
Chapter 5

Superfluidity

Superfluidity is closely related to Bose-Einstein condensation. In a phenomenological level,
superfluid can flow through narrow capillaries or slits without dissipating energy. Super-
fluid does not possess the shear viscosity. The superfluid of liquid 4He, below the so-called
λ-point, was discovered by Kapitza [1] and independently by Allen and Misener [2]. Soon
after Landau explained that if the excitation spectrum satisfies certain criteria, the motion
of the fluid does not cause the energy dissipation [3]. These Landau criteria are met by the
Bogoliubov excitation spectrum associated with the Bose-Einstein condensate consisting
of an interacting Bose gas and thus establish the first connection between superfluidity and
BEC. The connection between the two phenomena is further established in a deeper level
through the relationship between irrotationality of the superfluid and the global phase of
the BEC order parameter. This is the first subject of this chapter. The second subject of
this chapter is the rotational properties of the irrotational superfluid, with special focus
on the quantized vortices. We will conclude this chapter with the concept of superfluidity
and BEC in a uniform 2D system, known as the Berezinskii-Kousterlitz-Thouless phase
transition.

5.1 Landau’s criteria of superfluidity

Landau’s theory of superfluids is based on the Galilean transformation of energy and
momentum. Let E and P be the energy and momentum of the fluid in a reference frame
K. If we try to express the energy and momentum of the same fluid but in a moving
frame K ′, which has a relative velocity V with respect to a reference frame K, we have
the following relations:

P′ ≡ P−MV, (5.1)

E′ ≡ |P′|2
2M

=
1

2M
|P−MV|2

= E −P ·V +
1
2
M |V|2, (5.2)

where E = |P′|2
2M and M is the total mass of the fluid.

We first consider a fluid at zero temperature, in which all particles are in the ground
state and flowing along a capillary at constant velocity v. If the fluid is viscous, the
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motion will produce dissipation of energy via friction with the capillary wall and decrease
of the kinetic energy. We assume that such dissipative processes take place through the
creation of elementary excitation, which is the Bogoliubov quasi-particle for the case of
an interacting Bose gas. Let us first describe this process in the reference frame K which,
rather confusingly, moves with the same velocity v of the fluid. In this reference frame,
the fluid is at rest. If a single elementary excitation with a momentum p appears in the
fluid, the total energy of the fluid in the reference frame K is E0 + ε(p), where E0 and
ε(p) are the ground state energy and the elementary excitation energy. Let us move to
the moving frame K ′, in which the fluid moves with a velocity v but the capillary is at
rest. In this moving frame K ′ which moves with the velocity −v with respect to the fluid,
the energy and momentum of the fluid are given, setting V = −v in (5.2) and (5.1), by

P′ = p + Mv. (5.3)

E′ = E0 + ε(p) + p · v +
1
2
M |v|2, (5.4)

The above results indicate that the changes in energy and momentum caused by the
appearance of one elementary excitation are ε(p) + p · v and p, respectively.

Spontaneous creation of elementary excitations, i.e. energy dissipation, can occur if
and only if such a process is energetically favorable. This means if the energy of an
elementary excitation, in the moving frame K ′ where the capillary is at rest, so that a
thermal equilibrium condition is satisfied, is negative:

ε(p) + p · v < 0, (5.5)

the dissipation of energy occurs. The above condition is satisfied when |v| > ε(p)
|p| and

p · v < 0, i.e. when the elementary excitation has the momentum p opposite to the fluid
velocity v and the fluid velocity |v| exceeds the critical value,

vc = min
p

ε(p)
|p| , (5.6)

where the minimum is calculated over all the values of p. If instead the fluid velocity v
is smaller than (5.6), then no elementary excitation will be spontaneously formed. Thus,
the Landau’s criteria of superfluidity is summarized as the relative velocity between the
fluid and the capillary is smaller than the critical value, v < vc.

By looking at the Bogoliubov excitation spectrum in the previous chapter 4, one can
easily conclude that the weakly interacting Bose gas at zero temperature satisfies the
Landau’s criteria of superfluidity and that the critical velocity is given by the sound
velocity as shown in Fig. 5.1(a). Strongly interacting fluids such as liquid 4He also fulfil
the Landau criteria but in this case the critical velocity is smaller than the sound velocity
due to the complicated excitation spectrum, as shown in Fig. 5.1(b). It is easily understood
that the critical velocity decreases with the decrease in the particle-particle interaction and
disappears in the limit of an ideal gas because vc = minp

ε(p)
|p| = 0 for ε(p) = p2

2m . The
particle-particle interaction is a crucial requirement in the appearance of superfluidity.
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Figure 5.1: (a) The excitation spectrum of a weakly interacting Bose gas, for which the
critical velocity is equal to the sound velocity, vc = c. (b) The excitation spectrum of a
strongly interacting Bose liquid, for which the critical velocity is smaller than the sound
velocity, vc < c.

5.2 Superfluidity at finite temperatures

Let us next consider a uniform Bose-Einstein condensed fluid at a finite temperature.
We assume the thermodynamic properties of the system are described by the Bogoliubov
quasi-particles in thermal equilibrium distributions. According to the above argument,
no new excitations can be created directly by the condensate due to the motion of the
superfluid with respect to the capillary. However, the quasi-particles are excited thermally
and the fluid associated with the quasi-particles is not superfluid but normal fluid. These
elementary excitations can collide with the capillary walls and dissipate their energies and
momenta. Thus, we have the two fluid components at a finite temperature: a superfluid
without viscosity and a normal fluid with viscosity. Collisions establish thermodynamic
equilibrium in the normal fluid in the frame where the capillary is at rest (capillary frame).

If the energy and momentum of the quasi-particle are ε(p) and p in the frame where
the superfluid is at rest (superfluid frame), the energy of the same quasi-particle in the
capillary frame becomes ε(p)+p ·vs, where vs is the relative velocity of the superfluid and
the capillary. The Bogoliubov quasi-particles obey the thermal equilibrium distribution
in the capillary frame (not in the superfluid frame). Thus, the quasi-particle population
is given by

Np =
1

exp
[

ε(p)+p·vs

kBT

]
− 1

. (5.7)

If ε(p) + p · vs > 0, i.e. |vs| < minp
ε(p)
|p| , the quasi-particle population Np is positive

for all values of p. Therefore, we can conclude the coexistence of the two fluids becomes
possible. Notice that the condition for the positive Np, vs < min ε(p)

|p| , is identical to the
Landau’s criteria of superfluidity. Figure 5.2 shows the quasi-equilibrium population Np

for a positive superfluid velocity vs > 0. In conclusion, co-existence of the superfluid and
normal fluid is possible at finite temperatures if the Landau’s criteria (5.6) is satisfied.
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Figure 5.2: The quasi-particle population Np in the superfluid frame. In this frame, the
condensate (superfluid) is at rest (p = 0), while the quasi-particle population becomes
asymmetric, more population in a negative p region and less population in a positive p
region due to the friction with the capillary wall which moves with a velocity −vs with
respect to the superfluid.

5.3 Superfluid velocity and phase of order parameter

We have established one important connection between BEC and superfluidity, which is
the relationship between the Landau’s criteria for the critical velocity for superfluidity
and the sound velocity determined by the Bogoliubov excitation spectrum. In this section
we will develop one more important connection between BEC and superfluidity, which
addresses the relationship of the superfluid velocity vs and the phase S of BEC order
parameter.

The presence of a large number of particles in a ground state permits the introduc-
tion of the c−number order parameter ψ0(r, t) as discussed in Chapter 1. The quantum
mechanical field operator ψ̂(r, t) satisfies the Heisenberg equation of motion

i~
d

dt
ψ̂(r, t) =

[
ψ̂(r, t), Ĥ

]
=

[
−~

2∇2

2m
+ Vext(r, t)

+
∫

ψ̂+(r′, t)V (r′ − r)ψ̂(r′, t)dr′
]

ψ̂(r, t). (5.8)

We replace ψ̂(r, t) with ψ0(r, t) and use the effective soft potential Veff for V (r′ − r) (see
Chapter4). The c−number order parameter ψ0(r, t) varies slowly over the inter-particle
interaction range, and so we can substitute r′ for r in (5.8) and finally obtain

i~
d

dt
ψ0(r, t) =

[
−~

2∇2

2m
+ Vext(r, t) + g|ψ0(r, t)|2

]
ψ0(r, t). (5.9)

This is the famous nonlinear Schrödinger equation, which is also referred to as Gross-
Pitaevskii equation, and g =

∫
Veff(r)dr [4, 5]. Equation (5.9) plays a crucial role in both

nonlinear optics and BEC physics. In the field of nonlinear optics, a photon (Maxwell
field) acquires an effective mass via material’s dispersion and interacts with each other
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via optical Kerr effect [6]. For example, optical solitons and modulational instability in
nonlinear optical media are properly described by (5.9). Thus, it is not hard to anticipate
the physics of BEC has many common features with the physics of nonlinear optics [6].

In the case of BEC, the local density of particles is related to the squared order pa-
rameter by

n(r, t) = |ψ0(r, t)|2, (5.10)

and thus the total number of particles is equal to N =
∫ |ψ0(r)|2dr. Here we assume the

negligible quantum and thermal depletion, which is used already to derive (5.9). If we
multiply (5.9) by ψ∗0(r, t) and subtract the complex conjugate of the resulting equation,
we obtain the following continuity equation under superfluidity:

d

dt
n(r, t) + div [j(r, t)] = 0 (5.11)

where the particle current density is

j(r, t) = − i~
2m

(ψ∗0∇ψ0 − ψ0∇ψ∗0) . (5.12)

Here the Laplacian ∇2U = ∂2U
∂x2 + ∂2U

∂y2 + ∂2U
∂z2 , the divergent ∇ · A = ∂Ax

∂x + ∂Ay

∂y + ∂Az
∂z

and the gradient ∇U = ∂U
∂x ex + ∂U

∂y ey + ∂U
∂z ez are defined in this way. From (5.11) it can

be concluded that the Gross-Pitaevskii equation guarantees the conservation of the total
particle number N =

∫
n(r)dr. If we express the c−number order parameter ψ0(r, t) in

terms of its amplitude and phase,

ψ0(r, t) =
√

n(r, t)eiS(r,t), (5.13)

the particle current density (5.12) is rewritten as j(r, t) = n(r, t) ~m∇S(r, t). This result
means that the superfluid velocity vs of the condensate particle is related to the gradient
of the phase S of order parameter:

vs(r, t) =
~
m
∇S(r, t). (5.14)

The phase of the order parameter plays the role of a velocity potential and vs is referred
to as a velocity field.

Inserting (5.13) into (5.9), one can derive on explicit equation for the phase S(r, t);

~
d

dt
S +

(
1
2
mv2

s + Vext + gn− ~2

2m
√

n
∇2√n

)
= 0. (5.15)

The particle continuity equation (5.11) and the phase equation (5.15) provide a closed
set of coupled equations, which is fully equivalent to the Gross-Pitaevskii equation (5.8).
The term containing the gradient of the particle density in (5.15) implements the Heisen-
berg uncertainty relationship between particle number and phase, and is called ”quantum
pressure”.

The stationary solution of (5.9) has the form of

ψ0(r, t) = ψ0(r) exp (−iµt) , (5.16)

5



where ~µ = ∂E
∂N is the chemical potential and the total energy of the system E is

E =
∫ (

~2

2m
|∇ψ0|2 + Vext(r)|ψ0|2 +

g

2
|ψ0(r)|4

)
dr. (5.17)

Using (5.16) in (5.9), one obtains the time independent Gross-Pitaevskii equation
(
− ~

2

2m
∇2 + Vext(r)− ~µ + g|ψ0(r)|2

)
ψ0(r) = 0. (5.18)

The solution of (5.18) with the lowest energy defines the order parameter of the ground
state, which is a real function. The excited states are, however, complex functions, the
quantized vortex state being the most famous example of such excited states.

For a uniform gas, in the absence of the external potential Vext(r) = 0,∇2ψ0 = 0 and
(5.17) is reduced to E = 1

2gn2V and the chemical potential is equal to ~µ = gn. These
results are identical to those of the Bogoliubov theory, developed in Chapter 4 in the case
of the weakly interacting uniform Bose gas.

5.4 Quantized vortices in superfluids

The story of quantized vortices provides an important insight into the problem of rotations
in superfluids. Quantized vortices were first predicted by Onsager [7] and Feynman [8]. In
fact, it is well known that a superfluid cannot rotate. In usual rigid systems, the tangential
velocity corresponding to a rotation is given by v = Ω×r, where Ω is the angular velocity
vector and r is the distance vector from the origin of rotation. Such a system has a diffused
vorticity curl(v) = ∇× (Ω× r) 2Ω 6= 0. On the other hand, the superfluid velocity given
by (5.14) satisfies

curl(vs) =
~
m
∇×∇S. (5.19)

which means a superfluid turns out to be irrotational and is thus expected to rotate in a
completely different way from a rigid rotator. Here the rotation is defined by ∇ ×A =(

∂Az
∂y − ∂Ay

∂z

)
ex +

(
∂Ax
∂z − ∂Az

∂x

)
ey +

(
∂Ay

∂x − ∂Ax
∂y

)
ez

Let us consider a superfluid confined in a macroscopic cylinder of radius R and length
L (Fig. 5.3). The solution of the Gross-Pitaevskii equation for a rotation around the
z−axis of the cylinder is

ψ0(r) = eisϕ|ψ0(r)|, (5.20)

where we have used the cylindrical coordinates (r, ϕ and z) and |ψ0(r)| =
√

n(r). Due to
the symmetry of the problem, the modulus of the order parameter |ψ0(r)| depends only
on the radial variable r. The parameter s should be an integer to ensure that the order
parameter ψ0(r) is single valued. From (5.14) and (5.20), the tangential velocity is

vs =
~
m
|∇S| = ~

m

1∂

r∂ϕ
S =

~
m

s

r
. (5.21)

This result is completely different from the tangential velocity v = Ω × r of the rigid
rotator whose modulus increases with r (Fig. 5.4). At large distances from the z−axis,
the tangential velocity vs of the superfluid approaches to zero and the irrotationality of
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contour

Figure 5.3: A cylindrical vessel containing a superfluid. The circulation of the velocity vs

is quantized in units of h/m and is independent of the radius of the contour.

superfluids (5.19) is satisfied. The circulation of the tangential velocity over a closed
contour around the z−axis is given by

∮
vsdl = 2πs

~
m

, (5.22)

which is quantized in units of h/m, independent of the radius of the contour. This is called
”Onsager-Feynman quantization condition”.

Substituting (5.20) into (5.18), one obtains the following equation for the modulus of
the order parameter:

− ~
2

2m

1
r

d

dr

(
r

d

dr
|ψ0|

)
+
~2s2

2mr2
|ψ0|+ g|ψ0|3 − ~µ|ψ0| = 0. (5.23)

We assume the solution for the above equation has the form

|ψ0| =
√

nf(η), (5.24)

where η = r/ξ and ξ = ~/
√

2mgn is the healing length introduced in the previous chapter.
The real function f(η) then satisfies the equation

1
η

d

dη

(
η

df

dη

)
+

(
1− s2

η2

)
f − f3 = 0, (5.25)

with the constraint f(∞) = 1. This is because the density must approach its unperturbed
value n and hence |ψ0| =

√
n where the superfluid velocity vs approaches to zero at η →∞.

In Fig. 5.5 the function f(η) is shown for the values of s = 1 and s = 2. As η → 0, the
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Figure 5.4: Tangential velocity field for irrotational (virr) and rigid rotational (vrig)flow.
The irrotational velocity field diverges like 1/r as r → 0. Here r and v are measured in
arbitrary units (a.u.)

function f(η) tends to zero as f ∼ η|s|, so that the superfluid density n(r) = |ψ0(r)|2 tends
to zero on the axis of the vortex. The perturbation of the density exists in a spatial region
of the healing length ξ from the vortex line (z−axis). Of course, the ground state solution
corresponding to s = 0 has the uniform density f(η) = 1.
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Figure 5.5: Vortical solutions (s = 1, solid line; s = 2, dashed line) of the Gross-Pitaevskii
equation as a function of the radial coordinate η = r/ξ. The density of the gas is given
by n(r) = nf2, where n is the density of the uniform gas.

The energy of the quantized vortex Ev is calculated as E(s 6= 0) − E(s = 0), where
the total energy E of the superfluid is given by (5.17), where the order parameter is given
by (5.20). In terms of the dimensionless function f(η), one obtains

Ev ≡ E(s 6= 0)−E(s = 0) =
Lπ~2n

m

∫ R/ξ

0

[(
df

dη

)2

+
s2

η2
f2 +

1
2

(
f2 − 1

)2

]
ηdη. (5.26)
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For the s 6= 0 vortex, the excitation energy is

Ev = Lπn
~2s2

m
ln

(
R

rc

)
, (5.27)

where rc is the size of the vortex core determined by (5.25). For s = 1, rc is equal to
ξ/1.46. The main contribution to Ev comes from the kinetic energy (the first term of
the integrand in (5.17). The energy Ev increases with the size of the sample as L ln
R. However, the relative energy Ev/E(s = 0) with respect to the ground state energy is
vanishingly small in a large sample, since E(s = 0) increases as V = LπR2.

The above result has been derived in the laboratory (rest) frame. If a cylinder is
rotating with angular velocity Ω around z−axis, we must evaluate the energy in a rotating
frame, in which a cylinder is at rest and thus thermal equilibrium is expected to take place,
using the Galilean transformations, the excess energy in the rotating frame is written as

E′
v = Ev −Ω·Lz, (5.28)

where Lz is the angular momentum of the superfluid in the laboratory frame. The order
parameter (5.20) is an eigenstate of the angular momentum with an eigenvalue of lz = s~
per particle, so that the vortex solution (s 6= 0) carries a total angular momentum equal
to Lz = Ns~, where N = nπR2L is the total number of particles, while the ground state
(s = 0) carries no total angular momentum Lz = 0. It is then easy to see that in the
rotating frame the vortex solution with Ω · Lz > 0 becomes energetically more favorable
compared to the ground state with Lz = 0 if the angular velocity Ω is large enough. On
the other hand, at a low enough angular velocity, the superfluid part remains at rest while
the normal component is brought into rotation. The critical angular velocity Ωc for the
vortex solution with s ≥ 1 to be preferred is given by

Ωc =
Ev

Lz
=
~(2s− 1)

mR2
ln

(
R

rc

)
. (5.29)

With the increase in the angular velocity Ω, the higher-order vortex solution with s ≥ 2
acquires also a lower energy than the ground state with s = 0. Since a superfluid cannot
rotate in a rigid way, the rotation will eventually be realized through the creation of
quantized vortices.

Notice that the dependence of (5.27) on rc is logarithmic and hence the energy of
the vortex depends very weakly on the actual value of the core size. Since the angular
momentum Lz is proportional to s and the energy Ev is proportional to s2, the vortices
with s ≥ 2 are energetically unstable. At a very large angular velocity, the state with
multiple s = 1 vortices is preferred to the state with single s ≥ 2 vortex. Since the number
of s = 1 vortices created in this system, Nv, should be equal to s in (5.29), the vortex
density per unit area in a very large angular velocity is given by

nv ≡ Nv

πR2
=

m

π~
Ω =

m

h
Ω, (5.30)

where ln (R/rc) ' 1 in the limit of large s is used.
It is worth stressing that vortices can exist as a stationary configuration only in a

superfluid. In the presence of a small viscosity, the vortex will diffuse from the z−axis
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and eventually spreads over the whole volume of the cylinder, which is indistinguishable
from a rigid rotator.

Quantized vortices in atomic BEC have been experimentally observed by use of a
suitable rotating modulation of the trap to stir the condensate [9, 10]. Above the critical
angular velocity (5.29) one observes the formation of the vortex, as shown in Fig. 5.6.
At sufficiently high angular velocities, array of more vortices are formed in a triangular
lattice, which is similar to those is superconductors [11].

(a) (b)

Figure 5.6: The observed array of quantized vortices in the ENS experiment (a) and in
the MIT experiment (b).

5.5 Berezinskii-Kosterlitz-Thouless (BKT) phase transition
and quantized vortex-pairs

In uniform two-dimensional systems, conventional off-diagonal long range order is de-
stroyed by thermal fluctuations at any finite temperature and BEC cannot occur in con-
trast to the three dimensional case [12, 13]. This is the Mermin-Wayner-Hohenberg the-
orem. However, the two-dimensional system can form a quasi-condensate and become
superfluid below a finite critical temperature, which is referred to as the BKT phase tran-
sition [14, 15]. Figure 5.7 shows a conjectured phase diagram of a two-dimensional weakly
interacting Bose gas [16]. With decreasing a temperature below the certain point TMF,
the mocroscopic occupation in the ground state, i.e. the mean field is formed but with
free vortices as fundamental excitations. With further decrease in a temperature below
the BKT transition point TBKT, the superfluid order is formed through the pairing of
vortices with opposite circulation. By forming such a bound vortex-pair, the long range
phase fluctuation is suppressed and the topological order can appear in the system. Fi-
nally at a lower temperature TBEC, the crossover from the superfluid regime to the true
BEC phase without vortex-pairs is formed. This scenario behind Fig. 5.7 is still open for
questions and must be tested by experimental studies.

Figure 5.8(a) shows the proliferation of free vortices above the transition tempera-
ture TBKT in a two-dimensional Bose gas system [17]. The observed onset of free vortex
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Figure 5.7: Schematic phase diagram of a two-dimensional trapped weakly interacting
dilute Bose gas. ρ0 stands for the density of the condensate, ρs is the superfluid density,
ρMF is the mean-field density, which can be estimated perturbatively. TBEC is the
crossover temperature from the superfluid regime to the true Bose-Einstein condensation
phase. TBKT is the critical temperature of the Kosterlitz-Thouless transition. TMF marks
the critical region of mean field formation.

proliferation with increasing temperature coincides with the loss of quasi-long-range co-
herence [17]. These observations provide experimental hint for the BKT phase transition.

Figure 5.8: Proliferation of free vortices at high temperature (low interference fringe con-
trast) [17].

More recently a bound pair of vortices with opposite circulations has been directly
observed in an exciton-polariton condensate [18]. Figure 5.9 shows the observed phase
distribution and interference pattern of the vortex-pair, which is compared to the theo-
retical prediction. It is demonstrated that the phase disturbance is indeed localized by
forming a bound pair and the quasi-long-range order is established.

11



vortexanti-vortex

folded

cf. free vortex

d e

subtract

constant 

phase slope

c

Figure 5.9: Theoretical phase distribution (a) and interference pattern (b) of a vortex-
pair, compared to the observed phase distribution (d) and interference pattern (e). The
interference pattern for a free vortex is shown in (c) for comparison [18].
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