
Chapter 8

Noise of pn Junction Lasers and
Detectors

In this chapter we will review the noise properties of two important pn junction devices:
semiconductor lasers and avalanche photodiodes. Two remarkable results will be pre-
sented. A first striking results is that the shot noise can be suppressed in a semiconductor
laser driven by a high-impedance constant current source [1, 2]. A second important result
is that the excess noise can be suppressed in an avalanche photodiode driven by a low dc
field [3, 4]

8.1 Amplitude Squeezing in Semiconductor Lasers

8.1.1 Noise equivalent circuit of a semiconductor laser

The following facts are discovered by the microscopic theory for carrier transport and
radiative recombination in pn junctions presented in Chapter 6.

1. The shot-noise-limited current noise in a pn junction diode is not the noise introduced
by the pump source, but is the result of the thermal fluctuation of minority carrier
flow (diffusion noise) and generation-recombination noise inside the diode.

2. This shot-noise-limited current noise exists only when the diode is biased by a
constant-voltage source (negligible source resistance).

3. The pump noise for a semiconductor laser is the Johnson-Nyquist (thermal) noise
generated in the source resistance. In the strong forward-bias condition, the diode’s
differential resistance becomes smaller than the source resistance, and in such a case
the (thermal) pump noise becomes smaller than the shot-noise level (high-impedance
suppression).

We can now construct a complete and self-consistent noise-equivalent circuit for a semi-
conductor laser, including the mutual coupling between the pump source and the junction.

The noise-equivalent circuit shown in Fig. 8.1 consists of the four parts[5]: pump (input
electron flux) fluctuation, population inversion (internal electron number) fluctuation,
internal photon-number fluctuation, and output photon flux fluctuation, respectively.
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Figure 8.1: Noise-equivalent circuit of a semiconductor laser and the dissipation-
fluctuation relations.

Electron number fluctuation ∆Nc is uniquely determined by junction-voltage fluctua-
tion υn via ∆Nc

Nc
= υn

2VT
, where VT = kBT

q is a thermal voltage. Thus, the electron-number
fluctuation inside the active region corresponds to the fluctuation of the charge stored in
capacitance C in Fig. 8.1. Electron-number fluctuation ∆Nc has two decay processes, one
via source resistance RS and the other via differential resistance R. The circuit equation
for the first process (assuming R →∞ and i → 0) is

(
1

RS
+ iωC

)
= is , (8.1)

or equivalently
d

dt
∆Nc = − 1

CRS
∆Nc +

is
q

. (8.2)

The power spectral density of the noise source is
q ,

Sis/q(ω) =
4kBT

q2RS
= 2

Nc

CRS
, (8.3)

is equal to twice of the electron-number decay rate via the source resistance. This is the
fluctuation-dissipation theorem for the CRS decay process. The pump source functions to
restore the electron number to its average value. This relaxation process with decay rate

1
CRS

accompanies noise Eq. (8.3), which is the origin of the pump noise for a semiconductor
laser. The noise current is the thermal noise of the source resistance, since h̄ω ¿ kBT .

The circuit equation for the second process (assuming RS →∞ and is → 0) is
(

1
R

+ iωC

)
υn = ib , (8.4)
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or equivalently
d

dt
∆Nc = − 1

CR
∆Nc +

ib
q

. (8.5)

As expected, decay rate 1
CR is equal to the inverse of effective electron lifetime 1

τn
=(

1
τnr

+ 1
τsp

+ 1
τst

)
, indicating that the second process is the relaxation process of the electron

number fluctuation due to internal radiative and nonradiative recombination. The power
spectral density of the noise source ib

q ,

Sib/q(ω) = 2
[

Nc

CR
+ 2EυcS0

]
, (8.6)

is equal to twice of the electron-number decay rate via the differential resistance (full-shot
noise), plus a stimulated absorption term. This is the fluctuation-dissipation theorem for
the CR decay process. The origin of this noise current is dipole moment noise source,
which will be discussed in Chapter 10. Combining Eqs. (8.2) and (8.5) gives

d

dt
∆Nc = −

(
1

CRS
+

1
τn

)
∆Nc +

1
q

(is + ib) . (8.7)

The average junction current carried by the lasing photons is IL = qγS0. The photon-
number fluctuation is thus determined by photon current fluctuation iL via ∆S = iL

qγ . The
photon-number fluctuation inside the active region is proportional to the fluctuation of
the current flowing in inductance L in Fig. 8.1. We assume that the electron energy is
stored in capacitance C, that the photon energy is stored in inductance L = τst/Cγ, and
that ωr ≡ 1/

√
LC =

√
γ/τst is the relaxation oscillation frequency. Current fluctuation

iL is amplified by negative resistance −Ra (stimulated emission gain) and is attenuated
by positive resistance R0 (output coupling loss). The circuit equation for the first process
(assuming R0 → 0) is

(iωL−Ra)iL = Raia , (8.8)

or equivalently
d

dt
∆S =

Ra

L
∆S +

ia
q

. (8.9)

Here, the relation Ra
L = Ecυ−Eυc ' γ is used. The power spectral density of the noise

source ia
q is

Sia/q(ω) = 2
(

Ra

L
S0 + 2EυcS0

)
, (8.10)

which satisfies the fluctuation-dissipation theorem for the amplifying process and also
includes the noise due to stimulated absorption. The origin of this noise current is also
the dipole moment noise source. Therefore, ia is correlated with noise current ib. The
power spectrum of the mutual correlation function is

Siaib/q2(ω) = −2(EcυEυc)S0 . (8.11)

The circuit equation for the second process (assuming Ra → 0) is

(iωL + R0)iL = −R0i0 , (8.12)

3



or equivalently
d

dt
∆S = −R0

L
∆S − i0

q
. (8.13)

Here, relation R0
L = γ is used. The power spectral density of noise source i0

q is

Si0/q(ω) = 2γS0 , (8.14)

which satisfies the fluctuation-dissipation theorem for the decay process. The origin of this
noise current is the incident vacuum field fluctuation. Combining Eqs. (8.9) and (8.13)
gives

d

dt
∆S = −[γ − (Ecυ − Eυc)]∆S +

1
q
(ia − i0) . (8.15)

Junction voltage fluctuation υn and photon current fluctuation iL are coupled via capaci-
tance C and inductance L. The circuit equations for υn and iL are

υn = iωLiL + (iL + ia)(−Ra) + (iL + i0)R0 , (8.16)

and
iL = −

(
1

RS
+

1
R

+ iωC

)
υn + is + ib . (8.17)

The Langevin equations for the internal electron-number fluctuation and internal photon-
number fluctuations are obtained by replacing iω with d

dt and by using relations υn = q
c∆Nc

and iL = qγ∆S to give

d

dt
∆Nc = −

(
1

CRS
+

1
τn

)
∆N − γ∆S +

1
q
(is + ib) , (8.18)

d

dt
∆S = −[γ − (Ecυ − Eυc)]∆S +

∆S

τst
+

1
q
(ia − i0) . (8.19)

Equation (8.18) is different from the conventional Langevin equation for the electron-
number fluctuation, as can be stated with the following two points: there is a new decay
rate of the electron-number fluctuation, which represents the junction-voltage pinning
effect by the source, and the pump noise is not proportional to the pump rate, but is given
by the thermal noise current is. When RS is very large, decay rate 1

CRS
of the electron-

number fluctuation becomes small, and accordingly, the pump noise becomes small.

8.1.2 Threshold for amplitude squeezing

The input electron flux fluctuation, i.e., the external circuit current fluctuation iin, is given
by Kirchhoff law

iin =
υn

RS
+ is . (8.20)

Junction voltage fluctuation υn is partly caused by noise current is from the (reservoir)
pump sorce, as shown in Eq. (8.1). Therefore, υn and is are correlated. Junction voltage
fluctuation υn, in turn, affects external current iin flowing in the source resistance. This
is the boundary condition at the energy input plane and represents the back action of
system υn on the (reservoir) pump source.
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The output photon flux fluctuation, i.e., the external photon current fluctuation, is
given by the Kirchhoff law

iout = iL + i0 . (8.21)

Photon current fluctuation iL is partly caused by noise current i0 from the (reservoir)
external photon fields (vacuum fluctuations), as shown in Eq. (8.13). Therefore, iL and i0
are correlated. Photon current fluctuation iL, in turn, affects external current iout flowing
in the load resistance. This is the boundary condition at the energy output plane and
represents the back action of system iL on the (reservoir) external photon fields.

The external photon current fluctuation is related to output field fluctuation ∆r̂ as

iout ↔ q2r0∆r̂ , (8.22)

and the internal photon current fluctuation is related to internal field fluctuation ∆Â as

iL ↔ qγ2A0∆Â . (8.23)

Using relation r0 =
√

γA0, boundary condition Eq. (8.21) is reduced to

r̂ = −ŜA +
√

γÂ , (8.24)

where ŜA is an incident vacuum field.
From circuit equations Eqs. (8.16) and (8.17), υn and iL are obtained in a low-frequency

limit as
υn ' (R0 −Ra)is + (R0 −Ra)ib + R0i0 −Raia , (8.25)

iL ' is + ib +
(

1
RS

+
1
R

)
Raia −

(
1

RS
+

1
R

)
R0i0 . (8.26)

Using the boundary conditions Eqs. (8.20) and (8.21), iin and iout are

iin =
(

1 +
R0 −Ra

RS

)
is +

R0 −Ra

RS
ib − R0

RS
i0 +

Ra

RS
ia , (8.27)

iout = is + ib +
(

1
RS

+
1
R

)
Raia +

[
1−

(
1

RS
+

1
R

)
R0

]
i0 . (8.28)

Here, threshold condition R0 ' Ra is used. As RS approaches infinity, iin = is → 0 and

iout =
(

1− R0

R

)
i0 + ib +

Ra

R
ia ' −xi0 + ib + (1 + x)ia , (8.29)

where x = 1
nsp(P/Pth−1) = 1

nspRP
and R0

R ' Ra
R ' τst

τn
' 1+x are used. The power spectrum

of the output photon flux is

Siout/q(ω) = 2γS0

[
2nsp · x2 + x

]
. (8.30)

Since 2γS0 is the shot-noise-limited output photon flux fluctuation, Eq. (8.30) can be
reduced to below the shot-noise level when pump rate RP ≡ P/Pth − 1 satisfies

RP ≥ 4√
8nsp + 1− 1

. (8.31)
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When nsp = 1 (complete population inversion), pump rate P/Pth ≥ 3 is required to
produce a number-phase squeezed state. This “threshold pump rate” decreases with the
population inversion parameter. As x approaches infinity, iout → 0. Thus, the input
electron flux and the output photon flux do not fluctuate. This is reasonable because
the fixed number of electrons is injected by the high-impedance constant current source,
and all the injected electrons are converted to lasing photons by the dominant stimulated
emission process and are extracted from the output coupling mirror.

8.1.3 Numerical examples

Circuit elements R, Rse = R0−Ra, L, and C in the noise equivalent circuit (Fig. 8.1) versus
normalized pump level RP = P/Pth − 1 are shown in Fig. 8.2 for a typical semiconductor
laser. The following numerical parameters are assumed: spontaneous emission lifetime
τsp = 3 nsec, nonradiative electron lifetime τnr = ∞, stimulated emission lifetime τst '
τsp/nspRP , population inversion parameter nsp = Ecυ − Eυc = 2, photon lifetime τP = 2
psec (or the photon decay rate, ω/Q = 5 × n11sec−1), stimulated emission rate Ecυ =
nsp(Ecυ − Eυc) ' nsp(ω/Q) = 1012sec−1, absorption rate Eυc ' 5 × 1011sec−1, thermal
voltage VT = 26mV, parameter m = 1.5, spontaneous emission coefficient β = 1 × 10−5,
total photon-number S0 = RP nsp/β, active-layer volume V = 3×10−10cm3, and threshold
electron density Nc/V = 1.5× 1018cm−3.

Figure 8.2: The diode’s differential resistance, R, diffusion capacitance C, effective resis-
tance Rse, and effective inductance L versus normalized pump level RP = P/Pth − 1.
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The power spectra for the external field amplitude fluctuation in the injection current-
driven semiconductor laser with suppressed-pump fluctuation are shown in Fig. 8.3. The
amplitude fluctuation spectrum for the injection current-driven semiconductor laser is
reduced to below the standard quantum limit in the frequency region below the cavity
bandwidth.

Figure 8.3: Amplitude noise spectra as a function of a normalized pump level RP ; with
suppressed pump noise.

The amplitude fluctuation power spectral densities in the low-frequency region are
shown in Fig. 8.4 as a function of series resistance RS . Since diode differential resistance
R decreases monotonically with the pump level, as shown in Fig. 8.2, criterion 2R < RS ,
wherein the pump fluctuation becomes smaller than the shot-noise level, is always satisfied
for any finite RS value. Figures 8.4(a) and 8.4(b) correspond to the respective cases of
no internal loss (ω/Q0 = 0 and ω/Qe = ω/Q = 5 × 1011sec−1) and finite internal loss
(ω/Q0 = 1 × 1011sec−1 and ω/Qe = 4 × 1011sec−1). The amplitude squeezing is reduced
by the presence of cavity internal loss.

8.1.4 Experimental results

A. Observation of amplitude squeezing by balanced detectors with a delay line

In a usual intensity noise measurement, two measurement steps are required; one for a
laser intensity noise measurement and the other for a shot noise calibration with a light
emitting diode. To eliminate the error introduced by the two-step measurements and the
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Figure 8.4: Amplitude noise spectral densities in the low-frequency region, Ω ¿ ω/Q
versus normalized pump level RP . The dotted line and solid line correspond to the optical
pumping with shot-noise-limited pump amplitude fluctuation and the injection pumping
with a source resistance RS ; (a) with no internal loss ω/Q0 = 0; (b) with a finite internal
loss ω/Q0 = 1× 1011s−1.
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photodetector saturation effect dependent on a beam spot size, the balanced detectors
with a delay line shown in Fig. 8.5 are developed[6]. One detector output is delayed (by
τ = 50 nsec in our measurement), but the other detector output is not. The difference in
these two outputs is produced by a differential amplifier. A coaxial cable delay line has a
loss coefficient proportional to

√
Ω, where Ω is the fluctuation frequency. This frequency-

dependent attenuation imposed on the delayed signal is compensated for by introducing
the same attenuation to the other signal.

For a fluctuation frequency Ωin satisfying inphase delay condition Ωinτ = 2Nπ, where
N is an integer, the differential amplifier output measures Î1 − Î2, where Î1 and Î2 are
the two photodetector currents. The current-fluctuation spectral density is exactly equal
to the shot-noise level. For a fluctuation frequency Ωout satisfying out-of-phase delay
condition Ωoutτ = (2N + 1)π, the differential amplifier output measures Î1 + Î2. The
quantum-mechanical theory of a balanced detector[7] shows that Î1 + Î2 measures the
quantum noise of the laser itself. Thus, the detector output simultaneously displays the
laser-noise level and the corresponding shot-noise level on a spectrum analyzer with a
frequency period of ∆Ω = 2π/τ .

Figure 8.5: (a) Balanced direct detectors with a delay line and attenuators (ATT). (b)
Current noise spectra of an amplitude antisqueezed light and an amplitude-squeezed light.

When the signal wave is amplitude-anti squeezed (super-Poissonian), the current fluc-
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tuation at Ωin is smaller than that at Ωout, as shown in Fig. 8.5(b). On the other hand,
when the signal wave is amplitude squeezed (sub-Poissonian), the current fluctuation at
Ωin is larger than that at Ωout, as shown in Fig. 8.5(b). This inverted modulation in the
current-fluctuation spectrum is an unmistakable mark of amplitude-squeezed light. This
is a single-step measurement; therefore, the ambiguity in the shot-noise level owing to the
photodetector saturation can be eliminated.

Figure 8.6 shows current noise spectra at two different bias levels. The current noise
spectrum for bias level RP = 0.03, which is shown by curve A, features lower noise
power at Ωin than at Ωout. This indicates that the field is amplitude antisqueezed (super-
Poissonian). The amplifier noise level is shown by curve B. The current noise spectrum for
bias level RP = 12.6, which is shown by curve C, features higher noise power at Ωin than
at Ωout. This indicates that the field is amplitude squeezed (sub-Poissonian). The total dc
photocurrents are 15µA and 6.12 mA for RP = 0.03 and 12.6, respectively. Curves D and
E are the current noise spectra when one of the two incident signal waves for RP = 12.6
is blocked. The modulation disappears, as expected, in a low-frequency region. At high
frequencies, however, the noise power is reflected back at the differential amplifier input,
and so the modulation due to the round trip in a delay line appears. Curve F is the sum
of the current noise spectra indicated by curves D and E. The noise level of curve F is
not equal to a 3 -dB noise rise form the noise level indicated by curves D or E because of
the amplifier thermal noise (curve B). Note that the current noise spectrum indicated by
curve F is between the shot-noise level at Ωin and the reduced noise level at Ωout. This is
because of the noise level of amplitude-squeezed light increases to approach the shot-noise
level when the amplitude is attenuated.

Figure 8.6: Current noise spectra for bias levels I/Ith = 1.03 (curve A) and I/Ith = 13.6
(curve C). Curve B is the amplifier thermal noise. Curves D and E are obtained when
one of the two signal beams is blocked for I/Ith = 13.6. Curve F is the sum of noise curves
D and E.
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Figure 8.7 shows the current noise spectra normalized by the shot-noise level for the
two bias levels. The shot-noise level calibrated by the measurement of Î1− Î2 is compared
with the shot-noise level generated by the light-emitting diode with the same wavelength as
the laser. The difference is smaller than 0.1 dB. The current noise spectrum at RP = 0.03
shows an enhanced noise peak at the relaxation-oscillation frequency. The current noise
spectrum at RP = 12.6 shows a noise level reduced to -1.3 dB below the shot-noise level.
The observed 0.6-dB squeezing becomes 1.3-dB squeezing in Fig. 8.7, because the effect
of the amplifier thermal noise is subtracted. This noise reduction is much larger than the
error bar of the shot-noise-level calibration.

Figure 8.7: Current noise spectra normalized by the shot-noise level for bias levels
I/Ith = 1.03 (upper curve) and I/Ith = 13.6 (lower curve). The amplifier thermal noise is
subtracted in the normalization process.

B. Amplitude squeezing vs. pump rate

The degree of squeezing is degraded by the Poissonian partition noise associated with opti-
cal loss. To increase the light collection efficiency, a GaAs transverse junction stripe laser,
with less than 3% front facet reflectivity R1 and more than 90% rear facet reflectivity R2,
is operated at 66 K to minimize the free carrier absorption loss and is directly coupled to
photodetector to minimize the coupling loss. Figure 8.8 shows theoretical and experimen-
tal photon number noise values normalized by the shot noise value versus the normalized
pump rate I/Ith − 1[8]. The experimental results are corrected for a detection quantum
efficiency of about 89%, so the degree of squeezing shown in Fig. 8.8 corresponds to that of
the laser output. The experimental maximum degree of squeezing, -14 dB (' 0.04), is in
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reasonable agreement with the theoretical limit imposed by the output coupling efficiency

η =
ln

(
1

R1

)

ln
(

1
R1R2

) ' 0.97

of the laser.

Figure 8.8: The theoretical (lines) and experimental (•) intensity noise values normalized
by the shot noise value versus the normalized rate R ≡ I/Ith−1. The experimental results
are corrected for a detection quantum efficiency of 89%.

8.2 Excess Noise in Avalanche Photodiode

8.2.1 Conventional (Markov) process in the avalanche process

In this section, we review the conventional avalanche photodiode (APD), the theory of
which is well developed[9]. Photoelectrons are introduced into high-field regions where an
avalanche of secondary, tertiary, · · · electrons is generated by successive impact ionization.
However, in a typical APD, photoionization and impact ionization each promote electrons
from the valence band; in the SSPM, photoionization and impact ionization each promote
electrons from neutral impurities. One consequence is that the fields typically employed
in an APD to achieve impact ionization are at least 50 times those employed in the SSPM.
This difference will turn out to be significant to the development of a model for the
pulse-amplitude distribution of the SSPM. Another consequence is that in the APD, both
electrons and holes may generate carriers by impact ionization, whereas only electrons
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generate carriers in the SSPM. However, the best performance in an APD is obtained
when only one type of carrier undergoes multiplication; in this sense, the SSPM is an ideal
APD. For purposes of comparison, hereafter we consider only an ideal APD, i.e., with one
type of avalanching carrier. Finally, a typical APD (operating with electric fields below
breakdown) generates an electron pulse in response to a group of between 50 and 250
photoelectrons.

In the usual treatments of the APD, the calculation of the pulse-amplitude distribution
h(n) employs a phenomenological rate α which is the probability per unit length that
a carrier generates another carrier via impact ionization[9]. Usually α is described as
varying, at most, with the instantaneous position r of a carrier with respect to the field
axis. Since α is independent of the history of carrier in APDs, the avalanche develops as a
Markov process. If, in addition, the carriers do not interact with each other, the avalanche
may be described by the classical theory of branching. Since we consider only an ideal
APD, the theory amounts to a one-dimensional Markov branching process for one type
of carrier undergoing multiplication. With the restrictions just discussed, the branching
theory yields p(n, r; m), i.e., the probability that there are n electrons at r, given exactly
m electrons injected into the avalanche region. In what follows, the origin of the high-field
region is set to r = 0, and terminates at r = L. The pulse-amplitude distribution is then
h(n) ≡ p(n,L; m). Since the SSPM is a photon counter, we ask the theory to find h(n)
for m = 1.

Then, for any continuous α(r), p(n, r; m) must satisfy the following rate equations:

∂p(m, r; m)
∂r

= −mα(r)p(m, r; m) ,

∂p(n, r; m)
∂r

= −nα(r)p(n, r; m)

+(n− 1)α(r)p(n− 1, r; m) , n > m , (8.32)

with the initial conditions p(m, 0;m) = 1, p(n, 0;m) = 0, and m ≥ 1. The solution is

p(n, r; m) =

(
n− 1
n−m

)
[Z(r)− 1]−m

(
1− 1

Z(r)

)n

, (8.33)

where

Z(r) = exp
(∫ r

0
dsα(s)

)
.

These probabilities obey the normalization
∑

n=1 p(n, r; m) = 1. The mean pulse ampli-
tude as a function of position is 〈n(r)〉 = mZ(r). In the single-photon counting mode,
m = 1; the resulting distribution for any α(r) is

h(n) ≡ p(n,L; 1) = (1− 1/〈n〉)n/(〈n〉 − 1) , (8.34)

which is a monotonically decaying function with 〈n〉 = Z(L), far from its peak at n = 1.
For 〈n〉 À 1, h(n) ' exp(−n/〈n〉)/〈n〉.

Ignoring the fluctuations in this number as well as in their initial position, the pulse-
amplitude distribution is described by p(n,L;m) above, which for sufficiently large m is
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a unimodal function peaked near the mean pulse amplitude. Figure 8.9 illustrates this
difference with a comparison between p(n,L; m) and p(n, L; 1) for an ideal APD with
L = 10µm. The model APD responds in the first case to exactly m = 11 photoelectrons
with a gain (defined here as 〈n〉/m) of 100 (α = 0.4605 µm−1) and in the other to exactly
m = 1 photoelectron with a gain of 1100 (α = 0.7003µm−1), so that in both cases the
mean pulse amplitude is 1100 electrons. We will return to this example in the next section.

Figure 8.9: The pulse-amplitude distribution h(n) for the model APD calculated from
Eqs. (8.33) and (8.34). Curve 1 shows h(n) = p(n,L; 11) for the APD when it generates
an avalanche in response to exactly 11 photoelectrons, with a gain of 100. Curve 2 shows
h(n) = p(n,L; 1) for the APD when it responds to exactly one photoelectron, with a gain
of 1100. The mean pulse amplitude (〈n〉 = 1100) is the same for both curves.

As we show in the following section, the Markov (i.e., history-independent) property
of the branching process provides an essentially correct description of the APD, mainly
because the electric fields are so high that they accelerate the newly born electrons almost
instantly to the energies required for their subsequent impact ionization. On the contrary,
the electric fields encountered by the electrons in the SSPM are so low that they must
traverse considerable distances before they attain energies sufficient for impact ionization.
The demonstration of this history dependence can be made explicit with a standard Monte-
Carlo simulation for a single electron in the high-field region of the SSPM, with which we
begin the next section.

8.2.2 A non-Markov process in low-field avalanche photodiodes

By rejecting the Markov hypothesis implied by Eqs. (8.32)-(8.34), we assume that the
branching process depends on the history of the electron. In this section we calculate by
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standard Monte Carlo techniques the distance traveled by a single electron between its
birth and its first attainment to the energy required for impact ionization. We conclude this
section with the application of the results to the non-Markovian extension of Eqs. (8.32)-
(8.34).

The Monte Carlo calculation for single-electron transport (which solves the semi-
classical Boltzmann equation) in semiconductor devices has been extensively reviewed
elsewhere[10]; we confine ourselves to a listing of some of the parameters involved. For
the SSPM, we limit the (three-dimensional) electron transport to a 4-µm-thick high-field
region where, for simplicity and for comparison to the APD, a constant field is applied
along the field axis. The fields E employed are assigned strengths of 3, 3.5, and 4 kV/cm,
respectively. In addition to the usual formulas for the acoustic intervalley and acoustic-
optic intravalley phonon scattering rates (which reproduce experimental electron transport
data)[10], we employ Erginsoy’s formula for the neutral impurity scattering[10]. The low
compensation (set to zero) and the low temperature (set to 10 K) encountered in the
SSPM suggest a lack of significant ionized impurity scattering, and is therefore omitted
in this calculation. The ionization energy of arsenic donors in cryogenic silicon with low
compensation is taken to be 54 meV; their density Nd is set to 5× 1017cm−3 throughout
the infrared-active layer.

The calculation proceeds as follows. One photoelectron is introduced into the high-field
region with a random velocity corresponding to a kinetic energy of 1 meV. As the electron
is accelerated toward the blocking layer by the field, phonon and impurity scattering de-
lay its attainment of the ionization threshold. When ionization energy is finally attained,
its position projected onto the field axis is recorded. Since the energy of the interrupted
electron always exceeds the ionization energy, we make the approximation that impact
ionization occurs instantaneously. Therefore, the energy remaining to the two new elec-
trons (after the ionization energy is subtracted) is randomly partitioned and the trajectory
for the randomly chosen electron resumes with a randomized velocity corresponding to its
share of the energy. The electron continues to be accelerated by the field until once again
threshold is first exceeded. This interrupted trajectory continues until the blocking layer
is reached. Five hundred trajectories were run in this fashion, and the distance x between
an electron’s birth and its attainment of threshold were scored in a normalized histogram
f(x). Since the field is constant, we regard the threshold distance distribution f(x) as
independent of position.

The first moment of f(x) yields the mean distance x̄ traveled between birth and thresh-
old, namely, x̄ ≈ 0.22µm (for E = 3 kV/cm), roughly 6% of the distance of the entire
high-field region in which the avalanche develops. For comparison, we also consider a
calculation appropriate for electrons in an ideal silicon APD which in this case responds
to exactly one photoelectron. For this model APD, operating at 300 K, we consider an
undoped high-field region 10 µm thick, with an applied constant field of 400 kV/cm.
The resulting threshold distance distribution f(x) (determined from 500 trajectories) has
x̄ ≈ 0.047µm, about 1

2% of the entire avalanche region in an APD, and about one-fifth the
mean distance found for the model SSPM. Figure 8.10 shows f(x) for the model SSPM
(for E = 3 kV/cm) and the model APD, respectively. By comparison with the SSPM,
the f(x) for the APD is approximately a delta function at the origin, and therefore the
assumption of history independence for the avalanching carriers is apparently an excellent
one. The substantially displaced and more disperse threshold distribution exhibited by
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the SSPM, however, suggests that the history dependence of the electrons may be impor-
tant. In order to pursue this suggestion, we now display the non-Markovian extension of
Eqs. (8.32)-(8.34) for h(n).

Figure 8.10: The threshold-distance distribution f(x) calculated from 500 one-electron
Monte Carlo trajectories. The solid curve shows f(x) for the model SSPM,(E = 3 kV/cm).
The dashed curve shows f(x) for the model APD (E = 400 kV/cm).

The non-Markov branching equations, like the Markov equations of Eq. (8.32), have for
input a phenomenological branching rate α, which the additional dependence of α on the
“age” (i.e., the distance traveled between birth and threshold) x of the electron. Although,
as in the Markov case, α may also depend on the position r, the applied electric field in
the models considered is constant, and therefore we only consider a position-independent,
age-dependent rate α(x). The rate α(x) is related to the foregoing threshold distance
distribution f(x) by

α(x) = k

∫ x

0
dsf(s) , (8.35)

where k is a phenomenological rate constant (with units of µm−1), and
∫ x
0 dsf(s) is the

cumulative probability that an electron has reached threshold. Figure 8.11 shows the cu-
mulative threshold distributions obtained by numerical integration[11] for both the model
SSPM (for E = 3 kV/cm) and the model APD (for E = 400 kV/cm). With these
definitions, the probability p(n, r; 1) that there are n electrons at r given exactly one
photoelectron at the origin of the high-field region is supplied by

∂p(1, x; 1)
∂x

= −α(x)p(1, x; 1) ≡ ψ(x) ,
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p(n, r; 1) = −
∫ r

0
dxψ(r − x)

n−1∑

m=1

p(m,x; 1)p(n−m,x; 1) ,

n > 1 , (8.36)

with the initial conditions p(0, r; 1) = 0 and p(1, 0; 1) = 1. The Markovian equations (with
a position independent α) for p(n, r; 1) are recovered when α(x) = k, i.e., when

∫ x

0
dsf(x) = 1

for all x. As Fig. 8.11 shows, the rate is essentially history independent for the model APD,
whereas for the model SSPM, there is a small but significant deviation from Markovian
behavior.

Figure 8.11: The cumulative threshold-distance distribution
∫ x
0 dsf(s), vs. x/L. The solid

curve corresponds to the model SSPM, L = 4µm. The dashed curve corresponds to the
model APD, L = 10µm. The Markovian case corresponds to

∫ x
0 dsf(s) = 1 for all x.

Equations (8.35) and (8.36) constitute the non-Markovian extension of the branching
theory of Eqs. (8.22) and (8.23). In the following we discuss the solution to Eq. (8.36) for
both the model SSPM and the model APD.

The corresponding numerical solution of Eq. (8.36) for the model SSPM is complicated
by the large number of electrons generated in the avalanche, which exceeds the limits on
available computer memory. Fortunately, as the results will show, the first four moments
are sufficient to accurately describe the probabilities p(n, r; 1) for the model SSPM. The
first four moments of p(n, r; 1) are defined by

〈nj(r)〉 ≡
∑

n=1

njp(n, r; 1) (8.37)
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for j = 1 . . . 4, respectively. Combining Eqs. (8.36) and (8.37) yields the hierarchy of
integral equations for the moments:

〈n(r)〉 = p(1, r; 1)− 2
∫ r

0
dxψ(r − x)〈n(x)〉 ,

〈n2(r)〉 = p(1, r; 1)− 2
∫ r

0
dxψ(r − x)

×
[
〈n2(x)〉+ 〈n(x)〉2

]
,

〈n3(r)〉 = p(1, r; 1)− 2
∫ r

0
dxψ(r − x)

×
[
〈n3(x)〉+ 3〈n2(x)〉〈n(x)〉

]
,

〈n4(r)〉 = p(1, r; 1)− 2
∫ r

0
dxψ(r − x)

×
[
〈n4(x)〉+ 3〈n2(x)〉24〈n3(x)〉〈n(x)〉

]
.

Various methods exist for the approximate reconstruction of the probabilities p(n, r; 1)
from a fixed number of their moments. For the SSPM, Edgeworth’s method[12] is suffi-
ciently accurate, and with 〈nj〉 ≡ 〈nj(L)〉, provides

h(n∗) ≈ η(n∗)
(

1 +
γ

6
(n∗3 − 3n∗) +

κ

24
(n∗4 − 6n∗2 + 3)

+
γ2

72
(n∗6 − 15n∗4 + 45n∗2 − 15)

)
, (8.38)

where

n∗ ≡ (n− 〈n〉)/σ ,

σ2 ≡ 〈(n− 〈n〉)2〉 ,

γ ≡ 〈(n− 〈n〉)3〉/σ3 ,

κ ≡ 〈(n− 〈n〉)4〉/σ4 − 3 ,

and

η(x) ≡ (1/
√

2π) exp(−x2/2) .

The Edgeworth formula describes a Gaussian distribution perturbed by a finite skew γ
and kuritosis κ, respectively, and is expected to be accurate for small γ and κ.

Equations (8.37) and (8.38) are solved by standard numerical techniques, and deter-
mine h(n) once α(x) is chosen. The f(x) calculated in the last section for each of the
applied fields (E = 3, 3.5, 4, respectively) were used to determine α for the SSPM. For
each of the three fields employed in the model SSPM, we adjusted κ so that 〈n〉 ≈ 35000.
The values for γ and κ are sufficiently low for the validity of Eq. (8.38), and also suggest
the sufficiency of four moments to describe h(n).

The h(n) determined by Eq. (8.38) is shown in Fig. 8.12, along with the corresponding
Markov prediction for the same mean pulse amplitude.
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Figure 8.12: The calculated pulse-amplitude distribution h(n) for the model SSPM. Curves
1, 2, and 3 show h(n) for E = 3.3.5, and 4 kV/cm, respectively, calculated from Eq. (8.38).
Curve 4 shows the Markov prediction from Eq. (8.33) with 〈n〉 = 35000.

8.2.3 Discussion

Figure 8.12 shows that for the SSPM, the inclusion of non- Markovian effects in α radi-
cally alters the shape of h(n); furthermore, the calculated non–Markovian h(n) strongly
resembles the pulse-amplitude distribution typically observed in the SSPM. Therefore,
non-Markovian effects play a decisive role in the development of the electron avalanche in
the SSPM, in contrast to the APD.

Figure 8.11 shows that the α for the model SSPM is essentially constant over nearly
90% of the entire high-field region. Nevertheless, the seemingly small interval of deviation
from the Markovian rate is enough to produce a pulse-amplitude distribution strikingly
different from the Markovian prediction. On the scale shown in Fig. 8.11, the differences
between

∫ x
0 dsf(s) which correspond to the various fields employed in the model SSPM

are barely perceptible, yet the differences are readily apparent in the pulse-amplitude
distributions shown in Fig. 8.12. The remarkable sensitivity of the model SSPM to the
extent of non-Markovian effects, and in turn its sensitivity to small changes in the electric
field, has important consequences for SSPM design.

8.2.4 Multiphoton detection using visible light photon counter

Please see the attached publication “Multiphoton detection using visible light photon
counter”, J. Kim et al., APL 74, 902 (1999).
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Multiphoton detection using visible light photon counter
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Visible light photon counters feature noise-free avalanche multiplication and narrow pulse height
distribution for single photon detection events. Such a well-defined pulse height distribution for a
single photon detection event, combined with the fact that the avalanche multiplication is confined
to a small area of the whole detector, opens up the possibility for the simultaneous detection of two
photons. In this letter, we investigated this capability using twin photons generated by parametric
down conversion, and present a high quantum efficiency (;47%) detection of two photons with
good time resolution (;2 ns), which can be distinguished from a single-photon incidence with a
small bit-error rate (;0.63%). © 1999 American Institute of Physics.@S0003-6951~99!00307-1#
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Experimental techniques for single photon detect
have made tremendous progress in recent years. High q
tum efficiency and low dark counts~background noise! are
considered to be the figure-of-merit in characterizing the p
formance of a single photon detector. Photomultiplier tub
~PMTs! and Si avalanche photodiodes~APDs!1 have been
most widely used, while alternate technologies like so
state photomultipliers ~SSPMs!,2 visible light photon
counters ~VLPCs!,3 and superconducting tunnel junction
~STJs!4 have recently demonstrated unique capabilities t
PMTs and APDs cannot offer. The quantum efficiency
quired for detection efficiency loophole free test of Bell i
equality ~83%! has been realized by the VLPC
(;88%).5 STJs offer single photon detection capability wi
some wavelength resolution (;45 nm).4 In this letter, we
report the capability of VLPCs of detecting two photon
Such capability can be used for the test of Bell inequalit6

quantum teleportation experiments7 and also for the enhance
ment of the security in quantum cryptography systems.8

Single photon counters should have internal gain mec
nism to overcome huge thermal noise generated in the e
tronic circuits that follow. The noise in this multiplicatio
process determines the distribution of pulse height gener
by the single photon detection events.9 For the detectors with
low multiplication noise, the pulse height originating from
single photon detection event is well defined and there
possibility to distinguish a single photon detection eve
from a two photon detection event. PMTs have low noise
the multiplication process,10 but the single photon quantum
efficiency is limited to about,25% and so the maximum
two photon detection efficiency should be only 6%. Hi
quantum efficiency can be achieved by APDs (;76%),11

but the large multiplication noise in these devices comple
washes out the correlation between the number of pho

a!Electronic mail: jungsang@loki.stanford.edu
b!JST-PRESTO ‘‘Field and Reactions’’, A. T. R. C., Mitsubishi Electr

Corporation, Amagasaki, Hyogo 661-8661, Japan.
c!Also affiliated with NTT Basic Research Laboratories, Atsugi, Kanaga
Japan.
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incident and the generated pulse height.12,13 In addition to
that, for the APDs that operate in Geiger mode for sin
photon counting, the entire diode breaks down upon de
tion of a single photon incidence. Therefore, it is impossi
to distinguish a two-photon detection event from a sin
photon detection event.

VLPCs feature noise-free avalanche multiplication a
the pulse height resulting from a single photon detect
event is very well defined.9,14 Furthermore, the avalanch
breakdown is confined to a small portion (;20mm diam-
eter! of the total area~1 mm diameter! of the detector. This
means that the remainder of the device is still active
another photon detection even if a single photon is detec
These properties open up a possibility for multiple-phot
detection using VLPCs. Such behavior has already been
served in previous experiments where the time resolution
the electronic circuit was poor,3 so that more than two pho
tons are detected by the VLPC as a single pulse. In th
experiments, however, a difference in the arrival time of
two photons are reflected in the pulse height, which resul
significant broadening of the pulse height distribution. Ex
quantum efficiency of the two photon detection and the b
error rate for two photon detection event cannot be de
mined quantitatively from these experiments.

We have used twin photons generated by a degene
parametric down-conversion process, where the delay in
arrival times of the two photons can be controlled precis
by optical path length difference.

Figure 1 shows the experimental setup. We used 35
nm ultraviolet~UV! radiation from an Ar1 laser to pump a
BBO crystal in type-II phase-matching configuration. T
crystal was slightly tilted away from the colinear phas
matching condition, so that the signal and idler beams~both
at 702.2 nm! are completely separated in space.15 Each of the
beams was collimated using a weak focusing lens. One of
beams was delayed, and the two beams were recomb
using a polarizing beam splitter. The recombined beam w
focused onto the surface of the VLPC through a narr
bandpass filter@centered at 702 nm, and bandwidth of 0.
,

© 1999 American Institute of Physics
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nm full-width at half-maximum~FWHM!#. We have in-
stalled the VLPC in a bath-type He cryostat where the te
perature is stabilized to within 0.005 K using active tempe
ture control. Since the VLPC is extremely sensitive
infrared photons, extensive radiation shields with acry
windows were used to prevent the room temperature ther
radiation from reaching the detector while keeping transp
ency at ;97% for 702 nm photons by antireflectio
coating.5 The reflected light from the surface of the detec
(;16%) was recollected using a spherical refocusing mir
and the net reflection loss was reduced to;2.5%. The out-
put signal was amplified by a room temperature preampli
~MITEQ AUX1347! which has a bandwidth of 500 MHz an
provides electrical pulses of 2 ns in width when a sin
photon is detected.

Figure 2~a! shows an electrical pulse resulting from
single photon detection event. The width of the pulse~2 ns!
does not decrease even when the bandwidth of the amp
is increased, indicating that it is limited by the capacitance
the VLPC (;14 pF) and the input impedance of the amp
fier ~50 V!. Figures 2~b! and 2~c! show the cases when th
optical delay between the two beams is 5 and 3 ns, res
tively. The heights of the pulses are almost identical, indic
ing that the number of electrons released per single pho
detection event is well defined. Finally, Fig. 2~d! shows
when the optical delay is reduced to zero. The two pul
resulting from the two photon detection events complet
overlap in time, and the pulse height is twice that of a sin
photon detection event.

Pulse height analysis can be performed to estimate
bit-error rate for the two-photon detection event. Figure
shows the pulse height analysis of the cases when only
of the beams is incident@Fig. 3~a!#, and when both beams ar
incident on the VLPC@Fig. 3~b!#. For the two-beam inci-
dence case, there is a second peak in the pulse height d
bution, centered at twice the value (;74 mV) of the center
of the first peak (;37 mV). The theoretical expression fo
the pulse height distribution for the VLPC is given by th
gamma distribution9

P~M !5
1

M S 1

F21

M

^M & D
1/~F21! expS 2

1

F21

M

^M & D
GS 1

F21D ,

~1!

whereM is the statistical variable that describes the multip
cation gain,̂ M & is the average ofM, andF5^M2&/^M &2 is

FIG. 1. A schematic of the experimental setup.
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the excess noise factor~ENF! for the multiplication process
From the pulse height distribution obtained in the expe
ment, we can calculate the mean (^M &) and ENF~F! of the
gain, and use these values in Eq.~1! to generate the dotted
lines of Fig. 3. For Fig. 3~b!, the mean two curves wer
generated separately to fit each peak, which were then ad
to give the dotted line shown. The excess noise factor
duced from these pulse height distribution was 1.026 for
single-photon pulse height distribution@in both Figs. 3~a!
and 3~b!# and 1.012 for two-photon pulse height distributio
indicating almost noise-free avalanche multiplication. T
bit-error ratePe for distinguishing a two-photon detectio
event from a single-photon detection event is given by

Pe5min
VT

H E
VT

`

P1~V!dV1E
2`

VT
P2~V!dVJ , ~2!

where P1(V) and P2(V) are the normalized pulse heigh
distribution for single-photon detection events and tw
photon detection events, respectively, andVT is the threshold
voltage used for the discrimination. From the two distrib
tions given in Fig. 3~b!, Pe is minimized to 0.63% whenVT

is chosen at;54 mV. It should be noted that the discrim
nator levelVT for two-photon detection and the bit-error ra
Pe can change slightly depending on the relative size of
two peaks in Fig. 3~b!.

The narrow bandpass filter used in front of the VLP
had transmittance of about 50% at 702 nm, and such
photon optical loss is responsible for the small two-pho
detection peak compared to the single-photon detection p
The net quantum efficiency for two-photon detection can
estimated if such optical loss is subtracted. We used
single photon counting modules@~SPCMs!; single photon
counting detectors based on avalanche photodiodes# to char-
acterize the optical loss and the quality of the two-pho
source. Large area~500mm diameter! APDs are employed in
our SPCMs, and the quantum efficiency of these detec
are;5065% near the measurement wavelength of 702 n
We placed two SPCMs at locationsA andB indicated in Fig.

FIG. 2. Real-time trace of photon detection signal recorded by a 5 GS/s
digitizing oscilloscope. The time delay between the two beams is chan
by modifying the optical path length. The traces are shifted vertically
clarity. ~a! Single-photon detection signal.~b! 5 ns delay.~c! 3 ns delay.~d!
Zero delay.
 or copyright; see http://apl.aip.org/about/rights_and_permissions
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1 with narrow bandpass filters in front of each detector a
measured the single photon count rates of two beams@A and
B, in units of counts per second~cps!# independently, and the
coincidence count rate of the two beams (C). Given the dark
counts of the SPCMs~which is measured by blocking th
input beams! and the quantum efficiency, we can estima
the net photon flux at the SPCM inputs (A0 andB0) and the
net coincidence input (C0) ~Table I!. These three number
characterize the one photon loss rate of the two-pho
source made up of a parametric down converter and all
optical components used, including the narrow bandpass
ters.

Once these properties are known, we can estimate
two-photon detection efficiency of the VLPC. The ratio
the two-photon detection events and single-photon detec
events is given by

R2

R1
5

h2C0

h1~A01B022h1C0!1D0
, ~3!

whereR1 and R2 denote the single- and two-photon cou
rates,h1 andh2 denote the single- and two-photon detecti
quantum efficiency, andD0 denotes the dark count rate o
the VLPC. Independent measurements at the same oper
conditions yield the valuesh157065% and D051.7
3104 cps for the single-photon detection quantum efficien
and the dark count rate, respectively. Single-photon detec
quantum efficiencyh1 was degraded by about 5% because
saturation effect caused by a relatively large input pho
flux (;5.63105 cps) used in the experiment.5 The experi-

FIG. 3. Pulse height distribution for the detected photons. Counts w
integrated for 5 s ateach point. The dark circles are experimental data,
the dotted lines are theoretical fits using Eq.~1!. ~a! Single beam input.~b!
Two beam input with zero time delay between the two beams.
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mental value forR2 /R1 can be found from integrating th
pulse height distribution curve in Fig. 3~b!, and is found to
be 8.531022. Using these data with the values forA0 , B0 ,
andC0 in Table I, we can deduce the two-photon detecti
quantum efficiencyh2547%. The maximum value expecte
for a two-photon detection quantum efficiency is given
h2,max5h1

2549%, and the two-photon detection quantum
ficiency in our setup is limited by the single-photon detecti
quantum efficiency within the measurement accuracy.

In conclusion, we report here a photon detector based
VLPC that can distinguish between a single-photon in
dence and two-photon incidence with high quantum e
ciency~47%!, good time resolution~2 ns!, and low bit-error
rate (;0.63%). The performance of the detector was tes
quantitatively using a two-photon source employing tw
photons generated by a degenerate parametric do
conversion process.
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TABLE I. Count rates, dark count rates, and coincidence count rates fo
two-photon source using SPCM detectors. All numbers are given in unit
counts per second~cps!.

Quantity Measured counts Dark counts Net counts

A 1.223105 2.593103 2.383105 (A0)
B 8.413104 1.373104 1.413105 (B0)
C 1.133104 negligible 4.533104 (C0)
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