
Chapter 4

Bogoliubov theory of the weakly
interacting Bose gas

In the presence of BEC, the ideal Bose gas has a constant pressure against variation of
volume, so that the system features infinite compressibility. This pathological feature
originates from the absence of particle-particle interaction. Therefore, it is not surprising
that interactions between particles affect the properties of the gas in a dramatic way,
even for very dilute samples. This problem was first attacked by Bogoliubov using a new
perturbation technique [1]. The theory provides the theoretical framework of modern
approaches to BEC in dilute gases and is the main focus of this chapter.

4.1 Dilute and cold gases

In a dilute gas, the range of the inter-particle forces, r0, is much smaller than the average
distance d between particles:

r0 ¿ d = n−
1
3 =

(
N

V

)− 1
3

. (4.1)

The interaction between particles is non-zero only when the two particles are separated
within the characteristic distance r0. Figure 4.1(a) shows a representative two-body scat-
tering potential V (r) as a function of particle-particle distance r. The Fourier transform
of V (r) is written as

V (p) =
∫

V (r)e−ip·r/~dr, (4.2)

and the scattering amplitude V (p) is independent of the momentum p as far as p ¿ ~/r0

but it rolls off when p becomes large compared to ~/r0, as shown in Fig. 4.1(b). The con-
dition (4.1) allows one to consider only two-body interaction, while configurations with
three or more particles interacting simultaneously can be safely neglected. If this approx-
imation is valid, such a system is called a dilute gas. A second important consequence
of (4.1) is that the use of the asymptotic expression for the wavefunction of their relative
motion is justified when the scattering amplitude is evaluated and that all the properties
of the system can be expressed in terms of a single parameter, called a scattering length,
as explained below.
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We shall also assume the temperature of the dilute gas is so low that the momentum
distribution of the thermal components p ∼ √

2mkBT is much smaller than the character-
istic momentum pc = ~/r0 determined by r0:

T ¿ ~2

2mkBr2
0

. (4.3)

The condition (4.3) suggests that the scattering amplitude becomes independent of particle
energy as well as of scattering angle. The scattering amplitude is safely approximated by
its low-energy value V0 =

∫
V (r)dr, which is determined by the s-wave scattering length

a through [2]:

V0 =
4π~2

m
a. (4.4)

In conclusion, the s-wave scattering length a characterizes all the interaction effects of
the dilute and cold gas. The diluteness condition in terms of the scattering length is
summarized by

|a|n 1
3 ¿ 1, (4.5)

which should always be satisfied in order to apply the perturbation theory of Bogoliubov.

4.2 Hamiltonian of the weakly interacting Bose gas and the
lowest-order approximation

The Hamiltonian of the system is expressed in terms of the field operators ψ̂:

Ĥ =
∫ (

~2

2m
∇ψ̂+(r)∇ψ̂(r)

)
dr +

1
2

∫
ψ̂+(r)ψ̂+(r′)V (r′ − r)ψ̂(r)ψ̂(r′)dr′dr, (4.6)

where V (r′−r) is the two-body scattering potential. For a uniform gas occupying a volume
L3, the field operator ψ̂ can be expanded by the plane waves:

ψ̂(r) =
1√
L3

∑
p

âpe
ip·r/~, (4.7)

where âp is the annihilation operator for a single particle state of a plane wave with
momentum p. By substituting (4.7) into (4.6), one obtains

Ĥ =
∑

p

p2

2m
â+

p âp +
1

2L3

∑
p1,p2,q

Vqâ
+
p1+qâ

+
p2−qâp1 âp2 . (4.8)

Here Vq =
∫

V (r) exp (−iq · r/~) dr is the Fourier transform of the two-body scattering
potential.

In real systems V (r) always contains a short-range term, as shown in Fig. 4.1(a) which
makes it difficult to solve the Schrödinger equation at the microscopic level. However,
in virtue of the above assumptions on the dilute and cold gases, one can conclude that
the actual form of V (r) is not important for describing the macroscopic properties of the
gas, as far as the assumed fictitious potential Veff(r) gives the correct value for the low
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momentum value of its Fourier transform Vq¿~/r0
. It is therefore convenient to replace the

actual potential V (r) with an effective, smooth potential Veff(r) (see Fig. 4.1). Since the
macroscopic properties of the system depend on Vq=0 = V0 =

∫
Veff(r)dr (or the s-wave

scattering length a), this procedure will provide the correct answer to this complicated
many-body problem as far as the system is dilute and cold.

Figure 4.1: (a) The actual two-body scattering potential V (r) and the effective, smooth
potential Veff(r). The average range r0 of both potentials, at the right edge of this figure,
is much smaller than the average inter-particle distance n−1/3. (b) The Fourier transform
of V (r) and Veff(r).

Replacing Vq with V0 in (4.8), one obtains the new Hamiltonian

Ĥ =
∑

p

p2

2m
â+

p âp +
V0

2V

∑
p1,p2,q

â+
p1+qâ

+
p2−qâp1 âp2 . (4.9)

Since the lowest energy state is occupied by macroscopic number of particles in BEC,
one can neglect the quantum fluctuation of this state and replace the operator â0 with a
c-number:

â0 ≡
√

N0. (4.10)

In a dilute and cold gas, the occupation number of the excited states with p 6= 0 is small.
In the lowest-order approximation, one can neglect all terms with p 6= 0 in (4.9) and the
ground state energy takes the form

E0 =
V0

2L3
N2

0 '
V0

2L3
N2, (4.11)

where V0 can be expressed in terms of the s−wave scattering length a using the Born
approximation [2]

V0 =
4π~2a

m
= g. (4.12)

According to (4.11), contrary to the BEC of an ideal Bose gas, the pressure of the
BEC of a weakly-interacting Bose gas does not vanish at T = 0:

P ≡ −∂E0

∂L3
=

g

2
n2, (4.13)
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where n = N/L3 is the particle density. Accordingly, the compressibility remains finite:

∂n

∂P
=

1
gn

. (4.14)

Using the hydrodynamic relation, one obtains the relation between the sound velocity c
and the compressibility [3]:

1
mc2

=
∂n

∂P

or c =
√

gn

m
. (4.15)

In the next section we will obtain the same result for c by analyzing the dispersion relation
for an excitation spectrum, namely, Bogoliubov linear dispersion in the low momentum
limit [1].

The thermodynamic stability requires that the compressibility ∂n
∂P is positive, i.e. g > 0

or a > 0. This leads to the important conclusion that a dilute uniform BEC can stably
exist only if the system has a “repulsive” interaction.

Finally, the chemical potential is given by

µ ≡ ∂E0

∂N
= gn = mc2, (4.16)

which is always positive even at T = 0. This is an energy required to add one particle into
the condensate or an energy gained by subtracting one particle from the condensate.

4.3 Bogoliubov approximation and excitation spectrum

If we split the operator â0 for the ground state and âp for the excited states in the
interaction term of (4.9), the Hamiltonian can be decomposed to:

Ĥ =
V0

2L3
â+

0 â+
0 â0â0 +

∑
p

p2

2m
â+

p âp

+
V0

2L3

∑

p6=0

(
4â+

0 âpâ0âp + â+
p â+

−pâ0â0 + â+
0 â+

0 âpâ−p

)
. (4.17)

The momentum conservation retains only quadratic terms in âp with p 6= 0. In particular,
a factor of 4 in front of the third term of R.H.S. of (4.17) corresponds to the cases of
i) p1 = 0, p2 = p, q = 0, ii) p1 = 0, p2 = p, q = p, iii) p1 = p, p2 = 0, q = 0, and iv)
p1 = p, p2 = 0, q = −p in (4.9). The two cases (i) and (iii) do not involve the transfer of a
momentum between two particles, so that these two terms are called ‘direct terms”. The
two other cases (ii) and (iv) involve the transfer of a momentum between two particles, so
that they are called ‘exchange terms”. Identical quantum particles are indistinguishable,
so we must take into account all those direct and exchange terms.

We can replace â+
0 and â0 with

√
N in the third term of (4.17) as we have done

previously, but in the first term we have to work with higher accuracy by using the
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normalization relation, â+
0 â0 +

∑
p 6=0 â+

p âp = N , or

â+
0 â+

0 â0â0 ' N2 − 2N
∑

p6=0

â+
p âp. (4.18)

Substitution of (4.12) and (4.18) into (4.17) yields the following expression for the Hamil-
tonian:

Ĥ =
1
2
gnN +

∑
p

p2

2m
â+

p âp +
1
2
gn

∑

p6=0

(
2â+

p âp + â+
p â+

−p + âpâ−p

)
. (4.19)

The third term of this Hamiltonian represents the self-energy of the excited states due to
the interaction, simultaneous creation of the excited states at momenta p and −p, and
simultaneous annihilation of the excited states, respectively.

Equation (4.19) can be diagonalized by the linear transformation

âp = upb̂p + v−pb̂
+
−p, â

+
p = upb̂

+
p + v−pb̂−p, (4.20)

known as the Bogoliubov transformation. The two parameters, up and v−p, are determined
uniquely by the following requirements. The new operators, b̂p and b̂+

p , are assumed to
obey the same Bosonic commutation relation as the real particle operators, âp and â+

p :
[
b̂p, b̂

+
p′

]
= b̂pb̂

+
p′ − b̂+

p′ b̂p = δpp′ . (4.21)

This commutation relation imposes the constraint for the two parameters up and v−p:

u2
p − v2

−p = 1, (4.22)

or equivalently
up = cosh(αp), v−p = sinh(αp). (4.23)

The value of αp must be chosen in order to make the coefficients of the non-diagonal terms
b̂+
p b̂+
−p and b̂pb̂−p in (4.19) vanish. This condition is rewritten as

gn

2
(
u2

p + v2
−p

)
+

(
p2

2m
+ gn

)
upv−p = 0. (4.24)

Using the relations cosh(2α) = cosh2(α) + sinh2(α) and sinh(2α) = 2 cosh(α) sinh(α),
(4.24) is identical to

coth (2αp) = −p2/2m + gn

gn
, (4.25)

from which the two coefficients are determined uniquely as

up, v−p = ±
(

p2/2m + gn

2ε(p)
± 1

2

)1/2

, (4.26)

where

ε(p) =

[
gn

m
p2 +

(
p2

2m

)2
]1/2

, (4.27)
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is the famous dispersion law of the Bogoliubov excitation spectrum. By substituting the
Bogolibov transformation (4.20) with the expressions (4.26) for the two coefficients up and
v−p, the Hamiltonian (4.19) is finally diagonalized:

H = E0 +
∑

p6=0

ε(p)b̂+
p b̂p, (4.28)

where

E0 =
1
2
gnN +

1
2

∑

p 6=0

[
ε(p)− gn− p2

2m
+

m(gn)2

p2

]
, (4.29)

is the ground state energy calculated to the higher-order of approximation.
Results (4.27)-(4.29) have a deep physical meaning. The original system of interacting

particles can be described by the Hamiltonian for non-interacting quasi-particles (collective
excitations) having a dispersion law ε(p). In this picture, a real particle âp is described as
the superposition of the forward propagating many quasi-particles upb̂p and the backward
propagating many quasi-particles v−pb̂

+
−p(see (4.20)). Note that when a momentum is

small, p ¿ √
mgn, |up| ' |v−p| À 1 and âp ∼ up

(
b̂p − b̂+

−p

)
. However, when a momentum

becomes large, p À √
mgn, |up| ' 1 and |v−p| ' 0 and the quasi-particle b̂p becomes

indistinguishable from the real particle âp, i.e. âp ∼ b̂p.
The ground state of the interacting Bose gas system at T = 0 is now defined as the

vacuum state for the Bogoliubov quasi-particle:

b̂p|0〉 = 0 ∀p 6= 0. (4.30)

The ground state energy in the lowest-order calculation is E0 ' 1
2gnN as discussed already.

The first-order correction to that is calculated by (4.29) and given by [3, 4]

E0 =
1
2
gnN

[
1 +

128
15
√

π

(
na3

)1/2
]

, (4.31)

and the chemical potential in the first order correction is

µ =
∂E0

∂N
= gn

[
1 +

32
3
√

π

(
na3

)1/2
]

. (4.32)

Even though (4.11) or (4.31) is often referred to as the ground state energy of the in-
teracting Bose gas system, the true ground state of such a system is a solid as pointed
out already in Chapter 2. The gas phase in the quantum degenerate regime is actually a
metastable state and (4.11) or (4.31) is the energy of this metastable ground state.

4.4 Excitation spectrum

4.4.1 Gross-Pitaevskii equation

In order to calculate the excitation spectrum, we can replace the field operator (4.7) by
the classical fields not only for the ground state at p = 0 but also for the excited states
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at p 6= 0. By including the explicit time dependence, the corresponding classical field is
expressed as

ψ(r, t) = ψ0(r)e−iµt + ψke
i[k·r−(µ+ω)t] + ψ−ke

−i[k·r−(µ−ω)t], (4.33)

where ψ0 is the order parameter, µ is the chemical potential, ψk and ψ−k are the excitation
amplitudes of the forward and backward propagating plane waves corresponding to the
excited states with wave numbers ±k. The positive and negative frequency deviations from
the chemical potential, µ + ω and µ − ω for the two waves ψk and ψ−k, are introduced
to satisfy the energy conservation in the simultaneous creation or annihilation of the two
particles in the excited states at k and −k, as shown in Fig. 4.2(see (4.19).

Energy

Figure 4.2: (a) Energy and momentum conservation in two-particle scattering process.

The Heisenberg equation of motion i~ d
dt ψ̂(r, t) =

[
ψ̂(r, t), Ĥ

]
for the field operator

under the above approximation (4.33) is written as

i~
d

dt
ψ(r, t) =

[
− ~

2m
∇2 + g|ψ(r, t)|2

]
ψ(r, t). (4.34)

This form of the equation for the classical field is called a Gross-Pitaevskii equation and
a key working equation for the classical analysis of the BEC of a weakly interacting Bose
gas.

4.4.2 Bogoliubov excitation spectrum

If we substitute (4.33) into (4.34) and compare the e−iµt terms in both sides of the equation,
we obtain

µ = gψ2
0. (4.35)

By comparing ei[k·r−(µ+ω)t] terms in both sides of the equation, we have

(µ + ω)ψk =
~k2

2m
ψk + µ (2ψk + ψ−k) . (4.36)
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Similarly, the comparison of e−i[k·r−(µ−ω)t] terms in both sides of the equation leads to

(µ− ω)ψ−k =
~k2

2m
ψ−k + µ (2ψ−k + ψk) . (4.37)

Equations (4.36) and (4.37) can be summarized as

[A]
(

ψk

ψ−k

)
=

(
~k2

2m + µ µ

−µ ~k2

2m − µ

)(
ψk

ψ−k

)
= ω

(
ψk

ψ−k

)
. (4.38)

This is the eigenvalue equation for the eigenstates (ψk, ψ−k) of the linear operator (matrix)
[A] with an eigen-frequency ω. In order to have a non-trivial solution for (4.38), i.e. the
non-zero solutions for ψk and ψ−k, the following determinant must be identically equal to
zero:

Det [A− ωI] = 0 (4.39)

The eigen-frequency ω can be obtained by solving the characteristic equation (4.39) as

ω = ±
√(

~k2

2m

)[(
~k2

2m

)
+ 2µ

]
. (4.40)

As shown in Fig. 4.3, the excitation spectrum at each wavenumber k is split into the
positive and negative branches. The eigen-state in the positive branch with an eigen-

frequency ω+ =
√(

~k2

2m

) [(
~k2

2m + µ
)]

consists of the two plane waves ψ
(+)
k and ψ

(+)
−k ,

which satisfies (
~k2

2m
+ µ

)
ψ

(+)
k + µψ

(+)
−k = ω+ψ

(+)
k , (4.41)

or
ψ

(+)
k =

−µ
~k2

2m + µ− ω+

ψ
(+)
−k = − µ

∆
ψ

(+)
−k . (4.42)

Here ∆ = ~k2

2m + µ− ω+ is a positive quantity (see Fig. 4.3). Combined with the normal-
ization condition, ψ

(+)2
k + ψ

(+)2
−k = 1, ψ

(+)
k and ψ

(+)
−k are expressed as

ψ
(+)
k =

µ√
µ2 + ∆2

, (4.43)

ψ
(+)
−k =

−∆√
µ2 + ∆2

. (4.44)

At small wavenumbers, ∆ ' µ so that the eigen-state in the positive branch is reduced to

ψ
(+)
r,t =

1√
2

{
ei[k·r−(µ+ω+)t] − e−i[k·r−(µ+ω+)t]

}
(4.45)

= i
√

2 sin(k · r)e−i(µ+ω+)t.

Since ψ0(r) is a real-number order parameter, the pure imaginary in (4.45) suggests that
the positive branch of the excitation spectrum represents the spatial phase modulation of
the condensate.
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Figure 4.3: The Bogoliubov excitation spectrum.

At large wavenumbers, ∆ ' 0 so that the eigen-state in the positive branch is reduced
to the simple plane wave,

ψ
(+)
r,t = ei[k·r−(µ+ω+)t]. (4.46)

The eigen-state in the negative branch with an eigen-frequency ω = −
√(

~k2

2m

) [(
~k2

2m

)
+ 2µ

]

consists of the two plane waves ψ
(−)
k and ψ

(−)
−k , which satisfies

ψ
(−)
k =

−µ
~k2

2m + µ− ω−
=

µ

∆
ψ

(−)
−k . (4.47)

Combined with the normalization condition, ψ
(−)2
k +ψ

(−)2
−k = 1, ψ

(−)
k and ψ

(−)
−k are expressed

as
ψ

(−)
k =

µ√
µ2 + ∆2

, (4.48)

ψ
(−)
−k =

∆√
µ2 + ∆2

. (4.49)

At small wavenumbers, ∆ ' µ so that the eigen-state in the negative branch is reduced to

ψ(−)(r, t) =
1√
2

{
ei[k·r−(µ+ω−)t] + e−i[k·r−(µ+ω−)t]

}
(4.50)

=
√

2 cos(k · r)e−i(µ+ω−)t.

The negative branch of the excitation spectrum corresponds to the spatial amplitude
modulation of the condensate. At large wavenumbers, ∆ = 0 so that the eigen-state in
the negative branch is also reduced to the simple plane wave,

ψ(−)r, t = ei[k·r−(µ+ω−)t]. (4.51)

9



4.4.3 Sound velocity, healing length and energy shift

For small momenta p ¿ mc =
√

mgn, the Bogoliubov dispersion law (4.27) is well ap-
proximated by the phonon-like linear dispersion form

ε(p) = cp, (4.52)

where c =
√

gn/m is the sound velocity. This result agrees with our previous result
(4.15) derived from the equation of state (4.13). According to the Bogoliubov theory, the
long wavelength (low momentum) excitations of an interacting Bose gas are the sound
waves. These excitations can also be regarded as the Nambu-Goldstone modes associated
with breaking of gauge symmetry caused by Bose-Einstein condensation. In this low
momentum regime, a real particle is represented by the coherent superposition of forward
and backward propagating many quasi-particles: âp = upb̂p +v−pb̂

+
−p, where |up| ∼ |v−p| ∼√

mc/2p À 1.
In the opposite limit p À mc, the Bogoliubov dispersion law (4.27) is reduced to the

free-particle form:

ε(p) =
p2

2m
+ gn. (4.53)

This is consistent with the above argument in (4.4.1). The (additional) interaction energy
gn in (4.53) is traced back to the third term of the Hamiltonian (4.19). The interaction
energy between the two particles in the condensate is calculated by the first term of (4.19)
and is equal to gn. On the other hand, the interaction energy between one particle in
the condensate and another particle in the excitation spectrum is equal to 2gn. A factor
of two comes from the equal contributions of the direct and exchange terms for identical
bosons. In this large momentum regime, a forward propagating real particle is almost
identical to a forward propagating quasi-particle: âp ∼ b̂p (up ' 1, v−p ' 0).

The transition from the phonon regime to the free particle regime takes place near the
point where p2

2m = gn is satisfied. If we use p = ~/ξ in this equation, the characteristic
length ξ can be written as

ξ =

√
~2

2mgn
=

1√
2
~

mc
, (4.54)

which is often referred to as ”healing length”. This is the length scale in which the
density and phase fluctuations in the condensate are removed by the interaction between
condensed particles. The healing length plays an important role in our discussion on
superfluidity in the next chapter. The Bogoliubov dispersion law (4.27) is schematically
shown in Fig. 4.4(a).

The first observation of the Bogoliubov excitation spectrum was reported in 1998, us-
ing the two photon Bragg scattering spectroscopy technique in atomic BEC [5]. Fig. 4.4(b)
shows the experimental results which show a remarkable agreement with the theory. Fig-
ure 4.5 shows the observed excitation energy vs. (in-plane) momentum for an excitation-
polariton condensate [6]. An angle-resolved energy spectroscopy for the leakage photons
from the semiconductor microcavity provides directly the dispersion law of the excitation
spectrum. The white solid line represents the quadratic dispersion law of a single exciton-
polariton (normal state) far below the BEC critical density, while the black solid line
shows the displaced quadratic dispersion law by the energy µ (chemical potential). The
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(a) (b)

Figure 4.4: (a) Bogoliubov dispersion of elementary excitations. The transition between
the phonon mode (ε(p) = cp) and the free particle mode (ε(p) = p2/2m + mc2) takes
place at p ∼ ~/ξ. Energy is given in units of mc2. (b) Measured Bogoliubov excitation
spectrum for atomic BEC [5].

black solid line in Fig. 4.5 corresponds to the dashed line in Fig. 4.4(a). The Bogoliubov
excitation spectrum is indicated by the pink solid line in Fig. 4.5, which shows again a
remarkable agreement with the experimental results.

(a) (b)

kξ=1

-15
o

15
o

1.613 eV

8
 m

e
V

kξ=1

-15
o

15
o

1.613 eV

Figure 4.5: The observed luminescence (leakage photons) from an exciton-polariton con-
densate in a linear plot of intensity (left panel) and in a logarithmic plot of intensity (right
panel). The white, black and pink solid lines the dispersion laws: p2

2m − µ, p2

2m and ε(p)
given by (4.27)[6].

The Bogoliubov dispersion law (4.27) can be rewritten in a normalized form:

ε(p)/U =
√

(kξ)2 [(kξ)2 + 2], (4.55)

where U = gn is the interaction energy (or the chemical potential) and k is the in-plane
wave number. One of the unique features of the Bogoliubov excitation spectrum is its
universal scaling law, i.e. the relation between ε(p)/U and kξ is independent of the
interaction strength, mass of particles and particle density. This universal scaling law was
confirmed experimentally as shown in Fig. 4.6[6].
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• A: ∆=1.41 (meV), P=4Pth

• B: ∆=0.82 (meV), P=8Pth

• C: ∆=4.2 (meV), P=4Pth

• D: ∆=-0.23 (meV), P=24Pth

at far below threshold 

(p/pth=0.001)

Figure 4.6: The normalized energy ε(p)/U vs. normalized wavenumber kξ for four exciton-
polariton condensates with different values of U,m and g [6].

The slope of the linear dispersion at small momentum regime provides the sound
velocity, c = dε(p)

dp . The estimated sound velocity for the atomic BEC shown in Fig. 4.4(b)
is on the order of ∼ 1cm/sec, while that for the exciton-polariton BEC shown in Fig. 4.5
is on the order of ∼ 108cm/sec. The eight orders of magnitude difference between the two
sound velocities comes from the difference of the mass, matom ∼ 109mpolariton, and that of
the interaction strength, Uatom ∼ 10−6Upolariton.

4.5 Quantum and thermal depletion

The average number of quasi-particles Np carrying a momentum p must obey the Bose-
Einstein distribution with the chemical potential µ = 0

Np ≡ 〈b̂+
p b̂p〉 =

1
exp (βε(p))− 1

. (4.56)

This should not be confused with the average number 〈â+
p âp〉 of real particles. Using

Bogoliubov transformation (4.20), one obtains

Np ≡ 〈â+
p âp〉 = |v−p|2 + |up|2〈b̂+

p b̂p〉+ |v−p|2〈b̂+
−pb̂−p〉, (4.57)

where 〈b̂pb̂−p〉 = 〈b̂p〉〈b̂−p〉 = 0 and 〈b̂+
p b̂+
−p〉 = 〈b̂+

p 〉〈b̂+
−p〉 = 0 for thermal states at p 6= 0

are used. Thus, the number of particles in the condensate can be calculated by

N0 ≡ N −
∑

p6=0

Np = N − V

(2π~)3

∫
dp

[
|v−p|2 +

|up|2 + |v−p|2
exp (βε(p))− 1

]
, (4.58)

where (4.56) is used. At absolute zero temperature T = 0, there is a finite leakage of
particles into the excitation spectrum given by |v−p|2 even though the population of quasi-
particles is zero, 〈b̂+

p b̂p〉 = 0. This fundamental leakage of particles from the condensate is

12



referred to quantum depletion. At higher temperatures, the thermal population of quasi-
particles, the second term in the integrand in (4.58), dominates. This extra leakage of
particles from the condensate is called thermal depletion.

Using (4.26), one can obtain the real particle occupation number at small momentum
regime due to quantum depletion:

N (q)
p =

p2/2m + gn

2ε(p)
− 1

2
−−−−→
p¿~/ξ

√
mgn

2p
. (4.59)

The population increases with a 1/p dependence when the momentum is decreased. This
infrared divergency is a general property exhibited by BEC at T = 0. On the other hand,
the quantum depletion disappears according to the law of ∼ 1/p4 when the momentum
becomes larger than the characteristic momentum ~/ξ.

In order to calculate the real particle occupation number due to thermal depletion in
the same low momentum (low energy) regime, we can use the low-energy expansion of the
Bose-Einstein distribution (4.56), 〈b̂+

p b̂p〉 ' kBT/ε(p), and the relation |up|2 + |v−p|2 '
gn/ε(p) in (4.57). The results is

N (th)
p −−−−→

p¿~/ξ

kBTgn

ε(p)2
' mkBT

p2
, (4.60)

which features a stronger infrared divergency compared to the quantum depletion and is
a factor 2 smaller than the one exhibited by the ideal Bose gas at T 6= 0 (see Chapter 3).
The thermal depletion disappears according to the law of ∼ e−βε(p) at p À ~/ξ.

Figure 4.7 shows the 1/p2 dependence of the populations in the Bogoliubov excitation
spectrum at p . ~/ξ for an exciton-polariton condensate [6]. This result reveals the
exciton-polariton condensate is depleted thermally rather than quantum mechanically. In
fact, the measured gas temperature suggests that the thermal energy kBT exceeds the

energy scale
√

p2

2m · U in this system, so that N
(th)
p should dominate over N

(q)
p .

(slope-2)(slope-2)

Figure 4.7: The normalized population vs. normalized wavenumber in an exciton-polariton
condensate.

Integration of (4.58) at T = 0 yields

N0 = N

[
1− 8

3
√

π

(
na3

)1/2
]

, (4.61)
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which reveals that the quantum depletion is determined by the same parameter
√

na3 char-
acterizing the higher-order corrections to the ground state energy (4.31) and the chemical
potential (4.32).

4.6 Spatial coherence

Using the momentum distribution of real particles in the excitation spectrum at T = 0,
(4.59), one can calculate the first-order spatial coherence function:

g(1)(s) =
N0

N
+

1
N

L3

(2π~)3

∫
dpn(p)e−ip·s/~

=
N0

N
+

1
N

L3

(2π~)3

∫
dp|v−p|2e−ip·s/~

=
N0

N
+

1
N

L3

ξ3
D

(
s

ξ

)
, (4.62)

where we have defined the dimensionless function

D (s/ξ) =
1
2

1
(2π)3

∫
dk

(
1 + k2

√
k4 + 2k2

− 1
)

e−i(s/ξ)·k. (4.63)

Here k = pξ/~. For s/ξ À 1, the function D (s/ξ) behaves like ξ2√
32π2s2 . Equation (4.62)

shows that the first-order spatial coherence decreases in the characteristic length scale ξ
for an interacting Bose gas at T = 0.

g(1)(s) =
N0

N
+

1
N

L3

√
32π2ξ

· 1
s2

. (4.64)
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