
Chapter 2

Fundamental Concepts of
Bose-Einstein Condensation

This chapter introduces several key features associated with the Bose-Einstein Conden-
sation (BEC) phase transition. The subjects we will study in this chapter include an
order parameter, spontaneous symmetry breaking, Nambu-Goldstone bosons, off-diagonal
long-range order and higher-order coherence, which are the fundamental concepts in un-
derstanding the BEC phase transition physics.

2.1 Order parameter and spontaneous symmetry breaking

The field operator ψ̂(r) that annihilates a particle at the position r can be written in the
form

ψ̂(r) =
∑

i

ϕi(r)âi, (2.1)

where âi

(
â+

i

)
are the annihilation (creation) operators of a particle in the single particle

state ϕi(r) and obey the bosonic commutation relations
[
âi, â

+
j

]
= δij , [âi, âj ] =

[
â+

i , â+
j

]
= 0. (2.2)

The c− number wavefunction ϕi(r) satisfies an orthonormal condition:
∫

ϕ∗i (r)ϕj(r)dr = δij . (2.3)

The field operator follows the communication relation

[
ψ̂(r), ψ̂+(r′)

]
=


∑

i

ϕi(r)âj ,
∑

j

ϕ∗j (r
′)â+

j


 (2.4)

=
∑

i

ϕi(r)ϕ∗i (r
′)

= δ(r − r′)
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where the completeness (closure) relation of single particle states |i〉 was used for the last
equality, ∑

i

|i〉〈i| = Î . (2.5)

If we multiply 〈r| from the left and |r′〉 from the right of (2.5), we have
∑

i

ϕi(r)ϕ∗i (r
′) =

∑

i

〈r|i〉〈i|r′〉 = 〈r|r′〉 = δ(r − r′). (2.6)

If a lowest energy single particle state (ground state) has a macroscopic occupation,
we can separate the field operator (2.1) into the condensate term (i = 0: lowest energy
ground state) and the non-condensate components (i 6= 0: excited states):

ψ̂(r) = ϕ0(r)a0 +
∑

i6=0

ϕi(r)âi. (2.7)

This expression of the field operator already and implicitly introduced the Bogoliubov
approximation [1], in which the operators â0 and â+

0 are replaced by the c-number a0 =√
N0, where N0 = 〈â+

0 â0〉 is the average occupation number of the ground state (i = 0).
By defining ψ0 =

√
N0ϕ0 and δψ̂ =

∑
i6=0 ϕiâi, we can obtain the Bogoliubov ansatz:

ψ̂(r) = ψ0(r) + δψ̂(r). (2.8)

The separation, (2.8), is justified if a lowest energy ground state is occupied by macroscopic
number of particles (N0 À 1) and is particularly useful to describe the ensemble averaged
nonlinear dynamics of the condensate via the closed form equation for the classical field
ψ0(r) and the small fluctuations around the average value.

The classical field ψ0(r) is called the wave function of the condensate and plays a role
of an order parameter. It is characterized by a modulus and a phase:

ψ0(r) = |ψ0(r)|eiS(r) (2.9)

The modulus |ψ0(r)| determines the particle density n(r) = |ψ0(r)|2 of the condensate,
while the phase S(r) characterizes the coherence and superfluid phenomena. The order
parameter ψ0 =

√
N0ϕ0 is defined up to a particular phase factor. However, one can always

multiply this function by the arbitrary phase factor eiα without changing any physical
property. This is the manifestation of gauge symmetry of the problem. Physically, lack
of a phase stabilization force of the system is responsible for the random phase of the
condensate. However, in the BEC phase transition, a condensate system spontaneously
chooses a particular phase S(r). Making an explicit choice for the phase S(r) in spite
of the lack of a preferred phase value is referred to as a spontaneous breaking of gauge
symmetry.

The Bogoliubov ansatz (2.8) for the field operator can be interpreted that the expec-
tation value 〈ψ̂(r)〉 is different from zero. This would not possible if the condensate state
is in a particle number eigenstate |N0〉. From a quantum field theoretical point of view,
this spontaneous symmetry breaking means that the condensate state is in or close to a
coherent state defined by [2]

â|α〉 = α|α〉 (2.10)
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where |α|2 = N0 is the average particle number of the condensate. The coherent state |α〉
defined by (2.10) can be expanded by the particle number eigenstates [2]:

|α〉 =
∑

n

e−|α|2/2

√
n!

αn|n〉 (2.11)

If we recall that the time dependence of the particle number eigenstate is e−iE(n)t/~|n〉,
where E(n) is a total energy of n particles, we can easily show that the time dependence
of the order parameter is given by [2]

ψ0(r, t) ≡ 〈α|ϕ0(r)â0|α〉 = ψ0(r)e−iµt, (2.12)

if the condensate is in a coherent state. Here ψ0(r) = ϕ0(r) and ~µ = E(n)−E(n− 1) ∼
∂E(n)

∂n is the chemical potential of the system. It is important to note that the time evolu-
tion of the order parameter is not governed by the total energy E(n) but by the chemical
potential µ. This fact is deeply connected to the above mentioned spontaneous symmetry
breaking. The difference between the time evolution of a particle number eigenstate |n〉
and that of a coherent state is schematically shown in Fig. 2.1. A coherent state is a
pure state consisting of linear superposition of particle number eigenstates and localizes
its phase to a particular value through the destructive and constructive interferences be-
tween different particle number eigenstates as shown in Fig. 2.1. Above the BEC phase
transition temperature, the ground state is occupied by the statistical mixture of different
particle number eigenstates in which an entropy is maximum under the constraint of fixed
average occupation number [3]. Below the BEC phase transition temperature, the ground
state is approaching to a pure coherent state in which an entropy is zero.

We will quantitatively show how the quantum state of the condensate is approaching
to a coherent state rather than a number state in Chapter 8 and 9 using the two different
approaches: Heisenberg-Langevin equation and density matrix master equation.

2.2 Nambu-Goldstone bosons and phase stabilization

Bose particles in the condensate interact with each other via repulsive potential. This
interaction induces small-energy and long-wavelength fluctuations in the condensate. To
see this, we can start with the Gross-Pitaevskii equation for the order parameter:

i
d

dt
ψ(r, t) =

{
−~∇

2

2m
+ g|ψ(r, t)|2

}
ψ(r, t), (2.13)

where g(> 0) is a repulsive interaction potential. We will derive this equation and discuss
the meaning of this potential in detail in chapter 4 but here let us consider g is a mere
parameter characterizing the interaction of the system. The solution of (2.13) is expanded
as

ψ(r, t) = ψ0(r)e−iµt

{
1 +

∑

k

αke
i(kr−ωt) + βke

−i(kr−ωt)

}
(2.14)

= ψ0(r)e−iµt +
∑

k

{
uke

i(kr−(µ+ω)t) + vke
−i(kr+(µ−ω)t)

}
,
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Figure 2.1: The time evolution of particle number eigenstates |n〉 and a coherent state
|α|. A coherent state is a pure state consisting of linear superposition of particle number
eigenstates. The phase is localized by the destructive and constructive interference among
the different particle number eigenstates in a phase space.

where uk(r) = ψ0(r)αk and vk(r) = ψ0(r)βk are the excitation amplitudes of forward
propagating and backward propagating excitation waves with wavenumber ±k. ~µ =
~g|ψ0(r)|2 is a chemical potential. If we substitute (2.14) into (2.13) and compare the left-
hand-side (LHS) and right-hand-side (RHS) for the ei(kr−(µ+ω)t) term and e−i(kr−(µ−ω)t)

term, respectively, we obtain the following eigenvalue equations for the two excitation
waves:

(
~k2

2m + µ µ

−µ −~k2

2m − µ

) (
uk

vk

)
= ω

(
uk

vk

)
. (2.15)

In order to have a non-trivial solution for uk and vk, the eigenvalues ω must satisfy

ω2 −
(

µ +
~k2

2m

)2

+ µ2 = 0 (2.16)

The solution of (2.16) is easily obtained as

ω = ±
√

ωk (ωk + 2µ), (2.17)

where ~ωk = (~k)2

2m is the kinetic energy of a non-interacting free particle. Figure 2.2 shows

the normalized excitation energy ω/µ vs. normalized wavenumber kξ, where ξ =
√

~
mµ is

a healing length. At low-energy and small-wavenumber (or long-wavelength) limit, kξ < 1,
the excitation modes obey a linear dispersion like a sound wave:

ω = ±ck, (2.18)

where c =
√
~µ
m is an effective sound velocity. The important consequence of the linear

despersion (2.18) will be discussed in our argument of superfluidity in chapter 5.
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The particular formula (2.17) is the celebrating Bogoliubov dispersion law[1], which
we will discuss in detail in chapter 4. In general, a long-wavelength fluctuation universally
appears in a process of spontaneous symmetry breaking in particle and condensed matter
systems, and is called the Nambu-Goldstone modes[4, 5, 6]. The Bogoliubov dispersion law
is a special case of the Nambu-Goldstone modes for a weakly interacting Bose particles.
A repulsive interaction represented by a parameter g(> 0) not only create the Bogoliubov
excitations but also introduce the new interaction energy between the condensate and
the Bogoliubov excitations. In chapter 7 we will see that this interaction energy forces
a condensate to acquire a particular phase as a coherent state rather than to have a
random phase as a particle number eigenstate or statistical mixture of them. In this way
the Nambu-Goldstone modes play a crucial role in various phase transition physics with
spontaneous symmetry breaking.

free-particle:

Bogoliubov quasi-particle:

free-particle

regime

sound wave

regime

free-particle

regime

free-particle:

Bogoliubov quasi-particle:

free-particle

regime

sound wave

regime

free-particle

regime

Figure 2.2: The dispersion relations ω/µ vs kξ for a free-particle and a Bogoliubov quasi-
particle.

2.3 Off-diagonal long range order and coherence functions

The first-order coherence function for the field operator is defined by [2]

G(1)(r, t; r′, t′) = 〈ψ̂+(r, t)ψ̂(r′, t′)〉 (2.19)

Equation (2.19) provides a very general definition of coherence which applies to any system,
independent of statistics, in equilibrium as well as out of equilibrium [2]. In an equilibrium
system, a time dependence is suppressed so that only concept of a spatial coherence exists.
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Because of the commutation relations (2.2) for the boson operators and the orthogonality
(2.3) of the single particle state ϕi(r), the field operators satisfy (2.4). The first-order
spatial coherence function is expressed in terms of single particle wavefunctions:

G(1)(r, r′) = 〈ψ̂+(r)ψ̂(r′)〉 (2.20)

=
∑

i

niϕ
∗
i (r)ϕi(r),

where 〈â+
i âj〉 = δijni is read. From (2.20) we can show the matrix G(1) is Hermitian:

G(1)(r′, r) =
∑

i

niϕ
∗
i (r

′)ϕi(r) = G(1)(r, r′)∗. (2.21)

The particle density is given by the diagonal element of the Hermitian matrix G(1)(r, r′):

G(1)(r, r) =
∑

i

ni|ϕi(r)|2 = n(r) (2.22)

The total number of particles is then given by the spatial integral N =
∫

n(r)dr. The
normalized coherence function (or off-diagonal element in the matrix G(1)) is defined by

g(1)(r, t; r′t′) =
G(1)(r, t; r′, t′)

[
G(1)(r, t; r, t)G(1)(r′, t′; r′, t′)

]1/2
. (2.23)

In a three-dimensional system, the scalar product of the momentum and position
eigenstates is written as [7],

〈p|r〉 = (2π~)−
3
2 exp

(
−i

p · r
~

)
(2.24)

= 〈r|p〉∗

Using the completeness relation
∫ |r〉〈r|dr = Î, the field operator ψ̂(p) in the momentum

space is thus written as

ψ̂(p) = 〈p|ψ〉 =
∫
〈p|r〉dr〈r|ψ〉 (2.25)

= (2π~)−
3
2

∫
drψ̂(r) exp

(
i
p · r
~

)
.

The inverse relation to (2.25) is obtained by using the either completeness relation,∫ |p〉〈p|dp = Î, as

ψ̂(r) = 〈r|ψ〉 =
∫
〈r|p〉dp〈p|ψ〉 (2.26)

= (2π~)−
3
2

∫
dpψ̂(p) exp

(
− ip · r

~

)
.

Using (2.25) and (2.26), we can calcurate the first-order coherence function as

G1(r, r′) = 〈ψ̂+(r)ψ̂(r′)〉 (2.27)

= (2π~)−3

∫
dp

∫
dp′〈ψ̂+(p)ψ̂(p′)〉 exp

[
i

~
(pr − p′r′)

]

=
1
V

∫
dpn(p) exp

[
i

~
p(r − r′)

]
,
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where the following definition of Dirac delta-function is used:

(2π~)−3

∫
dp exp

[
ip(r − r′)

~

]
= δ(r − r′), (2.28)

(2π~)−3

∫
dr exp

[
i

~
r(p− p′)

]
= δ(p− p′). (2.29)

Here n(p) is the particle distribution over the momentum eigenstates and satisfy the
normalization

∫
dpn(p) = N .

Let us consider the case of a uniform and isotropic system of N identical bosons
occupying a volume V . In the limit of N,V →∞ with the density n = N

V kept constant,
(2.27) is not dependent on specific positions r, r′ but depends on the modulus of the relative
position s = |r − r′| and one can write

G(1)(r, r′) = G(1)(s) =
1
V

∫
dpn(p)e−ip·s/~, (2.30)

For a normal state above BEC critical temperature, the momentum distribution is smooth
at small momenta and consequently the first-order coherence function G(1)(r, r′) (or nor-
malized coherence function g(1)(r, r′)) vanishes when s →∞. The situation is different if
instead the momentum distribution features the macroscopic occupation N0 at the single
particle ground state with momentum p = 0

n(p) = N0δ(p) + ñ(p). (2.31)

This macroscopic occupation of the single particle state, usually at p = 0, is a general
definition of BEC and the quantity N0/N < 1 is called the condensate fraction. Using
(2.28) in the Fourier transform (2.27), one finds the first-order coherence function does
not vanish when s →∞ but approaches a finite value:

G(1)(s)|s→∞ −→ N0

V
, (2.32)

or
g(1)(s)|s→∞ −→ N0

N
. (2.33)

This asymptotic behavior of the first-order coherence function was discussed by Landau
and Lifshitz [8], Penrose [9] and Penrose and Onsager [10], and is often referred to as off-
diagonal long-range order (ODLRO), since it involves the off-diagonal elements (r 6= r′)
of the first-order coherence function. Figure 2.3 shows the typical behavior of g(1)(s) at
above and below BEC critical temperature. The initial decrease of g(1)(s) in a small s
values is governed by ñ(p) in (2.28). The low-s expansion of (2.27) results in the following
quadratic decrease in g(1)(s) in the limit of s → 0:

e−ip·s/~ ' 1− i(p · s)/~− 1
2
(p · s)2/~2 + · · · , (2.34)

and

g(1)(s)|s→0 = 1− 1
2
〈p̂2〉 s

2

~2
+ · · · , (2.35)
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1

0

BEC

normal state

Figure 2.3: The normalized first-order coherence function g(1)(s) vs the relative positions
s = |r − r′|. For a normal state, g(1)(s) vanishes for large s, but for a BEC, g(1)(s)
approaches to the condensate fraction N0/N for large s.

where 〈p̂2〉 = 1
N

∫
dpn(p)p2 is the second order moment of the momentum distribution and

identically equal to the variance of the momentum distribution 〈∆p̂2〉 = 〈p̂2〉 − 〈p̂〉2, since
〈p̂〉 = 0.

The first order coherence function g(1)(s) is measured by various single particle in-
terferometers. A Young’s double slit interferometer is one of them. Figure 2.4 shows the
measured interference patterns for an exciton-polariton condensate across the BEC critical
density [11]. When the particle density is below BEC critical density (or above BEC criti-
cal temperature), no interference pattern is observed, while at above BEC critical density
(or below BEC critical temperature), the visibility of interference pattern increases with
the particle density. This indicates the condensate fraction increases with the particle
density. Figure 2.5 shows the measured g(1)(s) vs. s for a trapped Bose gas at below and
above BEC critical temperature [12].

Figure 2.4: The interference patterns of the Young’s double slit interferometer vs. the
particle density across the BEC critical density for an exciton polariton condensate [11].

If all particles condense into the ground state, i.e. N0
N → 1, the first-order coherence

function g(1)(s) is independent of s and equal to one. The first-order coherence function
g(1)(s) is a measure for the degree of condensation in momentum space. If only the ground
state is occupied and there is negligible populations in excited states, we always obtain
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Figure 2.5: Spatial coherence of a trapped Bose gas as a function of slit separation for
temperature below (black crosses and circles) and above (white circles and squares) the
transition temperature. For temperatures above Tc coherence disappears for distances
much smaller than the size of the sample. (The number of atoms in the trap was reduced
to prepare a thermal gas at a temperature of 290 nK in the experimental data represented
by open squares.

g(1)(s) ' 1.
However, this measurement does not provide any information about the quantum

statistical properties of the condensate itself. In order to distinguish various possible
candidate quantum states such as a particle number eigenstate |N〉, coherent state |α〉
or thermal state ρ̂mix =

∑
n ρnn|n〉〈n| [13], we have to study the higher-order coherence

functions defined by [2]

g(n)(s) =
G(n)(r1, t1; r2, t2; · · · ; rn, tn)[

G(1)(r1, t1)G(1)(r2, t2) · · ·G(1)(rn, tn)
]

=
〈ψ̂+(r1, t1) · · · ψ̂+(rn, tn)ψ̂(rn, tn) · · · ψ̂(r1, t1)〉[

〈ψ̂+(r1, t1)ψ̂(r1, t1)〉 · · · · · · 〈ψ̂+(rn, tn)ψ̂(rn, tn)〉
]1/n

(2.36)

The higher-order coherence function is the joint probability of detecting n particles at
(r1, t1), (r2, t2) · · · and (rn, tn) time-space points, and can be measured by the Hanbury-
Brown and Twiss interferometer [14] or its variants. For instance, if a given Bose particle
system in a single spatial mode is in a coherent state |α〉, particle number eigenstate |N〉
or thermal state ρ̂mix and there is no excitations, the n-th order coherence function takes
the following values [15, 16]:

g(n)(τ = 0) =





1 : coherent state
1− n−1

N : particle number eigenstate
n! : thermal state

, (2.37)

where τ = 0 means the simultaneous detection of n particles, i.e. t1 = t2 = · · · = tn.
In this way, the higher-order coherence functions provide the information on the par-

ticular quantum states of the experimentally realized condensate. Figure 2.6 shows the
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measured g(2)(τ = 0) and g(3)(τ = 0) for the exciton-polariton condensate [17]. The
experimental results of g(2)(τ = 0) = 1.3 and g(3)(τ = 0) = 2.5 at well above the BEC
critical density suggest that the quantum state of the condensate is not a particle number
eigenstate for which g(2)(τ = 0) = 2 and g(3)(τ = 0) = 6 nor a coherent state for which
g(2)(τ = 0) = g(3)(τ = 0) = 1. This detailed discussion of this result, including the the-
oretical results shown by solid lines will be presented within the context of the quantum
theory of matter-wave lasers in chapter 9.

1 10
1

2

3

4

P/Pth

 g2(0) 
 g3(0)
 g2(0) theory
  g3(0) theory

Figure 2.6: The measured g(2)(τ = 0) and g(3)(τ = 0) for an exciton-polariton condensate
for varying pump rates [17].
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