
Chapter 6

BCS Phase Transition

At low enough temperatures a Fermi gas or electron-hole gas interacting with attractive
forces undergoes a phase transition into the superfluid state. This is analogous to the
phase transition exhibited by electrons into the superconducting state. There are two
well-known paradigms for the superfluidity and superconductivity in a Fermi system:

(1) In a dense limit, the normal state is a degenerate Fermi liquid that undergoes a
pairing instability at a temperature kBTc ¿ εF . The formation of pairs and their con-
densation (macroscopic occupation at zero momentum state) both occur simultaneously
at the critical temperature Tc.

(2) In a dilute limit, the bound states (composite bosons) form at some very high temper-
ature Tdissoc and these preformed bosons then condense at the BEC critical temperature
Tc ¿ Tdissoc.

In most cases of experimental interest, the system falls into one category or the other.
For instance, 3He is a Fermi superfluid described by (1) while 4He is a superfluid de-
scribed by (2). Essentially all cases of superconductivity in metals are much closer to
(1) rather than (2). The theory of the transition of the type (1) was first introduced by
Bardeen, Cooper and Schrieffer [1, 2] and is called the BCS phase transition. A pair of
fermions with opposite momenta and spins forms a bound state which is referred to as a
Cooper pair and behaves as a composite boson. These Bose particles exhibit Bose-Einstein
condensation in the state of zero total momentum. This is the BCS scenario of the phase
transition of type 1.

6.1 BEC-BCS crossover

It is of great interest to consider a model which interpolates between the above two regimes:
the weak attraction in the high density limit is described by BCS theory of collective
Cooper-pairs (momentum space pairing) while the strong attraction in the low density
limit is described by BEC theory of tightly bound independent bosons (real-space pairing).
There are experimental systems which may be in a regime intermediate between these two
extreme limiting cases [3]. One such system is an exciton condensate in semiconductors
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and the other is a high transition temperature superconductor in the copper-oxides.
Let us consider a bound pair of electron and hole in semiconductors, which is called

an exciton [4]. The creation operator of an exciton with zero total momentum K = 0 is

b̂+
0 =

∑

k

ϕkα̂
+
k↑β̂

+
−k↓, (6.1)

where α̂+
k↑ ≡ â+

kc,↑ is the creation operator of a conduction electron with momentum k

and up-spin, β̂+
k↓ ≡ âkv,↑ is the creation operator of a valance hole with momentum −k

and down-spin, which is equivalent to the destruction operator of a valance electron with
momentum k and up-spin, and ϕk is the probability amplitude for an electron-hole pair
excitation in a momentum space which is given by the Fourier transform of the relative
wavefunction of an electron-hole pair. The modulus |ϕk| extends from zero to the cut-off
wavenumber k ∼ 1/a∗B, where a∗B is the Bohr radius of the exciton. If the coherent state
of excitons is formed at the center-of-mass wavenumber K = 0 with a complex excitation
amplitude ψ, such a state is generated by the translation operator starting from a vacuum
state (crystal ground state):

|ψ〉 = eψb̂+0 |0〉 = eψ
∑

k ϕkα̂+
k↑β̂

+
−k↓ |0〉

=
∏

k

(
uk + vkα̂

+
k↑β̂

+
−k↓

)
|0〉, (6.2)

where the displacement operator eψ
∑

k ϕkα̂+
k↑β̂

+
−k↓ is approximated by the first order expres-

sion 1 + ψ
∑

k ϕkα̂
+
k↑β̂

+
−k↓. The variational parameter should satisfy vk/uk = ψϕk at each

momentum. The total number of Fermi particles (electrons and holes) in the system is
N = 2

∑
k |vk|2.

In a dilute limit in which an inter-exciton separation d = n−1/3 is much larger than
the Bohr radius a∗B, the exciton behaves as a point boson and undergoes a usual Bose-
Einstein condensation. The occupation number at each momentum eigenstate |vk|2 is
much smaller than one as shown in Fig. 6.1(a), so that the Pauli exclusion principle does
not play any role in the formation of BEC except for the fact that the repulsive interaction
between excitons is ultimately traced back to the Pauli principle as well as the Coulomb
force [4]. In other words the fermionic nature of electron and hole can be treated as a
perturbation. The binding energy of an exciton ∆ is much greater than the chemical
potential µ ' −∆ < 0 in this regime, as shown in Fig. 6.1(b).

In an opposite dense limit, n ≥ 1/a∗3B , the electron-hole pairs strongly overlap so that
the Pauli exclusion principle cannot be neglected. The occupation number |vk|2 cannot
exceed one. Thus the constituent fermions (electrons and holes) must extend to higher
momentum states in order to accommodate the total number N of particles up to the
Fermi momentum ~kF as shown in Fig. 6.1(a). The Fermions are normal except for a
narrow window near the Fermi momentum, as will be discussed in the next section. The
strong overlap of the constituent fermions decreases the binding energy ∆ but a finite
value of ∆ still exists, which represents a cooperative interaction effect. The increase in
the density results in the increase in the chemical potential µ, which eventually overwhelms
the binding energy ∆ as shown in Fig. 6.1(b). In this limit, the weakly bound pairs of
electrons and holes still exhibit Bose-Einstein condensation at low enough temperatures.
This is the BCS phase transition.
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Figure 6.1: (a) The occupation number |vk|2 of each momentum eigenstate vs. wavenum-
ber k in dilute and dense limit. (b) The binding energy ∆ and the chemical potential µ
vs. composite particle density n. εb is the exciton binding energy in a dilute limit.

In a small n regime of Fig. 6.1(b), a normal BEC occurs at low enough temperatures.
In the opposite limit of large n regime of Fig. 6.1(b), a BCS phase is formed instead. The
BEC-BCS crossover occurs when the chemical potential µ becomes positive and compa-
rable to the binding energy ∆ [4].

6.2 Bogoliubov transformation for Fermi particles

In this section we will review the basic features of the BCS formalism, in which a uniform
Fermi gas has an attractive interaction potential. The system Hamiltonian has a form of

Ĥ =
∑
p,s

ηpâ
+
p,sâp,s +

g

V

∑

p1,p2,p′1,p′2

â+
p′2↑â

+
p′1↓âp1↓âp2↑, (6.3)

where p1 + p2 = p′1 + p′2 and V is the volume of the Fermi gas system. The energy of a
free particle is defined with respect to the chemical potential,

ηp =
p2

2m
− µ. (6.4)

Here the chemical potential is well approximated by the Fermi energy µ ' p2
F

2m , where pF is
the Fermi momentum. The particle creation and annihilation operators satisfy the normal
anti-commutation relations {

âp,s, â
+
p′,s′

}
+

= δpp′δss′ . (6.5)

As mentioned already, the interaction is attractive (g < 0). The interaction is assumed to
be independent of momenta between colliding Fermi particles.

The fact that the Fermi particle-pairs going into condensation have zero momentum
permits us to simplify (6.3) by retaining only terms with p2 = −p1 ≡ q and p′2 = −p′1 ≡ p.
The reduced Hamiltonian is now

Ĥ =
∑
p,s

ηpâ
+
p,sâp,s +

g

V

∑
p,q

â+
p,↑â

+
−p,↓â−q,↓âq,↑. (6.6)
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The new Bogoliubov transformation is [5].

âp,↑ = upb̂p,↑ + vpb̂
+
−p,↓, (6.7)

âp,↓ = upb̂
+
p,↓ − vpb̂−p,↑, (6.8)

where up and vp, without loss of generality, have been chosen to be real. The annihi-
lation and creation operators of the quasi-particles, b̂p,↑ and b̂+

p,↑, satisfy the Fermi anti-

communication relation
{

b̂p,s, b̂
+
p′,s′

}
+

= δpp′δss′ if the modulus of up and vp satisfy

u2
p + v2

p = 1 (6.9)

The Hamiltonian (6.6) is diagonalized, i.e. all the off-diagonal terms vanish and the system
energy E is minimized, when u2

p and v2
p are chosen

u2
p =

1
2


1 +

ηp√
∆2 + η2

p


 , (6.10)

v2
p =

1
2


1− ηp√

∆2 + η2
p


 . (6.11)

Here the parameter ∆ is determined by

− g

2(2π~)3

∫
dp

1− 2np√
∆2 + η2

p

= 1, (6.12)

where np =
〈
b̂+
p,↑b̂p,↑

〉
=

〈
b̂+
p,↓b̂p,↓

〉
is the occupation number of the quasi-particle with

momentum p. Equation (6.12) is called the ”gap equation” because of the reason which
will be discussed shortly. By virtue of the above transformation, the Hamiltonian (6.6)
has the diagonal form

Ĥ =
∑

p

εp

(
b̂+
p,↑b̂p,↑ + b̂+

p,↓b̂p,↓
)

, (6.13)

with the Bogoliubov dispersion law given by

εp =
∂E

∂nps
=

√
∆2 + η2

p. (6.14)

The excitation energy normalized by the Fermi energy is

εp

εF
=

√[
2 (p− pF )

pF

]2

+
(

∆
εF

)2

, (6.15)

where µ ' εF ' p2
F

2m is used in (6.14). Equation (6.15) shows that the spectrum of the
excitation energy features an energy gap ∆ at the Fermi surface (at p = pF ) due to
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Figure 6.2: Quasi particle dispersion law (solid line) in a Fermi superfluid. The dotted
lines give the prediction of the noninteracting Fermi gas.

the pairing mechanism, while the excitation spectrum of the non-interacting Fermi-gas is
normal, ηp = p2

2m − µ ' pF
m (p− pF ), as shown in Fig. 6.2.

At zero temperatures, the population of the quasi-particles disappear, i.e. np = 0 and
the gap can be calculated by

− g

2(2π~)3

∫
dp

4πp2

√
∆2

0 + η2
p

= 1, (6.16)

which clearly shows that a solution for ∆0 exists only if g < 0, i.e. for attractive interac-
tions. The solution of the above equation is approximately given by

∆0 ' εF exp
(
− 2π2~2

m|g|kF

)
= εF exp

(
− π

2kF |a|
)

, (6.17)

where a = m
4π~2 g is the (negative) scattering length.

6.3 Superfluidity of Fermi systems

According to the Landau’s criterion of superfluidity presented in the previous chapter, the
change in energy due to the appearance of the excitation is ε(p)+p ·v, where p, ε(p) and
v are the momentum and the energy of the excitation and the velocity of the fluid. The
spontaneous creation of excitations can take place only if it is energetically profitable, i.e.

ε(p) + p · v < 0. (6.18)

This is possible if v > ε(p)/p and the vectors p and v are opposite (p · v < 0). If instead
the velocity is smaller than the critical value

vc = min
p

ε(p)
p

, (6.19)

no excitation will be created spontaneously and the fluid behaves as a superfluid.
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Figure 6.3: The energy gap ∆ at the Fermi momentum pF and the critical velocity vc ' ∆
pF

for superfluidity.

As shown in Fig 6.3, the above Landau’s criterion for superfluidity is satisfied with
a finite value of the critical velocity. Two fermions with opposite momenta pF and −pF

form a Fermi-pair with zero net momentum and realizes Bose-Einstein condensation. If
the condensate moves with a finite velocity satisfying

v < vc ' ∆
pF

, (6.20)

(6.18) is not satisfied, so that no excitation is created and the Fermi-pair condensate
features the superfluidity. This critical velocity is much smaller than the Fermi velocity
vF = 2EF

pF
, since the gap ∆ is much smaller than the Fermi energy (see 6.17).

Similar to the phonon mode occurring for an interacting Bose gas, the density response
of the Fermi gas in the BCS phase is characterized by a gapless phonon mode with the
dispersion law ω = cp, where c is the sound velocity. The spreading in momentum of
Fermi-pairs is of the order of δp ∼ ∆/vF , which defines the healing length of Fermi
superfluidity

ξ =
~
δp
' ~vF

∆
. (6.21)

The size of quantized vortices in a superfluid Fermi gas is determined by this healing
length, similar to the quantized vortices in a superfluid Bose gas. In general, due to the
small size of ∆, the healing length of the Fermi superfluid is significantly larger than the
one of the Bose superfluid.

6.4 Critical temperature

At finite temperatures, the occupation number of the quasi-particles is given by the normal
Fermi-Dirac distribution

np =
1

exp (εp/kBT ) + 1
, (6.22)

where the excitation energy εp is measured from the Fermi energy. In the large momentum

(or small gap) limit, εp = ηp = p2

2m − µ and hence np =
{

exp
[(

p2

2m − µ
)

/kBT
]

+ 1
}−1

.
Using this expression, one can solve the equation of the gap (6.12), at finite temperatures.
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For sufficiently high temperatures, this equation does not have a solution for ∆, reflecting
that the system is no longer superfluid. The critical temperature Tc at which the transition
from the superfluid to the normal fluid takes place can be calculated by setting ∆ = 0 in
(6.12). Equation (6.12) is reduced to

log
(

∆0

∆

)
=

∫ ∞

−∞

dηp

ε
(
eε/kBT + 1

) = 2I (∆/kBT ) , (6.23)

where the integral I (∆/kBT ) is expressed as,

I(u) =
∫ ∞

0

1√
x2 + u2

· 1

exp
(√

x2 + u2
)

+ 1
dx. (6.24)

At low temperature limits kBT ¿ ∆0, the gap decreases with the temperature exponen-
tially:

∆ = ∆0

[
1−

√
2πkBT

∆0
e−∆0/kBT

]
(6.25)

On the other hand, at high temperature limits kBT . ∆0, (6.23) is simplified to

log
(

∆0

∆

)
= log

(
πkBT

δ∆

)
+

7ζ(3)∆2

8π2(kBT )2
. (6.26)

The critical temperature Tc is obtained by setting ∆ = 0 in (6.23) as

kBTc =
δ∆0

π
∼ 0.57∆0, (6.27)

where δ is the Euler constant. Substituting (6.27) into (6.26), the gap ∆ near the critical
temperature Tc decreases with the temperature in the form of

∆ = kBTc

[
8π2

7ζ(3)

(
1− T

Tc

)]1/2

∼ 3.06kBTc

√
1− T

Tc
. (6.28)

Equations (6.17) and (6.27) for the gap at zero temperature and the critical temper-
ature are based on the lowest-order Bogoliubov approximation [5, 6]. Taking the higher-
order correction, the Fermi energy in (6.17) and (6.27) should be replaced by [7]

εF → 1
2

(
2
e

)7/3

εF . (6.29)

6.5 BEC-BCS crossover of exciton-polaritons

The Hamiltonian of the exciton-polariton system is given by

Ĥ = Ĥexc + Ĥph + ĤI , (6.30)
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where

Ĥexc =
∑

k

{[
(~k)2

2me
− µ

]
α̂+

k α̂k +
[
(~k)2

2mh
− µ

]
β̂+

k β̂k

}

+
1
2

∑

k,k′,q

[
V ee

q α̂+
k′−qα̂

+
k+qα̂kα̂k′ + V hh

q β̂+
k′−qβ̂

+
k+qβ̂kβ̂k′

−2V eh
q α̂+

k+qβ̂k′−qβ̂k′α̂k

]
, (6.31)

Ĥph = (ω − µ) â+â, (6.32)

ĤI = Ω
∑

k

(
α̂+

k β̂+
−kâ + â+β̂−kα̂k

)
. (6.33)

We assume the extended BCS wavefunction, consisting of a coherent state field and
electron-hole excitation,

|Φ〉 = exp
(
λâ+

) ∏

k

[
uk + vkα̂

+
k β̂+

−k

]
|0〉, (6.34)

and then minimize the total energy (6.30) of the system in terms of the variational pa-
rameters λ, uk and vk.

First, we switch-off the Coulomb interaction
(
V ee

q = V hh
q = V eh

q = 0
)
. This simplified

problem can be solved by the mean-field approximation. The relevant BCS equations are
those for the excitation spectrum Ek, the mean field amplitude λ and the total number of
electron-hole pairs D:

Ek =

√√√√
(

(~k)2

2m
− µ

)2

+ (Ωλ)2, (6.35)

λ = − ΩD

ω − µ
, (6.36)

D = −
∑

k

Ωλ

2Ek
=

∑

k

|vk|2. (6.37)

Figure 6.4(a) shows the occupation probability |vk|2 of electron-hole states with wavenum-
ber k as a function of the normalized particle density N =

(
πa∗2B

)
n. In a low density

regime, a well-defined chemical potential µ exists, which is identified by the sharp cut-off
of |vk|2. In an intermediate density regime (blue trace), the distribution of |vk|2 carries
an uncertainty near the chemical potential. This is due to the electron-hole correlation
induced by light-induced attractive interaction between them, which is analogous to the
BCS state. However, in a high density regime (red trace), |vk|2 is saturated at ∼ 0.5 over
a wide range of wavenumbers. This is due to the coherent Rabi oscillation between the
field and the electron-hole pair. Most of the system energy (or particles) is stored in the
field rather than the electronic excitations as shown in Fig. 6.4(b) and (c) in a high density
regime. The time averaged electron-hole pair is pinned at |vk|2 = 0.5 under the coherent
Rabi oscillation induced by the strong field amplitude.

Next, we include the Coulomb interaction V ee
q , V hh

q and V eh
q in (6.31). The occupation

probability |vk|2 of electron-hole states with wavenumber k is now shown in Fig. 6.5(a)
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(a) (b) (c)

Figure 6.4: The solution of the BCS equations under the assumption: V ee
q = V hh

q = V eh
q =

0. (a) |vk|2 vs. ka∗B, (b) Nexc =
∑

k |vk|2 vs. µ/ω, and (c) Nph = |λ|2 vs. µ/ω.

as a function of N =
(
πa∗2B

)
n. Note that in a low density regime, the distribution

|vk|2 manifests the formation of a bound state (exciton) due to the attractive interaction
V eh

q . However, in a high density limit, the distribution |vk|2 is indistinguishable from
that without the Coulomb interaction effect. The system is completely dominated by the
coherent Rabi oscillation. Figure 6.5(b) shows |vk|2 vs. ka∗B when the coupling with the
photon field is switched off, which corresponds to the standard BEC-BCS crossover in an
exciton system. In this case, the Fermi liquid is normal

(|vk|2 = 1
)

below the chemical
potential.

(a) (b)

Figure 6.5: The occupation probability |vk|2 vs the normalized wavenumber ka∗B for (a)
coupled exciton-photon system and (b) exciton system decoupled from photon field.

The BEC-BCS crossover in the exciton-polariton system is demonstrated in the nu-
merical results shown in Fig. 6.6 [8]. When the chemical potential µ is far below the lower
polariton energy, the conventional exciton-polariton splitting 2Ω is observed for ∆ = 0
(zero detuning, Fig 6.6(a)) and a larger splitting 2

√
Ω2 + ∆2/4 is observed for ∆ > 0 (blue

detuning, Fig. 6.6(b)). When the chemical potential approaches to the lower polariton en-
ergy within ∼ kBT , the standard BEC occurs. A slight decrease in the exciton-polariton
splitting is due to the phase space filling effect. If there is no coupling between the excitons
and photons, the chemical potential continuously increases as shown by the dashed line.
However, when there exists the coupling between the excitons and photons, most of the
excitations is stored in the photon field and the increase in the chemical potential µ for
the polariton system saturates. Simultaneously, the coherent Rabi oscillation induced by
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the coherent field with an amplitude λ opens up a gap 2Ωλ. This behavior is referred to
as BEC-BCS crossover of exciton-polaritons [8].

The physics behind the exciton-polariton BCS is the coherent Rabi oscillation as men-
tioned above and so the triplet structure shown in Fig. 6.6 has a common root as the
Mollow’s triplet in atomic physics. On the other hand, the exciton BCS is a result of
the screened and diminishing electron-hole Coumb attractive force [9, 10], so that its gap
energy is much smaller than that of the exciton-polariton BCS. When a photon is ab-
sorbed and emitted by an electron-hole pair, the electron and hole must occupy the same
lattice site. Otherwise, the dipole moment is not created. If the coherent Rabi oscillation
(absorption and emission of photons) takes place very frequently, the electron-hole pairs
become highly correlated in space like a Frenkel exciton even though their wavefunctions
are strongly overlapped.

(a) (b)

UP

LP

condensate µ

normal
state µ

gap

4g|λ|

Coherent light

Figure 6.6: The BEC-BCS crossover of the exciton-polariton system. (a) ∆ = 0 (zero
detuning), (b) ∆ = 2 (blue detuning).

10



Bibliography

[1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Microscopic theory of superconduc-
tivity. Phys. Rev., 106:162–164, 1957.

[2] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of superconductivity. Phys.
Rev., 108:1175–1204, 1957.

[3] A. J. Leggett. Modern Trends in the Theory of Condensed Matter. Springer-Verlag,
Berlin, 1980. J. Phys. (Paris) Colloq, 41, C7.

[4] P. Nozieres and S. Schmitt-Rink. Bose condensation in an attractive fermion gas:
From weak to strong coupling superconductivity. J. Low Temp. Phys., 59:195, 1985.

[5] N. N. Bogoliubov. A new method in the theory of superconductivity 1. Sov. Phys.
JETP, 7:41–46, 1958.

[6] N. N. Bogoliubov. On the theory of superfluidity. J. Phys. (USSR), 11:23, 1947.

[7] L. P. Gorkov and T. K. Melikbarkhudarov. Structure of quantized vortex. Sov. Phys.
JETP, 13:1018–1022, 1961.

[8] M. H. Szymanska and P. B. Littlewood. The crossover between lasing and polariton
condensation in optical microcavities. Solid State Communications, 124:103, 2002.

[9] L. V. Keldysh and A. N. Kozlov. Collective properties of excitons in semiconductors.
Sov. Phys. JETP, 27:521, 1968.

[10] C. Comte and P. Nozieres. Exciton Bose condensation - the ground state of an electron
hole gas .1. mean field description of a simplified model. J. Phys., 43:1069, 1982.

11


