one vortex.
The condition of Ev < 0 produces the BKT phase transition temperature:

T ≥ π

2kB
ρ2s

(
~
m

)2

= TBKT , (7.70)

or

kBTBKT =
π

2
n2s
~2

m
. (7.71)

The thermal de Broglie wavelength at BKT phase transition temperature is

λT,BKT =

√
2π~2

mkBTBKT
=

√
4

n2s
, (7.72)
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or
n2sλ

2
T,BKT = 4. (7.73)

When T < TBKT , the threshold creation of quantized vortices is suppressed and a long-
range order is restored.

B. First-order spatial coherence function

If the order parameter of the BKT phase is expressed as ψr =
√

n(r)eiS(r), the phase
correlation function is given by

χ(s) = 〈S(s)S(0)〉

=
mc2

ρ2s

∫
Np · eip·s/~

p

d2p

(2π~)2
, (7.74)

where
Np ' 1

ecp/kBT − 1
' kBT

cp
. (7.75)

By introducing a lower cut-off momentum ~/s and higher cut-off momentum kBT/c, we
can evaluate the integral (7.74) as

χ(s) =
kBTm2

ρ2s

∫ kBT/c

~/s

eips/~

p2
· d2p

(2π~)2
, (7.76)

and

χ(0) − χ(s) =
kBTm2

ρ2s

∫ kBT/c

~/s

1− cos(ps/~)
p2

· d2p

(2π~)2

=
kBTm2

2π~2ρ2s
ln

(
s

sT

)
. (7.77)

Here ST is a characteristic length defined by

ST =
~c

kBT
=

λ2
T

2πξ
. (7.78)

The first-order spatial coherence function is obtained as

g(1)(s) ' e−[χ(0)−χ(s)]

'
(sT

s

)ν
, (7.79)

where

ν =
kBTm

2π~2ρ2s
=

1
4

(
T

TBKT

)
. (7.80)

We have obtained a similar power-law dependence as a 1D case, but the origin of the
power-law decay is the thermal excitation in a 2D case, while it is due to the particle-
particle interaction in a 1D case.
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7.4 Dynamical condensation with a finite lifetime

In a Bose-Einstein condensation experiment, bosons are usually trapped in a confining
potential in order to maintain a required critical density and some sort of cooling mech-
anism is implemented in order to realize a required critical temperature. A particle trap
has a finite lifetime of the order of a second for atomic BEC and a picosecond to nanosec-
ond for exciton-polariton BEC. A cooling mechanism also accompanies a particle loss
process, such as evaporation of atoms or photon emission of exciton-polaritons. Thus a
phenomenon of BEC must be experimentally probed during a time window between the
condensate formation and the condensate decay. If this time window is very wide, the BEC
is indistinguishable from a thermal equilibrium phenomenon of a closed system. On the
other hand, if this time window is very short, the condensation phenomenon is necessarily
dynamical and should be considered as the property of an open dissipative system. The
former is true for most atomic BEC experiments and the latter applies to exciton-polariton
BEC experiments.

A standard Gross-Pitaevskii equation is not adequate for describing the second case.
Instead, such a system is treated by an open dissipative Gross-Pitaevskii equation, which is
a coupled equation for the condensate order parameter ψ0(r, t) and the reservoir population
nR(r, t):

i~
d

dt
ψ0(r, t) =

{
− ~

2

2m
∇2 + Vext(r)−

i~
2

[γc −RnR(r, t)] + gc|ψ0(r, t)|2

+gRnR(r, t)}ψ0(r, t), (7.81)
d

dt
nR(r, t) = P (r, t)− γRnR(r, t)−RnR(r, t)|ψ0(r, t)|2. (7.82)

In (7.81), Vext(r) is an external trap potential, γc is the condensate particle loss rate,
RnR(r, t) is the gain rate for the condensate due to bosonic final state stimulation, and
gc and gR are the condensate-condensate and condensate-reservoir repulsive interactions
(gc, gR > 0). As mentioned already, gR = 2gc due to the additional exchange interac-
tion term which exists only in the condensate-reservoir interaction. The reservoir density
nR(r, t) is controlled by the external pump rate (particle injection rate) P (r, t), the spon-
taneous decay rate γR and the stimulated decay rate R|ψ0(r, t)|2. There is no phase
coherence in the reservoir mode, so that the simple rate equation for the density nR(r, t)
is enough for describing such a dynamical system. The c-number order parameter ψ0(r, t)
does not include the excitations which introduce the amplitude and phase fluctuations for
the condensate. If necessary, they can be calculated by a perturbation technique already
used in Chapter 4.

If the pump rate P (r, t) is independent of time, both condensate and reservoir are
expected to establish steady state solutions. However, those study state solutions are
distinct from thermal equilibrium solutions that we have discussed so far. The numerical
results in the condensate particle distribution shown in Fig. 7.4 feature such an example.
Even though we concluded in sec.7.2 that the condensate fragmentation is suppressed by
the exchange interaction energy (Fock term), clear signatures of condensate fragmentation
are demonstrated in the numerical results shown in Fig. 7.4(a) and (b), that is, two or
three states are simultaneously occupied by the macroscopic population. This is the so-
called spatial hole burning effect which is well-known in laser physics. When the ground
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state has a large population, the simulated decay rate R|ψo(r)|2 in (7.82) is maximum at
the condensate center and lower at the condensate peripheral. Consequently, the reservoir
density nR(r) has a population dip at the center (hole burning). The unusual spatial
distribution of nR(r) gives a considerately higher gain RnR(r) for higher energy states, so
that they capture a macroscopic population and creates condensate fragmentation. Before
they cool down to the ground state, they decay as photons and captured by detectors. If
there is no reservoir density, nR(r) = 0, and a condensate lifetime is infinitely long, such
condensate fragmentation is not formed.

(a) (b) (c)

Figure 7.4: (a)(b) Real space particle distribution at the pump rates, p/pth = 2 and 10
vs. the condensate energy. (c) Real space pump distribution.

Another remarkable feature shown in Fig. 7.4 is a gain-induced trapping mechanism. In
the numerical model, it is assumed that an external trap potential is negligible, Vext(r) ∼
0. Nevertheless, clear trapped mode structures appear. This is because the pump profile
P (r) has a spatial dependence as shown in 7.4(c) and condensate particles can be trapped
by the imaginary part, i~2RnR(r), of the trap potential energy rather than the real part,
Vext(r), in this case.

The above example suggests that the properties of a dynamical condensate described
by the open dissipative Gross-Pitaevskii equation, (7.81) and (7.82), are different from
those of an equilibrium BEC. Probably the most subtle issue among them is the quantum
fluctuations of the amplitude and phase of the condensate order parameter. We will discuss
the point in the next chapter.
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