
Chapter 7

Mesoscopic pn Junction - Coulomb
Blockade, Squeezing and Single
Photon Generation -

In the previous chapter, we have presented the detailed theory on a pn junction driven
by a constant voltage source, while only a phenomenological argument was given for
the constant current operation of a pn junction. A noise equivalent circuit allows us
to calculate the junction current and junction voltage noise spectra. Under constant
current operation (Rs À Rd), the junction current noise features a sub-shot noise spectrum
Sin(ω) = 4kBθ

Rs
< 2qI but the junction voltage noise has a full shot noise Svn(ω) = 2qIR2

d.
The opposite is true for constant voltage operation.

In this chapter we will develop a microscopic theory for the constant current operation
of a pn junction, which takes into account the Coulomb blockade effect for a discrete
thermionic emission process[1]. We will show the experimental evidence for the sub-shot
noise (squeezing) behaviour of emitted photons from such a pn junction as a proof of the
theory[2]. When a pn junction size decreases, a single electron charging energy q2/2C
eventually exceeds thermal energy kBθ, and we expect a single electron is thermionically
emitted one by one with a regulated time interval τ = q/I. This should result in generation
of regulated single photons with the same interval. This single electron thermionic emission
(or tunneling) oscillation has not been observed experimentally yet due to the difficulty
of biasing such a small junction by a high-impedance constant current source[3].

However, single photon turnstile device based on periodically modulated constant volt-
age source has been proposed[4] and demonstrated[5] as an alternative means to generate
regulated electron-hole pair injection and single photon emission.

7.1 Coulomb Blockade Effect in a pn Junction

Consider a P -p+-I-N double-heterojunction diode, as shown in Fig. 7.1. An undoped
I-layer has a thickness of xu and the depletion layer of an N -layer has a varying thick-
ness xn(t). The forward thermionic emission of an electron from the N -layer across the
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depletion layer has an average rate of[6]

κ(t) =
Aθ2A∗

q
exp

[
−Vd − V (t)

VT

]
, (7.1)

where A is an effective cross-section of a junction, A∗ is the Richardson constant, V (t) is
the junction voltage, and Vd is an “effective” built-in potential given by[1]

Vd = VD +
q

2Cdep
. (7.2)

where VD is the standard buit-in potential. The second term on the right-hand-side of
Eq. (7.2) represents a single-electron charging energy, which is neglected in the previous
chapter because a macroscopic pn junction has a large junction capacitance Cdep and
satisfies q2/2Cdep ¿ kBθ. This term simply offsets an effective junction voltage by a
small amount (q/2Cdep) in the constant-voltage bias case, but plays a crucial role in the
constant-current bias case. Here, one assumes that the forward bias voltage is very small
and that the backward thermionic emission of an electron from the p+-layer to the N -
layer is negligible due to a high potential barrier and a low electron density in the p+-layer.
This assumption is valid unless a very strong forward bias is applied to the junction. The
effective potential barrier from the N -layer to the p+-layer, Vd− V (t), is a function of the
charge in the depletion layer:

Vd − V (t) = qND
ε2

xuxn(t) + qND
2ε2

x2
n(t)

↑ ↑
potential barrier potential barrier

in the I layer in the depleted N layer

. (7.3)

Here, ND is the ionized donar concentration in the N -layer.
There are two competing processes which change xn(t) and V (t): “discrete” thermionic

emission of an electron across the depletion layer from the N -layer to the p+-layer and
“continuous” charging via a constant external circuit current I. The former decreases V (t)
abruptly and the latter increases V (t) continuously.

When a single electron is emitted from the N -layer to the p+-layer, both electron gas
in the N -layer and hole gas in the p+-layer must take back from the junction in order to
satisfy the charge neutrality condition in the bulk N - and p+-layers. This results in an
increase in the surface charge in the depletion layer by +q in the N -side and −q in the
p+-side. The shift of the electron gas edge by such a single-electron thermionic emission
event is

∆xn =
1

NDA
. (7.4)

The corresponding decrease in the junction voltage is

∆V = −qND

ε2
xu∆xn = − q

Cdep
, (7.5)

where the depletion layer capacitance is approximated by

Cdep ' ε2A

xu
. (7.6)
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Figure 7.1: A P -p+-I-N double-heterostructure diode.

In order for an electron to be thermionically emitted across the depletion layer, the electron
must have an excess energy q2/2Cdep above the effective potential barrier because of the
increase in depletion layer width. The depletion layer width and the potential barrier
increase during an electron’s transit across it. This is the physical meaning of the second
term of the right-hand-side of Eq. (7.2). The thermionic emission rate κ(t) is abruptly
decreased by a single-electron thermionic emission event:

κ(t+) = κ(t−) exp
(
− q

CdepVT

)

= κ(t−) exp(−r) , (7.7)

where

r =
(q2/Cdep)

kBθ
. (7.8)

The parameter r is the ratio of the single-electron charging energy and the characteristic
energy of thermal fluctuation.

An external circuit current I pushes the electron and hole gases toward the junction
continuously:

d

dt
xn(t) = − I

qNDA
. (7.9)

The decrease in the depletion layer width xn(t) is therefore a linear function of t, and thus
the decrease in the effective potential barrier is also a linear function of time:

d

dt
[Vd − V (t)] = −qND

ε2
xu∆xn(t)

= − I

Cdep
t , (7.10)
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which results in the exponential increase of the thermionic emission rate

κ(t) = κ(0) exp
[

I

CdepVT
t

]

= κ(0) exp
( r

τ
t
)

, (7.11)

where the parameter r is defined by Eq. (7.8) and τ is the single-electron charging time
by the circuit current:

τ =
q

I
. (7.12)

The time constant τ/r determines how quickly the thermionic emission rate increases
and is termed a “thermionic emission time τte.” When κ(t) reaches 1/τte at t = 0 by
continuous charging, the thermionic emission event is likely to occur by this time because
the probability for a single electron to be emitted is

P =
∫ 0

−∞
κ(t′)dt′ =

∫ 0

−∞

1
τte

et
′
/τtedt

′
= 1 . (7.13)

Since κ(0)τte = 1, this thermionic emission should occur in a short time interval τte

centered at t = 0, as shown in Fig. 7.2. The thermionic emission time τte is represented
in terms of the differential resistance Rd = VT

I and the depletion-layer capacitance Cdep:

τte =
τ

r
= CdepRd . (7.14)

Figure 7.2: A thermionic emission rate κ(t) vs. time.

The over-all thermionic emission rate, including the above two competing processes,
is given by

κ(t) = κ(0) exp
[

t

τte
− rne(t)

]
, (7.15)

where ne(t) is the number of electrons emitted from the N -layer into the p+-layer in a
time interval (0, t).

There are four distinct regimes of operation for a constant-current-driven pn junction.
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(1) Coulomb Blockade Regime or Mesoscopic Regime (r > 1)

When the single-electron charging energy q2/Cdep is larger than the thermal energy
kBθ and the source resistance RS is larger than q/ICdep, the three relevant time
constants, which determine the junction dynamics, satisfy the following relations:

CdepRS > q
I > CdepRd

↗ ↑ ↖
Circuit Relaxation Single Electron Thermionic Emission

Time Charging Time τ Time τte = τ
r = kBθCdep

qI

.

(7.16)
In such a case, the junction voltage V (t) and the thermionic emission rate κ(t)
oscillate with a fixed time interval equal to the single-electron charging time τ = q/I,
as shown in Fig. 7.3.

Figure 7.3: A single electron thermionic emission oscillation for r > 1.

In a time interval (0, τ), the junction voltage V (t) increases linearly according to
I

Cdep
t due to the constant current I, because the circuit relaxation time CdepRS

is longer than the single-electron charging time τ . Such a linear increase in the
junction voltage results in an exponential increase in the thermionic emission rate
κ(t) ∝ exp(t/τte). A single-electron thermionic emission event occurs (on average)
when κ(t) becomes equal to 1/τte because

∫ τ

0

1
τte

exp

(
t
′ − τ

τte

)
dt
′ ' 1 (τ À τte) . (7.17)

The probability for thermionic emission at t = 0 is negligibly small, κ(0)τ =
τ

τte
e
− τ

τte ¿ 1. On the other hand, the probability for thermionic emission between
t = τ − τte

2 and t = τ + τte
2 is close to one, κ(τ)τte = 1. Therefore, a single-electron

thermionic emission event is well regulated at a fixed time t = τ, 2τ, 3τ, · · · within a
small jitter of τte, as shown in Fig. 7.3.
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The junction voltage oscillates at a frequency f = I/q and each electron is thermion-
ically emitted with a regulated time interval τ = q/I. This oscillatory behavior is
termed a “single-electron thermionic emission (SETE) oscillation.” When r > 1 is
satisfied, τte < τ is always satisfied, irrespective of the current I, which is a unique
feature of SETE oscillation in a pn junction. This is not the case for the single
electron tunneling (SET) oscillation in a mesoscopic tunnel junction. In SETE os-
cillation, the upper and lower bounds on the current are imposed by

I >
q

CdepRS
(Constant Current Operation Condition) , (7.18)

I <
q

rτ f
(Quasi− Equilibrium Distribution Condition) . (7.19)

This last condition is required because the charge distributions in both sides of the
depletion layer must reach the steady-state condition by collision with the lattice.
This carrier relaxation time must be much faster than the thermionic emission time
τte.

(2) Sub-Poisson Regime (r < 1, Tmeas > τte)

When q2

Cdep
is smaller than kBθ, the Coulomb blockade effect by a single electron

is negligibly small. However, if Rs > Rd is satisfied, the pn junction is still driven
by a high-impedance constant-current source. The three time constants satisfy the
following inequalities:

CdepRS > CdepRd >
q

I
. (7.20)

In such a case, continuous charging of ne(= 1
r > 1) electrons must be completed

by the current I or ne electrons must be thermionically emitted in order for the
thermionic emission rate κ(t) to be appreciably modulated, as shown in Fig. 7.4.

Figure 7.4: A collective Coulomb blockade effect due to continuous charging or
sequential thermionic emission of ne electrons.
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In a real situation, the continuous charging and discrete emission of an electron
occurs randomly in a microscopic time scale. However, the collective effect of many
electrons tend to regulate the thermionic emission events in a macroscopic time scale;
that is, more-than-average thermionic emission events are followed by less-than-
average thermionic emission events, and vice versa. Such a self-feedback mechanism
is referred to as a “collective Coulomb blockade effect”. A well-known example of
such a collective Coulomb blockade is the sub-shot-noise behavior of a space-charge-
limited vacuum tube[7].

The probability of ne electrons emitted during a time interval T is given by[1]

p(ne, T ) =
1
N

nne
e e−ne

ne!
exp

[
−r

2
(ne − ne)2

]
, (7.21)

where N is the normalization constant and ne = T/τ is the average number of emit-
ted electrons. The probability Eq. (7.21) is the product of the Poisson distribution
with a variance

σn
2
e = ne , (7.22)

and the Gaussian distribution with a variance

σn
2
e =

1
r

=
kBθq2

Cdep
. (7.23)

Therefore, if T is longer than τte, then ne = T
τ becomes larger than 1

r = τte
τ , and

the probability Eq. (7.21) features a sub-Poisson distribution. The average electron
number ne is proportional to T , while the variance σn

2
e, given by Eq. (7.23), remains

constant. Therefore, the noise suppression from the Poisson limit is improved with
increasing T .

(3) Poisson Regime (r < 1, T < τte)

On the other hand, if T is shorter than τte, the probability Eq. (7.21) approaches
a Poisson distribution because the Gaussian distribution becomes broader than the
Poisson distribution. Even though a junction is driven by a constant current source,
the electron emission obeys a random Poisson-point-process for such a short time
interval.

When 1/r > ne, the variance approaches ne (Poisson limit). On the other hand,
when 1/r < ne, the variance decreases linearly with 1/r. This is a collective Coulomb
blockade regime. Finally, when 1/r < 1, the variance is suppressed to below a single
electron. This is a single-electron Coulomb blockade regime. The power spectral
density Sne(ω) corresponding to the two regimes of collective Coulomb blockade and
single-electron Coulomb blockade are shown in Fig. 7.5. The power spectral density
is reduced to below the full-shot noise level at a frequency region below f = 1/2πτte.
In the case of r > 1, a coherent oscillation peak is observed at f = 1

τ due to single
electron thermionic emission oscillation, while, in the case of r < 1, a coherent
oscillation peak is absent because each individual electron event is not regulated.
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Figure 7.5: The power spectra Sne(ω) of thermionically emitted electrons for
the two regimes: single electron Coulomb blockade regime (r > 1) and collective
Coulomb blockade regime (r < 1).

(4) Macroscopic Regime (r ¿ 1, τn À τ)

Thus far the backward emission of electrons from the p+-layer to the N -layer has
been neglected. This approximation is valid when ∆Ec À qφn + kBθ, where φn is a
quasi-Fermi level for electrons, measured from the bottom of the conduction band, in
the p+-layer (Fig. 7.1). However, if the average electron density np = τn

τAL becomes
large enough and the temperature is high enough, the above condition is no longer
satisfied. Here, τn is the electron lifetime in the p+-layer. In such a case, the net
thermionic emission rate (forward emission rate − backward emission rate) is not
only dependent on the junction voltage V (t), but is also dependent on the electron
density np.

For instance, one can think of the following two relaxation processes. Suppose that
more-than-average recombination (photon emission) events occur in the p-layer at
a certain time, resulting in the decrease in np, which increases the net thermionic
emission rate and decreases the junction voltage V . This drop in V remains for a
time interval τte = τ

r . Before the steady-state junction voltage V and the steady
state electron density np are recovered, the recombination (photon emission) events
are less than average. One deterministic process (charging by a constant current) and
two stochastic processes (thermionic emission and recombination of electrons) are
involved in this relaxation mechanism, which leads to the self-feedback stabilization
for recombinatin and photon emission events.

On the other hand, if recombination events become less than average at a certain
time, this results in an increase in np, which decreases the net thermionic emission
rate and increases V . The increase in V remains for a relatively long time. During
this time period, recombination events are more than average. In both cases, the
light intensity (proportional to the recombination rate) and the junction voltage
(inversely proportional to the net thermionic emission rate) are negatively correlated.
Such negative correlation is indeed observed in a sub-Poissonian light emitting pn
junction[8].
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7.2 Langevin Theory of pn Junction Diodes

The noise associated with injection of carriers into the active region of a light-emitting pn
junction determines the intensity noise properties of the light output from these devices.
Generation of intensity-squeezed light from a semiconductor laser[9] and sub-Poissonian
light from a light-emitting diode (LED)[10] under constant-current driving conditions im-
plies that the carrier injection into the active region can be regulated to well below the
Poissonian limit.

We have demonstrated in chapter 5 that an electron flow in the presence of elastic scat-
terings features reduced shot noise, but still much larger than thermal noise. Suppression
of current shot noise (generation of “quiet electron flow”) in a macroscopic resistor has
been attributed to inelastic electron scatterings. Although the noise generated in the ex-
ternal resistor is far below the shot-noise level, this does not mean that the carrier injection
into the active region of a pn junction is regulated. In fact, it has been found in the pre-
vious section using a microscopic thermionic emission model that the carriers are injected
stochastically across the depletion layer. The charging energy at the junction, however,
plays a key role in establishing the correlation between successive carrier-injection events,
thereby regulating this stochasticity.

In this section, a rather general Langevin theory of pn junction light-emitting diodes in
the macroscopic regime is presented. The charging energy of carriers across the depletion
layer is taken into account through the Poisson equation at the junction. The resulting
carrier dynamics is analyzed by a set of Langevin equations. The noise spectra and
correlation spectra of the generated photon field, external circuit current, junction voltage
and carrier number in the active region can be calculated using this formalism. This
model provides a complete understanding of the noise properties of pn junction light-
emitting devices in the macroscopic limit, including the sub-Poissonian light generated by
a semiconductor LED.

7.2.1 Junction Voltage Dynamics: the Poisson Equation

Here, it is assumed that the junction current is mainly carried by the injection of electrons
into the p-type layer and subsequent radiative recombination, so that the optically active
region is formed in the p-type layer. Under this assumption, it is natural to define the
active medium to be the region in the p-type layer where injected electrons recombine with
holes. It is further assumed that there is no carrier recombination within the depletion
layer. The situation is illustrated in Fig. 7.6, where the two cases of a homojunction and
a heterojunction are shown. Throughout the analysis, it is assumed that (a) the carrier
thermalization rate by phonon scattering is larger than any other rate, so that the electrons
are always in quasi-equilibrium (b) the recombination lifetime (τsp) is short, so that the
major current-flow mechanism is the radiative recombination of minority carriers.

The Poisson equation is given by

∇2V = − ρ / ε , (7.24)

where ρ is the space charge density and ε is the dielectric constant of the material. Inte-
gration of this equation gives
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Figure 7.6: Schematic of the junction and the parameters considered. Ar-
rows indicate the direction of electron flow. (a) pn homojunction; (b) p–i–n
heterojunction

dVj

dt
=

1
Cdep

Iext(t) , (7.25)

which describes the dynamics of the junction voltage Vj(t), which is defined by the differ-
ence between the quasi-Fermi levels of the n-type layer (φn) and the p-type layer (φp) at
the junction.

First, consider an abrupt pn homojunction (Fig. 7.6(a)) where the depletion layer is
formed within the uniformly doped layer. If V1 is the junction potential supported by the
n-type layer and V2 is that supported by the p-type layer, the total potential Vtot supported
by the junction is given by Vtot = V1 + V2. In the limit of an one-sided junction where
the doping level of the p-type layer is much higher than that of the n-type layer, V2 ¿ V1.
Integrating Eq. (7.24) gives the junction voltage Vj as

Vj = Vbi − Vtot =
qND

2ε
(x2

n0 − x2
n) . (7.26)
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Here, the space charge density ρ is given by the doping density eND. Vbi is the built-in
potential, xn0 and xn are the width of the depletion layer at zero bias and at finite bias
Vj, respectively.

The space charge separated by the junction, Q, can be defined in terms of the width
of the depletion layer and is given by Q ≡ eNDA0xn, where A0 is the cross-sectional area
of the junction. The depletion layer capacitance is defined by

Cdep ≡
∣∣∣∣
dQ

dVj

∣∣∣∣ =
εA0

xn
. (7.27)

The rate of change of Q is equal to the circuit current Iext(t),

Iext(t) ≡ −dQ

dt
= −qNDA0

dxn

dt
. (7.28)

The case of a p–I–N heterojunction (Fig. 7.6(b)) is described in a similar way:

Vj =
qND

2ε
[x2

n0 − x2
n + 2d(xn0 − xn)] , (7.29)

where d is the intrinsic layer width and xn is the depletion layer width in the n-type layer.
Equation (7.25) holds for both cases, with a slightly different definition of the depletion
layer capacitance, Cdep = εA0/(d + xn).

There are three mechanisms that contribute to the change in xn. The first is the current
flowing in the external circuit, which pushes the electron cloud forward and thus decreases
the width of the depletion layer. The second is the forward injection of electrons into the
active layer across the depletion layer. This forward-injection mechanism increases the
space charge at both sides of the depletion layer and increases the depletion layer width
xn. The third is the backward injection of electrons from the active region back to the
n-type layer across the depletion layer, which decreases the depletion layer width xn.

7.2.2 Semiclassical Langevin Equation for Junction Voltage Dynamics

The forward-injection mechanism is modeled as diffusion of electrons across the depletion
layer from the n-type layer to the p-type layer. The average forward-injection diffusion
current is given by Ifi = 1

2enpvA0, where np is the electron density at x = 0 and v is
thermal velocity of the electron in the −x direction, given by lf/τf [11]. Here, lf is the
electron mean-free-path and τf is the mean-free-time. Using np = np0 exp[eVj/kBT ] and
the Einstein relation Dn = l2f /2τf , where np0 is the equilibrium electron concentration in
the p-type layer and Dn is the electron diffusion constant, one gets[6]

Ifi(t) =
qnp0DnA0

lf
exp

(
qVj(t)
kBT

)
. (7.30)

The minority carrier distribution for x < 0, in the presence of radiative recombination
with carrier lifetime of τsp, is given by np(x) = np0 + (np − np0) exp(x/Ln) with L2

n =
Dnτsp. The total number of excess electrons in the active region is given by integrating
np(x)− np0 from x = −∞ to x = 0

N = A0Ln(np − np0) . (7.31)
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Since the thermal motion is random, there are carriers that are injected back from
the active region into the n-type layer. On average, this backward-injection current is
proportional to the carrier flux in the +x direction from x = −lf ,

Ibi(t) =
qDnA0

lf

(
np0 +

N

A0Ln
exp(−lf/Ln)

)
. (7.32)

The net diffusion current I is given by the difference between the forward- and backward-
injection currents. Expanding exp(−lf/Ln) ' 1 − lf/Ln yields

I =
qDnA0

Ln
np0[ exp(qVj/kBT ) − 1 ] = I0[ exp(qVj/kBT ) − 1 ] , (7.33)

where I0 = eDnA0np0/Ln is the reverse saturation current.
Since the forward- and backward-injection currents change the depletion layer width,

they will affect the junction voltage according to Eq. (7.26) or Eq. (7.29). After taking
the effects of these currents into account, Eq. (7.25) reduces to

dVj

dt
=

1
Cdep

Iext(t) − 1
Cdep

Ifi(t) +
1

Cdep
Ibi(t) . (7.34)

Let us consider the diffusion (or thermionic emission) of an electron across the depletion
layer as a discrete and instantaneous process. Imagine a forward-injection event occurring
at time t = t0. The junction voltage drop due to the forward-injection process is ∆Vj =
e/Cdep. This will, on average, decrease the forward-injection current by a factor

Ifi(t = t0+)
Ifi(t = t0−)

=
I0 exp[eVj(t = t0+)/kBT ]
I0 exp[eVj(t = t0−)kBT ]

= exp
(
− q

kBT
∆Vj

)

≡ exp(−r) , (7.35)

where r ≡
(

e2

Cdep

)
/kBT , the ratio between the single-electron charging energy and ther-

mal energy. It should be noted that this is a comparison of the single-electron charging
energy e2/Cdep with the characteristic energy scale to change the forward-injection cur-
rent significantly, which for the case of a pn junction happens to coincide with the thermal
energy, kBT .

For a normal laser diode or LED with a large capacitance, Cdep, operating at rea-
sonably high temperature (≥4 K), the factor r is much smaller than unity. Under this
condition, a single carrier-injection event does not change the average forward-injection
current appreciably. In this limit, one can split the forward-injection current into two
parts: an average current which varies only as a function of the time-dependent junction
voltage and a stochastic noise current due to individual random injection events which
have zero average. The forward-injection current term can be written as

Ifi(t) =
qDnA0

lf
exp

(
qVj(t)
kBT

)
+ q Ffi , (7.36)
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where Vj(t) denotes a time-dependent junction voltage and Ffi is the Langevin noise term.
Since Ffi arises from collisions with a reservoir of phonons and other electrons which
have large degrees of freedom, the correlation time is infinitesimally short. Therefore, one
obtains the Markovian correlation function

〈Ffi(t)Ffi(t′) 〉 =
2〈 Ifi(t) 〉

q
δ(t− t′) , (7.37)

where 〈 Ifi(t) 〉 denotes the slowly varying average forward-injection current. One can make
similar arguments for the backward-injection current, and thus obtain

Ibi(t) =
qDnA0

lf

(
np0 +

N

A0Ln
exp(−lf/Ln)

)
+ q Fbi , (7.38)

with
〈Fbi(t)Fbi(t′) 〉 =

2〈 Ibi(t) 〉
q

δ(t− t′) . (7.39)

To describe the effect of different driving conditions, consider the case where the pn
junction is connected to a constant voltage source, with a series resistor, Rs, that carries
thermal voltage noise, Vs (Fig. 7.7(a)). The forward- and backward-injection events are
described in the equivalent circuit model (Fig. 7.7(b)) as independent current sources
(Ifi and Ibi) charging or discharging the depletion layer capacitor Cdep. Defining Frs ≡
Vs/eRs, the external current is given by

Iext(t) =
V − Vj

Rs
+ q Frs , (7.40)

with

〈Frs(t)Frs(t′) 〉 =
4kBT

q2Rs
δ(t− t′) , (7.41)

and Eq. (7.34) is reduced to

dVj

dt
=

V − Vj

RsCdep
− Ifi(Vj)

Cdep
+

Ibi(N)
Cdep

+
q

Cdep
(−Ffi + Fbi + Frs) . (7.42)

7.2.3 Semiclassical Langevin Equation for Electron Number and Photon
Flux

In this section, the semi-classical Langevin equations that describe the noise properties of
an LED are introduced. The carriers are injected into the active layer, and the junction
voltage fluctuation is described by Eq. (7.42). The total number of electrons N in the
active p-type layer increases by forward-injection current and photon absorption, and it
decreases due to backward-injection current and radiative recombination. The absorption
and radiative recombination are described by a Poisson point process with a fixed lifetime
of τsp. Optical losses (either internal or external) are modeled as a beam splitter with
transmission probability η (0 ≤ η ≤ 1). The equations that describe the system are
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Figure 7.7: (a) A pn junction diode connected in series with a resistor Rs that
carries voltage noise of Vs, altogether biased by a constant-voltage source, V .
(b) Equivalent circuit model

Cdep

q

dVj

dt
=

V − Vj

qRs
− Ifi(Vj)

q
+

Ibi(N)
q

− Ffi + Fbi + Frs , (7.43)

dN

dt
= − N + Np0

τsp
+

Np0

τsp
+

Ifi(Vj)
q

− Ibi(N)
q

− Fsp + Ffi − Fbi , (7.44)

Φ = η [
N + Np0

τsp
− Np0

τsp
+ Fsp] + Fv . (7.45)

Np0/τsp = np0A0Ln/τsp = I0/q gives the rate of absorption and recombination for back-
ground electron concentration in the active region. Fsp is the noise term corresponding to
absorption and radiative recombination. Since these processes arise from coupling with
thermal photon field reservoirs, the correlation of Fsp becomes

〈Fsp(t)Fsp(t′) 〉 = 2
N + 2Np0

τsp
δ(t− t′) . (7.46)

The noise source corresponding to forward injection, Ffi, appears in the equations for both
the carrier number Eq. (7.44) and the junction voltage Eq. (7.43) and the two terms are
negatively correlated. The same is true for Fbi. Φ is the photon flux measured at the
photodetector, after the photons pass through a beam splitter of transmission probability
η. The beam splitter introduces partition noise, Fv, which has a Markovian correlation of

〈Fv(t)Fv(t′) 〉 = 2η(1 − η)
N + 2Np0

τsp
δ(t− t′) , (7.47)
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since the noise comes from the vacuum fluctuations coupled in from the open port of the
beam splitter.

A. Steady-State Conditions

In the steady state, Eqs. (7.44) and (7.43) yield

N0

τsp
=

Ifi(V0)
q

− Ibi(N0)
q

=
V − V0

qRs
, (7.48)

where the subscript “0” denotes the steady-state values. If the dc current I ≡ (V −
V0)/(eRs) is given, Eq. (7.48) can be used to determine the following quantities:

• N0 = V −V0
eRs

τsp,

• Φ0 = η N0
τsp

,

• Ibi(N0) (Eq. (7.38)),

• Ifi(V0) = I + Ibi(N0),

• Ifi(V0) − Ibi(N0) = V −V0
qRs

determines Ifi(V0) and thus V0.

B. Linearization

Once the steady-state conditions are determined, one can linearize the equations around
these steady-state values

N = N0 + ∆N, (7.49)
Vj = V0 + ∆V, (7.50)
Φ = Φ0 + ∆Φ. (7.51)

We now introduce the forward and backward emission times defined by

1
τfi

=
1

Cdep

d
dVj

Ifi(Vj)
∣∣∣Vj=V0

=
qIfi(V0)
kBTCdep

, (7.52)

1
τbi

=
1
q

d
dN

Ibi(N)
∣∣∣N=N0

=
Ibi(N0)

q[N0 + np0A0Ln exp(lf/Ln)]
. (7.53)

Since the electron mean-free-path lf is much smaller than the electron diffusion length
Ln, at reasonably high bias, qVj/kBT À 1, the relation

Ifi(V0) ' Ibi(N0) À I (7.54)

is obtained, with I = Ifi(V0)− Ibi(N0), where Ifi(V0) and Ibi(N0) are the average forward-
and backward-injection currents, respectively. The time constants τfi and τbi represent
the characteristic time scales of thermal fluctuations. These are the shortest time scales
in the problem.
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C. Photon-Flux Noise

The “thermionic emission time”, τte, satisfies

τte ≡ RdCdep =
kBTCdep

q(I + I0)
' τfiτsp/τbi . (7.55)

The last equality follows from I = Ifi(V0) − Ibi(N0) and Eqs. (7.48), (7.52) and (7.53).
τte is the time scale over which Vj fluctuates by kBT/q. Using this definition, the photon
flux spectrum is obtained as:

S∆Φ = η
2I

q
(1− η χ(Ω)) + η

4kBT

q2Rd0

[
1− η χ(Ω)

(
1 +

τte

τRC

)]
, (7.56)

where Rd0 = (dVj/dI)|Vj=0 is the differential resistance of the junction at zero bias, and

χ(Ω) '
[(

1 +
τte

τRC

)2

+ Ω2(τsp + τte)2
]−1

. (7.57)

When the junction is driven by a constant-current source, the condition τRC À τsp, τte

is satisfied. In this case, Eq. (7.56) is further reduced to

S∆Φ → η

(
2I

q
+

4kBT

q2Rd0

)(
1 − η

1 + Ω2(τsp + τte)2

)
. (7.58)

The photon-flux noise is reduced to below the shot-noise value at frequencies lower than
1/(τsp + τte). At very low frequencies, the normalized photon flux noise S∆Φ · q/2ηI is
1 − η. At high frequencies, it approaches the full shot-noise value. This is in agreement
with experimental observation[12].

When the junction is driven by a constant voltage source, τRC ¿ τsp, τte, we have

S∆Φ → η

(
2I

e
+

4kBT

e2Rd0

)
. (7.59)

In this case, the photon flux noise is full shot noise limited at all frequencies at high bias
(I À I0).

Figure 7.8(a) shows the normalized photon flux noise power spectral density Eq. (7.56)
of an LED under high bias (I À I0). The junction parameters, like the depletion layer
capacitance Cdep and temperature θ, are fixed and the current is adjusted so that τte = τsp.
One can see that as the source resistance Rs (and thus the time constant of the circuit
τRC) is increased, the noise at low frequencies is reduced to below the Poisson limit. The
effect of finite quantum efficiency (η = 0.5) is shown in Fig. 7.8(b). The ultimate intensity
squeezing level is determined by the imperfect quantum efficiency.

One can define the squeezing bandwidth to be the frequency at which the degree of
squeezing is reduced by a factor of 2 compared to the squeezing at zero frequency. This
can be explicitly calculated from Eq. (7.58)

f3dB =
1

2π(τsp + τte)
. (7.60)

In Fig. 7.9, the noise power spectral density under different driving currents is plotted,
and the dependence of squeezing bandwidth on current is shown. It should be noted that
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Figure 7.8: LED noise power spectral density calculated for a junction under
different bias conditions, at high bias (I À I0). Operation current is chosen
so that τte = τsp. The bias condition is treated by changing the series resistor
Rs, and thus the time constant τRC . (a) Unity quantum efficiency (η = 1);
(b) η = 0.5

the squeezing bandwidth is affected neither by the value of source resistance nor by the
quantum efficiency.

D. Noise in the External Circuit Current

The linearized Langevin equations allow us to calculate the power spectrum of the external
circuit current. The external current noise spectral density approaches the thermal noise
4kBT/Rs with a constant-current source (τRC À τsp, τte). With a constant-voltage source
(τRC ¿ τsp, τte), the noise approaches 2eI + 4kBT/Rd0.

Figure 7.10 shows the schematic dynamics of a stochastic photon emission event, the
junction voltage fluctuation, and the relaxation current in the external circuit. The cor-
relation between the junction voltage and carrier number in the active region is perfect
for macroscopic pn junctions in the diffusion limit. A photon emission event accompanies
a reduction in the carrier number, which creates a junction voltage drop of q/Cdep. This
fluctuation in the voltage is recovered by a relaxation current flow in the external circuit
with a time scale of τRC . When the junction is driven with a constant-voltage source
(Fig. 7.10(a)), the junction voltage (and thus the carrier number) recovers very quickly,
and the next emission event is independent of the previous event. The photon-emission
event is a Poisson point process, and the relaxation current flows accordingly. The ex-
ternal current therefore features the full shot noise. In the constant-current-driven case
(Fig. 7.10(b)), the relaxation current flows very slowly; thus, the next photon-emission
event occurs before the external circuit completely recovers the junction voltage. The
external circuit current due to the second emission event is superimposed on the first one,
and the resulting fluctuation is less than the shot noise.

The carriers jump back and forth across the depletion layer and establish the correla-
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Figure 7.9: LED noise power spectral density calculated for a junction driven
by a constant current source, at high bias (I À I0). Frequency is normalized
to 1/τsp and current is normalized to IN = e

rτsp
, so that I = IN corresponds

to τte = τsp. (a) Unity quantum efficiency (η = 1); (b) η = 0.5

tion between the junction voltage and the carrier number. However, these events do not
contribute to the external current noise, because the effective resistance across the junction
depletion layer (kBT/qIfi, kBT/qIbi) is so small that the junction voltage drop induced
by a forward- (backward-) injection event will be relaxed mostly by a direct backward-
(forward-) injection event rather than through the external circuit. This means that the
forward- and backward- injection events will not be seen from the external circuit and all
the noise will come from the recombination event in the active region.

E. Correlation Between Carrier Number and Junction Voltage

The normalized correlation between the junction voltage fluctuation and the carrier num-
ber fluctuation is defined as

Cn,v(Ω) ≡
〈 Cdep

q ∆Ñ∗(Ω)∆Ṽj(Ω) 〉
〈∆Ñ∗(Ω)∆Ñ(Ω) 〉 1

2 〈 Cdep

q ∆Ṽ ∗
j (Ω)Cdep

q ∆Ṽj(Ω) 〉 1
2

. (7.61)

where ∗ denotes the complex conjugate. One can calculate the correlation |Cv,n| from the
linearized Langevin equations.

|Cv,n| approaches 1 and there is a perfect correlation between the junction voltage and
the carrier number in the active region no matter what the driving condition is (i.e., for
all values of τRC). The physical reason behind this is the fast (forward- and backward-)
injection events which quickly restore a unique relation between carrier number fluctuation
and junction voltage fluctuation with the characteristic relaxation time ∼ τfi, τbi. Since
this relaxation is so fast, fluctuation of one of the two variables will immediately be followed
by fluctuation of the other.
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Figure 7.10: Schematic showing the photon emission, junction voltage dynam-
ics, and external current flow of a pn junction. (a) Constant-voltage-driven
case; (b) constant-current-driven case

F. Correlation Between Photon Flux and Junction Voltage

The normalized correlation between the photon flux and junction voltage fluctuation is
defined as

CΦ,v(Ω) ≡
〈∆Φ̃∗(Ω)Cdep

q ∆Ṽj(Ω) 〉
〈∆Φ̃∗(Ω)∆Φ̃(Ω) 〉 1

2 〈 Cdep

q ∆Ṽ ∗
j (Ω)Cdep

q ∆Ṽj(Ω) 〉 1
2

, (7.62)

which one can calculate similarly using the linearized Langevin equations:

|CΦ,v(Ω)|2 '
(τte/τRC)2 + Ω2(τsp + τte)2

(1 + 2τte/τRC)
{

1
η [(1 + τte/τRC)2 + Ω2(τsp + τte)2] − 1

} . (7.63)

When the junction is driven with a constant-voltage source, this correlation reduces to 0,
because the junction voltage fluctuation is merely determined by the noise in the external
resistor. When the junction is driven with a constant-current source, the correlation
reduces to

|CΦ,v(Ω)|2 → Ω2(τsp + τte)2
1
η [1 + Ω2(τsp + τte)2] − 1

. (7.64)

Whenever the photon is emitted, the junction voltage drops by q/Cdep, but it takes a
long time for the external circuit to recover the junction voltage. If the photon is lost
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due to finite quantum efficiency, the junction voltage will decrease without a photon being
detected, resulting in a decrease in correlation. This results in a correlation of η at high
frequencies [compared to 1/(τsp + τte)]. As the observation time gets longer (at lower
frequencies), a second photon can be emitted after ∼ τsp or the junction voltage will
fluctuate by approximately kBT/q over time ∼ τte. This results in the loss of correlation
at lower frequencies. This is illustrated in Fig. 7.11, where the correlation is shown for
several values of η.
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Figure 7.11: Normalized correlation |CΦ,v|2 for several values of η when the
LED is driven with a constant-current source

7.3 Experimental Evidence for Intensity Squeezing and Quan-
tum Correlation

7.3.1 Intensity Squeezing due to Macroscopic Coulomb Blockade Effect
in LED’s

The suppression of noise in the external circuit current does not guarantee regulated
carrier-injection into an active layer across a depletion layer potential barrier. This is be-
cause the individual carrier injection is a random process, only the average rate of which is
determined by the junction voltage and the temperature of the junction. However, as dis-
cussed in the previous section, when a carrier is injected, the space charge in the depletion
layer capacitance increases by q, and this decreases the junction voltage by q/Cdep. This
decrease in the junction voltage decreases the carrier-injection rate, establishing a negative
feedback mechanism to suppress the noise in the carrier-injection process. If the junction
(depletion layer) capacitance, Cdep, is large and the operation temperature, θ, is high,
the junction voltage drop, q/Cdep, due to a single carrier-injection event is much smaller
than the thermal fluctuation voltage, kBT/q, so that the individual carrier-injection event
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does not influence the following event. We have a completely random point process with
a constant rate in such a macroscopic pn junction at a high temperature, even though the
junction is driven by a “perfect constant-current source”[1].

Even in the macroscopic, high-temperature limit, the collective behavior of many elec-
trons charging the depletion layer capacitance, Cdep, can amount to establishing regularity
in the carrier-injection process. A single electron injection event reduces the junction volt-
age by q/Cdep, so the successive injection of N =

(
kBT

q

)
/

(
q

Cdep

)
= kBTCdep/q2 electrons

reduces the junction voltage by the thermal voltage kBT/q. Such a change in the junction
voltage can result in significant modification of the carrier-injection rate. Since carriers
are provided by the external circuit at a rate of I/q, the time necessary for N carriers to
be supplied can be calculated as

τte =
kBθCdep

qI
= Nτ , (7.65)

where τ = q
I is the single-electron charging time. This time-scale is named “thermionic

emission time”, and is identical to Eq. (7.55) in the high-current limit (I À I0). The
junction current follows ∼ exp(eVj/kBθ), where Vj is the junction voltage. Therefore,
τte is the time scale over which the junction current changes significantly. A carrier-
injection event is completely stochastic at the microscopic level, but the junction voltage
modulation induced by many (∼N) carriers collectively regulates a global carrier-injection
process over the time scale τte. If the measurement time, Tmeas, is much longer than τte,
the electron-injection process becomes sub-Poissonian. This is because the continuous
charging or successive injection of N electrons modulates the junction voltage greater
than kBT/q, and, therefore, influences the subsequent events. If the measurement time,
Tmeas, is longer than τte, the variance of the injected electrons is given by the following
fundamental limit[1]:

〈∆n2
e〉 =

kBθCdep

q2
= N . (7.66)

This variance is independent of the measurement time, Tmeas, and the average electron
number, 〈ne〉 = I

q Tmeas. This independence is at the heart of squeezed light generation by
a constant-current- driven pn junction: as the measurement time becomes longer, so does
the degree of squeezing which is measured as 〈∆n2

e〉/〈ne〉. For a typical LED operating
at room temperature, this fundamental noise limit 〈∆n2

e〉 is on the order of 107∼108.
This fundamental limit of intensity noise squeezing manifests itself by a finite squeezing
bandwidth given by[1]

B =
1

2πτte
=

qI

2πkBθCdep
. (7.67)

There is another source of stochasticity in addition to thermionic emission or tunneling
of carriers in a constant-current-driven LED, which is the radiative recombination of the
injected carriers. When this is taken into account, the squeezing bandwidth over which
the intensity noise is reduced to below the shot-noise value is given by:

f3dB =
1

2π(τte + τsp)
=

1

2π(kBθCdep

qI + τsp)
, (7.68)
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where τsp is the radiative lifetime. Therefore, the squeezing bandwidth should be pro-
portional to the current, I, and inversely proportional to the temperature, θ, and the
capacitance, Cdep, in a low-current regime, but is limited by the radiative recombination
lifetime in a high-current regime.

Figure 7.12: A typical set of noise measurement data. The photocurrent was
4.73 mA, and the temperature was 295 K. (a) The noise spectra measured by
the spectrum analyzer. Trace A is the thermal background noise, trace B is the
photocurrent noise when the LED was driven with a constant-current source,
and trace C is the photocurrent noise when the LED was driven with a shot-
noise- limited current source. (b) The intensity noise of the constant-current-
driven LED normalized by the shot-noise value. The thermal background noise
was subtracted from both traces B and C before normalization

Figure 7.12 shows a typical set of noise measurement data for a GaAs LED driven
by a constant current source[12]. Traces A, B and C in Fig. 7.12(a) show the thermal
background noise, the photocurrent noise when the LED was driven with a high-impedance
constant- current source, and the photocurrent noise when the LED was driven with a
shot-noise-limited current source, respectively. The shot noise limited current source is
obtained by a reverse-biased pn junction photodiode illuminated by highly attenuated
LED light[12]. The photocurrent noise was about 20 dB above the thermal noise, and
the detector response was reasonably flat in the frequency region of interest. One can
see that the photocurrent noise for a constant-current-driven LED is below the shot-noise
value in the low-frequency regime, but it approaches the shot-noise value in the higher-
frequency regime. The thermal noise trace (A) was subtracted from the two photocurrent
noise traces (B and C), and the squeezed noise trace (B) was normalized by the shot-
noise-limited trace (C). Figure 7.12(b) shows such a normalized noise spectrum. The
maximum squeezing observed in the low-frequency region is about 0.21 (1.0 dB), which
is in good agreement with the expected value from the overall quantum efficiency. The
squeezing bandwidth was determined to be the frequency at which the degree of squeezing
is reduced by a factor of two and was found to be ∼720 kHz in this specific case.

Figure 7.13(a)–(d) shows the squeezing bandwidth of four LEDs with different deple-
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tion layer capacitances at room temperature. The dotted lines are the expected squeezing
bandwidths due to macroscopic Coulomb blockade effect Eq. (7.67). The dashed lines
show the lifetime limitation of the squeezing bandwidth, with τrad = 290 ns and the corre-
sponding bandwidth of 560 kHz. The solid lines show the theoretical squeezing bandwidth
including the two efffects Eq. (7.68). In a low-current regime, the squeezing bandwidth
increases linearly with increasing the current. The four capacitance values used to fit
the measurement curves were 6.5 nF, 30 nF, 90 nF and 180 nF. The ratios of these four
capacitance values are 0.072 : 0.33 : 1.0 : 2.0. They are in close agreement with the ratios
of the junction areas, 0.073 : 0.42 : 1.0 : 2.1.
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Figure 7.13: The squeezing bandwidth as a function of a driving current for
various LEDs at room temperature. Dashed lines show the radiative recombi-
nation lifetime limitation of about 560 kHz (carrier lifetime of 290 ns). Dotted
lines are the squeezing bandwidths expected from (3.3). Solid lines are the
expected overall squeezing bandwidth expressed by (3.4). Areas of the LEDs
(capacitance values to fit the data) are (a) 0.073 mm2 (6.5 nF), (b) 0.423
mm2 (30 nF), (c) 1.00 mm2 (90 nF) and (d) 2.10 mm2 (180 nF)

As the driving current increases, the squeezing bandwidth is limited by the carrier re-
combination lifetime and saturates at ∼560 kHz. For the smallest-area LED, the squeezing
bandwidth increases above this value at higher driving currents. This is attributed to the
carrier-concentration-dependent radiative lifetime. At higher current densities, the carrier
density in the active region increases, and the carrier lifetime is shortened. This results in
the increased squeezing bandwidth.

Figure 7.14(a)–(d) shows the squeezing bandwidth of the LED with an area of 1.00
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Figure 7.14: The squeezing bandwidth as a function of driving current for
various temperatures. The area of the LED was 1.00 mm2. The temperatures
are (a) 295 K (identical to Fig. 3.4c), (b) 220 K, (c) 120 K and (d) 78 K.
Dashed lines show the radiative recombination lifetime limitation of about 560
kHz. Dotted lines are squeezing bandwidths expected from (3.3). Solid lines
are the overall bandwidths expected from (3.4). A junction capacitance of 90
nF and a carrier lifetime of 290 ns obtained by room-temperature measurement
(Fig. 7.13) were used

mm2 measured at different temperatures. The squeezing bandwidth was measured at
295 K, 220 K, 120 K and 78 K. Again, the dotted lines show the squeezing bandwidth
limitation due to the macroscopic Coulomb blockade effect, and the dashed lines show
the limitation due to the recombination lifetime at ∼560 kHz. The solid lines are the
theoretical squeezing bandwidth limitation including both effects Eq. (7.68). There are
no fitting parameters in the curves, except for the capacitance Cdep = 90 nF obtained
by fitting the data in Fig. 7.13(c). Actual temperatures at which the measurements were
made were used to draw the curves. From this data, one can see that the squeezing
bandwidth is linearly proportional to the driving current in the low-current regime and
saturates at the radiative lifetime limited value of ∼560 kHz in the high-current regime.
The linear slope in the low-current regime is inversely proportional to temperature. Close
agreement between the experimental result and the simple theoretical model described by
Eq. (7.68) can be seen.
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7.3.2 Quantum Correlation between the Junction-Voltage Fluctuation
and the Intensity Fluctuation in a Semiconductor Laser

A laser oscillator is an open quantum system where the mean values and variances in
the system observables are established by a balance of the ordering force of the system
and the fluctuating forces from the reservoirs. It has been well established that a beam
with sub-Poissonian photon-number fluctuation can be generated directly from a pump-
number fluctuation can be generated directly from a pump-noise-suppressed semiconductor
laser[13],[14]. This is a complex problem, the details of which we will study in chapter 12.

In such a constant-current-driven semiconductor laser, the junction voltage is free to
fluctuate. The junction-voltage fluctuation is uniquely related to the electron-number
fluctuation ∆N̂c through the junction capacitance, v̂n = q∆N̂c/C. The electron-number
fluctuation is toggled by spontaneous emission, stimulated emission, and absorption pro-
cesses. If the electron system is predominantly coupled to a single lasing mode and also if
the output coupling rate is much higher than the internal photon loss rate, the correlation
between the junction-voltage fluctuation and the output intensity (photon-number) fluc-
tuation is perfect and negative. This is because if the electron number decreases by 1, then
the photon number of the output field must increase by 1. In a real semiconductor laser,
however, the spontaneous emission occurs into non-lasing modes and internal photon loss
rate cannot be neglected. Whether the correlation may extend into the quantum domain
or not is not clear by a simple intuitive argument.

The theoretical and experimental results[8] demonstrate that the correlation penetrates
into the quantum regime. The experimental arrangement is shown in Fig. 7.15. Two photo
detectors were arranged in a balanced configuration. A semirigid coaxial cable provided a
delay Td for the photocurrent noise. The junction voltage measured by amplifier A2 was
subtracted from the amplified photocurrent at a wideband 180◦ hybrid.

Figure 7.16 shows the measured junction-voltage noise (trace a), the semiconductor
laser intensity noise (trace b), and the shot noise produced by the LED (trace c). Trace d
is the spectral density of the combined signal, vn(Ω)−gr∆r(Ω)eiΩTd , where gr is a relative-
gain parameter. vn(Ω) and ∆r(Ω) are the Fourier component of the junction voltage and
intensity fluctuations. The laser bias level was r ≡ I/Ith − 1 = 9.7.

The sinusoidal variation shown by trace d in Fig. 7.16 indicates a correlation between
the intensity (photon-number) fluctuation and the junction-voltage fluctuation. In the
absence of a correlation, trace d would be flat and the noise power numerically equal to
the sum of the noise powers given by traces a and b. Separate measurement of the spectral
densities of the sum and difference of the amplitudes, Svn±gr∆r = 〈(vn ± gr∆r)2〉, taken
from the respective ports of the hybrid tee—with the delay line absent—confirms that the
correlation is negative. That is, the spectral density of the difference signal Svn−gr∆r is
larger than the sum. The fact that the minimum of the signal in trace d (Svn+gr∆r) is below
〈v2

n〉+g2
r 〈(∆r)2〉 is indicative of a quantum correlation, because the laser amplitude noise is

already below the standard shot noise level. The measured correlation Cvr = −0.40±0.02
can be compared with a theoretical estimate of −0.38[8].
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Figure 7.15: Basic experimental arrangement. The apparatus inside the dot-
ted lines was enclosed in a closed-cycle refrigerator and the temperature was
maintained at 66 K. Photocurrent noise vne and the junction-voltage noise vd

are combined using a wideband 180◦ hybrid. Attenuators AT1 and AT2 were
used to equalize the individual noise spectra observed on the spectrum ana-
lyzer. At the output labeled DC, the detector current generated by either the
LED or the laser was obtained.

Figure 7.16: Curve c, the SQL produced by the LED; curve b, laser photon-
number noise; curve a, junction-voltage fluctuation; and curve d, combined
signal. In all the traces the respective dark noise levels were subtracted and the
spectrum repeatedly filtered with a Gaussian of full width 81 kHz. Resolution
bandwidth of the spectrum analyzer was 100 kHz and the video bandwidth
was 30 Hz. The pump level was r=9.6.
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7.4 Single Photon Turnstile Device

The previous sections concentrated on the intensity noise squeezing and quantum corre-
lation in a pn junction light emitter in the macroscopic limit, where the charging energy
due to a single carrier is negligible compared to the characteristic thermal energy. This
section will describe pn junctions operating in the mesoscopic limit, where a single-carrier
injection event completely suppresses the rate for a subsequent carrier-injection event.

Figure 7.17(a) shows the schematic band diagram of the mesoscopic double barrier p–
i–n junction under consideration. The active region is an intrinsic GaAs QW (central QW)
in the middle of a pn junction. Electrons and holes are supplied to the central QW from
side QWs on the n-side and p-side, respectively, via resonant tunneling across a tunnel
barrier. The n-side and p-side QWs are not deliberately doped, but carriers are supplied
from nearby n-type and p-type layers by modulation doping. The lateral size of the device
is assumed to be made small, in order to increase the single charging energy q2/2Ci, where
Ci (i = n or p) is the tunnel barrier capacitance between the central QW and the i-side
QW. The most important difference of the mesoscopic p–i–n junction shown in Fig. 7.17
from the macroscopic pn junction discussed in the previous sections is that it is biased
by a low-impedance constant voltage source instead of a high-impedance constant current
source.
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Figure 7.17: (a) Schematic energy-band diagram of the p–i–n junction struc-
ture under consideration. (b) Parameters for the tunneling matrix element
calculation. (c) In the real device, the n-type lead is replaced with a second
quantum well (QW)
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7.4.1 Coulomb Blockade Effect on Resonant Tunneling

The electron and hole resonant tunneling rates can be uniquely determined if the quasi-
Fermi level of the central QW, as well as those for the n- and p-side QWs, are given.
The quasi-Fermi levels for the n- and p-side QWs can be assumed to have fixed values
even immediately after electron/hole tunneling events, since the carriers are constantly
supplied from highly doped layers nearby which are connected to the low-impedance con-
stant voltage source. The quasi-Fermi level for the central QW depends on the number of
carriers in the QW.

For a pn junction with such a small junction area the capacitance between the central
QW and the side QWs is very small, and the charging energy associated with such a small
capacitance can be significant. As an extra electron tunnels into the central QW, the
capacitor between the central QW and the n-side QW becomes discharged by q. Since the
total bias voltage across the pn junction is fixed by the external constant voltage source,
such change in the charge configuration results in the rearrangement of the voltage drop
across the tunnel barriers. Simple analysis shows that when an extra electron tunnels into
the central QW, the voltage drop across the n-side barrier decreases by q/(Cn +Cp), while
that across the p-side barrier increases by the same amount.

This voltage rearrangement can simply be viewed as all of the energy levels of the
central QW shifting upwards by q2/(Cn + Cp). In terms of the resonant tunneling rates,
this means that the electron resonant tunneling rate curve is shifted upwards by q/(Cn+Cp)
in applied bias voltage, while the hole resonant tunneling rate curve is shifted downwards
by the same amount when an extra electron tunnels. Such a shift can be understood easily
by the Coulomb interaction: since the central QW now carries more negative charge, the
Coulomb repulsive interaction makes it more difficult for electrons to tunnel, while the
Coulomb attractive interaction makes it easier for the holes to tunnel. This shift is only
sensitive to the total charge in the central QW. When a hole tunnels, it neutralizes one
electron and the curves shift in the opposite directions.

• Electron and hole resonant tunneling rate curves as a function of bias voltage have
the shape shown in Fig. 7.18.

• As the bias voltage is increased, the electron resonant tunneling condition is satisfied
first.

• When an electron tunnels, the electron resonant tunneling rate curve shifts upwards
in applied bias voltage by q/(Cn + Cp), while the hole resonant tunneling rate curve
shifts downwards by the same amount.

• When a hole tunnels, the resonant tunneling rate curves shift in the opposite direc-
tion.

• The shift of the resonant tunneling rate curves are sensitive only to the total charge
in the central QW. Photon emission does not change the charge state, so there is no
shift in the resonant tunneling rate curves associated with photon emission.
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Figure 7.18: Resonant tunnel rates for electrons and holes vs. junction voltage
in a mesoscopic pn junction.

7.4.2 Coulomb Staircase

Let us consider the DC operation of a double-barrier p–i–n junction under constant voltage
bias condition. In the ideal case where nonradiative recombination is absent, current
flows through the device only by radiative recombination of electron–hole pairs in the
central QW. This is possible only if both carrier (electrons and holes) tunneling events are
present. At a given DC bias voltage, the electrons charge up the central QW (and move
the electron tunneling rate curves up and hole tunneling rate curves down) until no more
electron tunneling is allowed due to Coulomb blockade effect. If, at this voltage, the hole
tunneling rate is zero, current does not flow. One needs to increase the DC voltage further
to approach the hole tunneling rate curve until the electron and hole tunneling rate curves
meet at the DC bias voltage, as shown in Fig. 7.19. In this figure, it is assumed that
both electron and hole resonant tunnel curves are considerably broad and overlap with
each other. The rising edges of the electron and hole resonant tunneling rate curves are
exaggerated, and the hole resonant tunneling rate curve has a larger slope.

When the DC bias voltage is lower than point A, the hole tunneling is not allowed with
m− 1 electrons in the central QW (where the electron and hole tunneling rates are given
by the solid lines in Fig. 7.19). Once the DC bias voltage exceeds point A (with m − 1
electrons in the central QW), the mth electron tunneling is allowed with a finite probability
and the tunneling rate curves shift to the broken lines (m electrons in the central QW). As
soon as this electron tunnels, further electron tunneling is completely suppressed, while
the hole tunneling rate becomes very high. A hole tunnels immediately, and the resonant
tunneling rate curves return to the solid lines. In this case, electron tunneling is the
slowest process that initiates the current flow, and hole tunneling follows immediately. In
the limit that the hole tunneling rate is very large, so that the the average waiting time
for hole tunneling is completely negligible, electron injection becomes a random Poisson
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Figure 7.19: Schematic carrier dynamics for observation of the Coulomb stair-
case in DC I–V characteristics. The broken lines, solid lines and dashed lines
are electron and hole resonant tunneling rates when m, m − 1 and m − 2
electrons are present in the central quantum well (QW), respectively

point process and photon emission becomes completely random. The average DC current
is proportional to the electron tunneling rate, given by

I(V ) = eRe(V, m− 1) , (7.69)

where Re(V,m−1) denotes the electron tunneling rate at voltage V when the central QW
is populated with m− 1 electrons.

As the bias voltage is increased above point B, both electron and hole can tunnel,
but the hole tunneling rate is now larger than the electron tunneling rate. Occasionally
an (the mth) electron tunneling occurs first, in which case the current flows by the same
mechanism as between points A and B discussed above. Most of the time a hole tunnels
first, and the electron and hole resonant tunneling rate curves shift to the dashed lines
(with m−2 electrons in the central QW). Further hole tunneling is completely suppressed,
and the electron tunneling rate becomes higher. An electron tunneling will follow, and
the tunneling rate curves are shifted back to the solid lines. Since the hole tunneling rate
(given by the solid line) is smaller than the electron tunneling rate (given by the dashed
line) between points B and C, the hole tunneling triggers the current flow in this case,
and electron tunneling follows immediately. The average DC current in this section is
proportional to the hole tunneling rate, and is given by

I(V ) = eRh(V, m− 2) , (7.70)

where Rh(V,m − 2) denotes the hole tunneling rate at voltage V when there are m − 2
electrons in the central QW. Since this curve has a larger slope compared to the hole
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resonant tunneling rate curve, the I–V curve features a steep linear increase. Since hole
tunneling is a Poisson point process, photon emission is not regulated.

When the bias voltage is increased above point C, a hole tunneling event (rate given by
the solid line) occurs much faster than electron can tunnel (rate given by the dashed line),
and the device is mostly waiting for an electron to tunnel and shift the resonant tunneling
curves back to the solid lines. Once the electron tunnels, a hole tunnels immediately
afterwards. The current is triggered by an electron again and features a slow linear increase
following the dashed electron tunneling rate curve.

Therefore, the I–V characteristics of such a device under DC bias voltage condition
feature staircase-like behavior, alternating between a slow slope for the electron tunneling
rate curve and a steep slope for the hole tunneling rate curve. The steps reflect the fact
that the number of electrons in the central QW decreases by 1 and appear every time
the bias voltage is increased by e/Cp. The height of the steps (in current) is determined
by the slope of the resonant tunneling rate curve. This is very similar to the situation
in an asymmetric M–I–M–I–M double tunnel junction, where the Coulomb staircase was
first observed[15],[16]. The requirement is that slopes on the rising edges of the resonant
tunneling rate curves are different. Although the example presented in this section treats
the case where the hole resonant tunneling rate curves have a steeper slope, a similar
argument applies to the case where the electron tunneling rate has a steeper slope.

Next let us consider the case where an AC square-wave voltage signal with amplitude
∆V and frequency f = 1/T (T is the period) is added on top of the DC bias voltage.
Unlike the DC voltage bias case, since the junction voltage is modulated between V and
V + ∆V , the current starts to flow at a voltage before the electron and hole tunneling
rate curves start to overlap. The situation is shown schematically in Fig. 7.20, where
electron tunneling occurs at the voltage V and hole tunneling occurs at voltage V + ∆V .
We further assume that the hole resonant tunneling rate curve has a sharp rising edge,
so that the hole tunneling rate multiplied by the half period is always much larger than
one (Rh(V, k)T/2 À 1, where k is the number of electrons in the central QW). This
guarantees that the net electron number in the central QW is reset to the initial value
during the on-pulse voltage, V + ∆V , every modulation cycle, and the junction operation
is purely determined by the electron tunneling conditions. Under such assumption, there
are two regimes of operation, depending on the frequency of the AC modulation voltage
signal. In this section, the high-frequency limit is considered, where frequency is high
(the period is short) so that the tunneling probability of an electron during the off-pulse
duration is much smaller than unity (Re(V, k)T/2 ¿ 1).

Figure 7.20(a) shows the situation where the junction voltage is modulated between
V0 and V0 + ∆V . When the voltage is at V0, the central QW is filled with k− 1 electrons,
and further electron tunneling is suppressed. At V0 + ∆V the hole tunneling rate curve is
not reached and no holes are allowed to tunnel; thus, one sees no current flowing through
the device.

When the DC bias voltage is slightly increased to V1, an (the kth) electron is now
allowed to tunnel at V1 (Fig. 7.20(b)). However, the operation frequency is high, and the
electron tunneling probability during the off-pulse duration satisfies Re(V1, k−1)T/2 ¿ 1.
Whether the electron tunnels or not, the tunneling rate curves are set to an identical
condition (solid lines) each time the junction voltage is switched to V1 + ∆V since the
(first) hole tunneling probability at the on-pulse is close to unity when the electron tunnels
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Figure 7.20: Schematic carrier dynamics for observation of the Coulomb stair-
case in DC + AC I–V characteristics. The broken lines, solid lines and dashed
lines are electron and hole resonant tunneling rates when k, k − 1 and k − 2
electrons are present in the central quantum well (QW), respectively

(broken lines for k electrons in the central QW) and is zero when the electron does not
tunnel (solid lines with k−1 electrons). Therefore, the current is determined by the fraction
of periods where an electron tunnels multiplied by the frequency of the modulation input,
given by

I = eRe(V1, k − 1)/2 . (7.71)

The factor 1/2 simply reflects the fact that electron tunneling is allowed for only half of
the modulation period. In this case, the current increases linearly with increasing DC bias
voltage and is independent of the AC frequency.

When the DC bias voltage is further increased to V2 and exceeds the rising edge of
the hole tunneling rate curve with k − 1 electrons in the central QW, the first hole is
allowed to tunnel during the on-pulse (at V = V2 + ∆V ) with close to unity probability
(Fig. 7.20(c)). Then, the resonant tunneling rate curves for both electrons and holes shift
to the dashed lines (with k−2 electrons in the central QW), and when the junction voltage
is decreased to V2, the electron tunneling rate is now given by the dashed line, which is
higher than the solid line. Since the operation frequency is high, the (k−1)th and (k−2)th
electron tunneling probabilities satisfy Re(V2, k − 1)T/2 ¿ Re(V2, k − 2)T/2 ¿ 1, and
most of the time only one electron tunnels. Since Re(V2, k− 2) > Rh(V2 + ∆V, k− 1) the
current is now given by
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I = eRh(V2 + ∆V, k − 2)/2 . (7.72)

The transition between Fig. 7.20(b) and c occurs as the voltage for the on-pulse crosses
a sharp rising edge of the hole resonant tunneling rate curve and the I–V characteristics
feature a step-like increase.

A similar increase in the electron tunneling rate is expected whenever another electron
is compensated by the addition of a hole to the central QW, due to the shift in the tunneling
rate curves. Just like in the DC voltage bias case, the steps in the I–V characteristics
occur at voltage values where an additional hole is added to the central QW and the
corresponding current values are determined by the change in electron tunneling rate when
a hole is added to the central QW. Therefore, the value of the current step is independent
of the modulation frequency.

7.4.3 Turnstile Operation

When the frequency of the AC square modulation is slow so that the electron tunneling
rate integrated over the off-pulse duration is much larger than unity (Re(V, k)T/2 À 1,
where k is the number of electrons in the central QW), electrons are guaranteed to tunnel
into the central QW during the off-pulse. When additional electrons are added to the
central QW, the shift of the tunneling rate curve due to Coulomb blockade effect causes
the tunneling rate to change dramatically, so that the tunneling probability is completely
suppressed, i.e., Re(V, k−n)T/2 ¿ 1 where n is the number of electrons that are required
to tunnel before further electron tunneling is completely suppressed. This is a regime where
the number of carriers injected per modulation period is well defined due to the Coulomb
blockade effect.

Figure 7.21(a) shows the case where the junction voltage is modulated between V0 and
V0 + ∆V . At V0, k − 1 electrons are present in the central QW, and the tunneling rate
curves are given by the solid lines. When the junction voltage is increased to V0 + ∆V by
the AC modulation voltage, it is not high enough to hit the hole resonant tunneling rate
curve for k − 1 electrons in the central QW, and no hole tunneling occurs. Therefore, no
current flows through the device.

When the DC voltage is increased slightly, as shown in Fig. 7.21(b), the kth electron
tunnels at a bias voltage of V1. The schematic band diagram under this bias condition is
shown in Fig. 7.22(a). Since the modulation frequency is low and the electron tunneling
rate integrated over the off-pulse duration is large, the kth electron tunnels into the central
QW. The resonant tunneling rate curves for electrons and holes shift to the broken lines for
k electrons in the central QW. Once this electron tunnels, the tunneling rate for the next
electron is reduced close to zero, and further electron tunneling is suppressed. When the
junction voltage is increased to V1 + ∆V , hole tunneling is allowed, as shown schematically
in Fig. 7.22(b). Just like in the previous section, it is assumed that the hole tunneling rate
at V1 + ∆V is large enough so that the probability of the first hole tunneling during the
on-pulse duration is close to unity. A single hole tunneling event neutralizes one electron in
the central QW and shifts the tunneling rate curves back to the solid lines (k−1 electrons
in the central QW). Further hole tunneling is suppressed during the on-pulse duration.
This first hole recombines with an electron in the central QW and emits a single photon.
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Figure 7.21: Schematic carrier dynamics in the turnstile operation regime when
the junction is biased with a DC + AC voltage source in the low-frequency
limit. The broken lines, solid lines and dashed lines are electron and hole
resonant tunneling rates when k, k − 1 and k − 2 electrons are present in the
central quantum well (QW), respectively

When the DC junction voltage is further increased (so that V2 + ∆V allows a hole to
tunnel with k− 1 electrons in the central QW) as in Fig. 7.21(c), two holes are allowed to
tunnel during the duration of the on-pulse (V = V2 + ∆V ) with close to unity probability.
After the two holes tunnel, the tunneling rate curves move to the dashed lines (k − 2
electrons in the central QW), and further hole tunneling is suppressed. When the junction
voltage is decreased to V2, two electrons are allowed to tunnel (with probability close
to unity, since the second electron tunneling rate is also large) before further electron
tunneling is suppressed. After two electrons tunnel, the charge state of central QW is
returned to the initial condition. This will result in the emission of two photons per
modulation cycle.

A similar argument can be applied to the three-hole tunneling case. A schematic of this
operation is given in Fig. 7.21(d). We note that when the frequency of the AC modulation
signal is low the number of electrons and holes injected per modulation period is very
well defined, since the electron and hole tunneling probabilities are either close to unity
or completely suppressed. This gives rise to well-defined plateaus in the I–V curve, with
each plateau corresponding to I = nef . The transition between two adjacent plateaus is
rather sharp, since it is determined by the slope of the rising edge in the electron and hole
tunneling rate curves. Since the number of electrons and holes injected per modulation
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Figure 7.22: Schematic operation of a single-photon turnstile device, with one
electron and one hole injected per modulation period

period, the number of photons emitted per modulation period, is a well-defined number.
A mesoscopic pn junction that operates in this regime with n = 1 is called a single-

photon turnstile device[4]. It is worth noting that a broad resonant tunneling linewidth
opens up the possibility for multiple- photon generation per modulation period[5].

Figure 7.23 shows the measured dc current as a function of AC modulation frequency
for a mesoscopic p–i–n junction device with a diameter of 600 nm. A fixed AC amplitude
of 72 mV is superposed on the three different DC voltages, V = 1.545, 1.547 and 1.550
V. As the modulation frequency was increased, the DC current increased linearly as a
function of the modulation frequency. The measured current was in close agreement with
the relation I = ef , I = 2ef , and I = 3ef (solid lines). In Fig. 7.24, the slopes I/f from
the current versus frequency curves were evaluated and plotted as a function of the DC
bias voltage. It is seen that the slope increases discretely, creating plateaus at I/f = ne,
where e = 1.6× 10−19 C is the charge of an electron and n = 1, 2 and 3.

The locking of the current at multiples of the modulation frequency (I = nef) sug-
gests that the charge transfer through the device is strongly correlated with the external
modulation signal. At the first current plateau, I = ef , a single (the mth) electron and
a single (the first) hole are injected into the central QW per modulation period, resulting
in single- photon emission. At the second current plateau, I = 2ef , two [the mth and
(m + 1)th] electrons and two (the first and second) holes are injected into the central QW
per modulation period, resulting in two-photon emission. Similarly at the third current
plateau, I = 3ef , three electrons and three holes are injected per modulation period, re-
sulting in three-photon emission. This multiple charge operation becomes possible because
of relatively broad inhomogeneous linewidths of the n−side and p−side QWs.
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600 nm turnstile device. The background DC (leakage) current, which is in-
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The histograms of the measured time delay between photon detection and on-pulse
rising edge, with 10 MHz modulation frequency, is shown in Fig. 7.25(a) (for I = ef) and
Fig. 7.25(c) (for I = 2ef). The solid line on top indicates the external AC modulation
voltage, and the finite photon counts during the off-pulse period are due to the dark counts
of the detector. For the I = ef plateau, a photon is emitted after the rising edge of the
pulse since a single electron is injected at V0 and a single hole is injected at V0 + ∆V .
The photon-emission probability has a peak near the rising edge of the modulation input.
The rapid increase of the photon-emission probability is associated with the hole tunneling
time (τh ' 4 ns), and the slow decay of the photon-emission probability corresponds to
the radiative recombination lifetime (τph ' 25 ns). When only one electron and one
hole are allowed to be injected and only one photon is emitted per modulation cycle, the
photon-emission probability P (t) for the time t after the turn-on of a higher voltage pulse
is given by

P1(t) =
exp(−t/τph) − exp(−t/τh)

τph − τh
, (7.73)

where τph is the radiative recombination lifetime and τh is the tunneling time of the hole.
The dashed line is generated by this analytical formula using the parameters τh and τph

found from the experiment. Photon-emission probability in Fig. 7.25(a) decays to a non-
zero value during the on-pulse due to photons generated by background current. The ratio
of the counts contained in the peak to those contained in the non-zero background is ∼3:1,
consistent with the ratio of the turnstile current to the background current in this device.
Figure 7.25(b) shows the Monte-Carlo numerical simulation performed for this situation;
it reproduces the experimental result well.

For the I = 2ef plateau shown in Fig. 7.25(c), the photon-emission probability dis-
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tribution is broader, since two electrons and two holes are injected, and two photons are
generated per modulation period. The photon-emission probability for the case where two
electrons and two holes are allowed to tunnel can also be calculated analytically, as

P2(t) =
2τph − τh2

2(τph − τh1)(τph − τh2)
exp(−t/τph)

+
2τh1 − τh2

2(τh1 − τh2)(τh1 − τph)
exp(−t/τh1)

+
τh2

2(τh2 − τh1)(τh2 − τph)
exp(−t/τh2) . (7.74)

Here, τh1 is the tunneling time for the first hole and τh2 is the (longer) tunneling time
for the second hole. This theoretical curve is shown as a dashed line in Fig. 7.25(c). The
sharp cutoff of photon emission after the falling edge of the modulation input is caused by
the decay of the hole population due to simultaneous radiative recombination and reverse
hole tunneling. The associated lifetime for this decay is (τ−1

h + τ−1
ph )−1. The experimental

results as well as the analytical traces are well reproduced by the Monte-Carlo numerical
simulation, as shown in Fig. 7.25(d).

In order to compare this with photons from a classically modulated macroscopic light-
emitting diode, a control experiment is necessary where the Coulomb blockade effect is
absent. Figure 7.25(e) shows the measured histogram of a time delay for a larger-area
device (diameter of 1.4µm) at higher temperature (4 K). In this case, an arbitrary number
of holes are allowed to tunnel into the central QW during an on-pulse, and so the resulting
photon-emission probability should increase monotonically to a steady-state value. This
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result is well-reproduced by the simulation, as shown in Fig. 7.25(f). An analytical solution
for the photon- emission probability can be found, and is given by

P3(t) =
C

τh
[1− exp(−t/τph)] , (7.75)

where C is a normalization constant. This analytical solution was used to generate the
dashed lines in Fig. 7.25(e) and f. The photon-emission probability increases monotonically
through the duration of the on-pulse with the time constant τph, as one would expect from
a turn-on of a classical photon source. The radiative recombination time is shorter in this
case ('5 ns) due to a higher carrier density under the operating conditions.

7.5 Quantum Dot Single Photon Source

A single photon turnstile device requires a cryogenic operational termperature of ∼ 50 mk
to satisfy the condition q2/2cdep À kBθ. If an electron-hole pair is trapped in a quantum
dot with a lateral size of . 50 nm, the strong Coulomb interaction between charged parti-
cles in a quantum dot differentiates the emission wavelengths for the last photon, second
last photon and so on. By post-filtering the lst photon with an appropriate wavelength
filter, a single photon is extracted for every pump pulse. This was demonstrated first
by optical pumping [17, 18] and later by electrical pumping [19]. It was also confirmed
that those single photons are quantum mechanically indistinguishable particles so that
they feature a bosonic quantum interference effect [20]. The details of those subjects are
described by the following publications.

7.5.1 Triggered Single Photons from a Quantum Dot

See the attached publication; ”Triggered Single Photons from a Quantum Dot”, C. Santori
et al., PRL 86, 1502 (2001).

7.5.2 Indistinguishable Photons from a Single-Photon Device

See the attached publication; ”Indistinguishable photons from a single-photon device”, C.
Santori et al., Nature 419, 594 (2002).
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Figure 7.25: Photon-emission characteristics of the turnstile device. (a) Mea-
sured histogram of the time delay between the rising edge of the modulation
input and the photon-detection event at the first plateau (I = ef). (b) Monte-
Carlo numerical simulation result for the first plateau. (c) Measured histogram
of a time delay at the second plateau (I = 2ef). (d) Monte-Carlo numerical
simulation result for the second plateau. (e) Measured histogram of a time
delay for a larger-area device (diameter of 1.4µm) at higher temperature (4
K), where the Coulomb blockade effect is absent. (f) Monte-Carlo numerical
simulation result for this modulated classical light-emitting diode case

39



Bibliography

[1] A. Imamoglu and Y. Yamamoto, Phys. Rev. Lett. 70, 3327 (1993).

[2] J. Kim, H. Kan, and Y. Yamamoto, Phys. Rev. B 52, 2008 (1995).

[3] A. Imamoglu, Y. Yamamoto, and P. Solomon, Phys. Rev. B 46, 9555 (1992).

[4] A. Imamoglu and Y. Yamamoto, Phys. Rev. Lett. 72, 210 (1994).

[5] J. Kim, O. Benson, H. Kan, and Y. Yamamoto, Nature 397, 500 (1999).

[6] S. M. Sze, Physics of Semiconductor Devices, (Wiley, New York, 1981).

[7] A. W. Hull and N. H. Williams, Phys. Rev. 25, 147 (1925); B. J. Thomson,
D. O. North, and W. A. Harris, RCA Rev. 4, 269 (1939).

[8] W. H. Richardson and Y. Yamamoto, Phys. Rev. Lett. 66, 1963 (1991).

[9] S. Machida, Y. Yamamoto, and Y. Itaya, Phys. Rev. Lett. 58, 1000 (1987).

[10] P. R. Tapster, J. G. Rarity, and J. S. Satchell, Europhysics Letters 4, (1987).

[11] R. S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits, 2nd edn.
(Wiley, New York, 1986).

[12] J. Kim, H. Kan, and Y. Yamamoto, Phys. Rev. B 52, 2008 (1995).

[13] Y. Yamamoto and S. Machida, Phys. Rev. A 35, 5114 (1987).

[14] S. Machida, Y. Yamamoto, and Y. Itaya, Phys. Rev. Lett. 58, 1000 (1987); S. Machida
and Y. Yamamoto, Phys. Rev. Lett. 60, 792 (1988).

[15] J. B. Barner and S. T. Ruggiero, Phys. Rev. Lett. 59, 807 (1987).

[16] T. A. Fulton and G. J. Dolan, Phys. Rev. Lett. 59, 109 (1987).

[17] O. Michler et al., Science 290, 2282 (2000).

[18] C. Santori et al., Phys. Rev. Lett. 86, 1502 (2001).

[19] Z. Yuan et al., Science 295, 102 (2002).

[20] C. Santori et al., Nature 419, 594 (2002).

40



VOLUME 86, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 19 FEBRUARY 2001

150
Triggered Single Photons from a Quantum Dot

Charles Santori, Matthew Pelton, Glenn Solomon,* Yseulte Dale, and Yoshihisa Yamamoto†

Quantum Entanglement Project, ICORP, JST, E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305
(Received 9 October 2000)

We demonstrate a new method for generating triggered single photons. After a laser pulse generates
excitons inside a single quantum dot, electrostatic interactions between them and the resulting spectral
shifts allow a single emitted photon to be isolated. Correlation measurements show a reduction of the
two-photon probability to 0.12 times the value for Poisson light. Strong antibunching persists when the
emission is saturated. The emitted photons are also polarized.
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Photons from classical light sources, which usually con-
sist of a macroscopic number of emitters, follow Pois-
son statistics or super-Poisson statistics [1]. With a single
quantum emitter, however, one can hope to generate a regu-
lated photon stream, containing one and only one photon
in a given time interval. Such an “antibunched” source
would be useful in the new field of quantum cryptography,
where security from eavesdropping depends on the ability
to produce no more than one photon at a time [2,3].

Continuous streams of antibunched photons were first
observed from single atoms and ions in traps [4,5]. More
recently, experiments demonstrating triggered single pho-
tons have used single molecules as the emitters, excited
optically either by laser pulses [6,7] or through adiabatic
following [8].

Solid-state sources have potential advantages. Most im-
portantly, they may be conveniently integrated into larger
structures, such as distributed-Bragg-reflector microcavi-
ties [9,10] to make monolithic devices. In addition, most
do not suffer from the photo-bleaching effect that severely
limits the lifespan of many molecules. The first experimen-
tal effort towards a solid-state single-photon source was
based on electrostatic repulsion of single carriers in a semi-
conductor micropost p-i-n structure [11]. Milli-Kelvin
temperatures were required, however, and sufficient collec-
tion efficiency to measure the photon correlation function
was not obtained. More recently, continuous antibunched
fluorescence has been seen from color centers in a diamond
crystal [12,13] and from CdSe quantum dots [14].

Our method to generate triggered single photons in-
volves pulsed optical excitation of a single quantum dot
and spectral filtering to remove all but the last emitted
photon. Optically active quantum dots confine electrons
and holes to small regions so that their energy levels are
quantized [15]. If several electrons or holes are placed in
the dot at the same time, they will, to a first approximation,
occupy single-particle states as allowed by the Pauli exclu-
sion principle. However, electrostatic interactions between
the particles cause perturbations in the eigenstates and en-
ergies. For example, if two electron-hole pairs (excitons)
are created (a “biexcitonic” state), the first pair to recom-
bine emits at a slightly lower energy than the second pair,
2 0031-9007�01�86(8)�1502(4)$15.00
due to a net attractive interaction [16,17]. We exploit this
effect to generate single photons not only through regu-
lated absorption, as in the single-molecule experiments,
but also through this emission property, that the last photon
to be emitted after an excitation pulse has a unique wave-
length, and therefore can be spectrally separated from the
others.

A sample was fabricated containing self-assembled InAs
quantum dots surrounded by a GaAs matrix [15]. The dots
were grown by molecular beam epitaxy (Fig. 1a) at a high
temperature to allow alloying with the surrounding GaAs,
thereby shortening the emission wavelength. They were
then capped by 75 nm of GaAs. Mesas about 120 nm tall,
200 nm wide, and spaced 50 mm apart were fabricated by
electron-beam lithography and dry etching. The dots are
sparse enough �11 mm22� that the smallest mesas contain,
on average, fewer than one dot.

FIG. 1. (a) Atomic force microscope image of uncovered
InGaAs self-assembled quantum dots, grown under identical
conditions to those used in this experiment. (b) The experi-
mental setup, showing the laser-excited sample (left), collection
optics (middle left), and Hanbury Brown and Twiss-type con-
figuration (right). (c) Emission spectra from a quantum dot un-
der above-band excitation (left) and resonant excitation (right).
The dotted line indicates approximately the portion of the spec-
trum that reaches the photon counters after filtering.
© 2001 The American Physical Society
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The experimental setup is shown in Fig. 1b. The sample
was cooled to 5 K in a cryostat and placed close to the
window. A mode-locked Ti-sapphire laser with 2.9 ps
pulses and a 76 MHz repetition rate was focused onto a
mesa from a steep (53.5± from normal) angle, down to an
18 mm effective spot diameter. Emission from the dot in-
side the mesa was collected with an NA � 0.5 aspheric
lens and focused onto a pinhole that effectively selected
a 5 mm region of the sample for collection. A rotatable
half-wave plate followed by a horizontal polarizer selected
a particular linear polarization. The light was then sent
to a charge-coupled device camera, a spectrometer, or a
Hanbury Brown and Twiss-type configuration for measur-
ing the photon correlation function. Two EG&G “SPCM”
photon counters were used for detection, with efficien-
cies of 40% at 877 nm, and 0.2-mm-wide active areas. A
monochrometer-type configuration defined a 2-nm-wide
measurement bandwidth, with the center wavelength de-
termined by the detector position. Additional rejection of
unwanted light (scattered pump light and stray room light)
was obtained with a 10 nm bandpass filter attached to each
detector. The electronic pulses from the photon counters
were used as start �t1� and stop �t2� signals for a time inter-
val counter, which recorded these intervals t � t2 2 t1 as
a histogram.

Mesas containing single dots were identified by their
optical emission spectra. The mesa chosen for this ex-
periment contains a dot whose main ground-state emission
wavelength is 876.4 nm. With continuous-wave (cw) ex-
citation above the GaAs band gap, the emission spectrum
(Fig. 1c, left) displays several lines, as has been reported
elsewhere [18]. We believe that these lines all come from
a single dot because another mesa shows a nearly identi-
cal emission pattern (peak heights, spacings, and widths),
except for an overall wavelength shift, suggesting that this
pattern is not random. To avoid ionization of the dot or
delayed capture of electrons and holes, we tuned the laser
wavelength to an absorption resonance at 857.5 nm, thus
creating excitons directly inside the dot. With resonant ex-
citation, emission peaks 3 and 4 almost disappear (Fig. 1c,
right), and therefore we believe that they represent emis-
sion from other charge states of the dot [19]. We identify
peak 1 as ground-state emission after the capture of a single
exciton, and peak 2 as biexcitonic emission after the cap-
ture of two excitons. This assignment is supported by the
dependence of the emission line intensities on pump power
(Fig. 2a), showing linear growth of peak 1 and quadratic
growth of peak 2 in the weak pump limit. A biexcitonic
energy shift of 1.7 meV is seen.

Under pulsed, resonant excitation, a clear saturation be-
havior is seen for peak 1 (Fig. 2b). Although peak 2 and its
surrounding peaks (presumably multiple-excitonic emis-
sion) continue to grow as the pump power is increased,
peak 1 reaches a maximum value, since only the last exci-
ton to recombine emits at this particular wavelength. This
is shown quantitatively in Fig. 2c. Here, a photon counter
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FIG. 2. (a) A log-log plot of emission line intensity versus
above-band (cw) pump power, showing linear growth of peak 1
(circles) and quadratic growth of peak 2 (diamonds). (b) Emis-
sion spectra, (c) emission intensity (measured under the filter-
ing condition depicted in Fig. 1b), and (d) emission polarization
dependence of the dot under pulsed, resonant excitation with
powers E, A D: 0.22, 0.44, 0.88, 1.32, and 2.63 mW, respec-
tively. The count rates in (c) are further reduced by an additional
bandpass filter. The solid line in (c) is a least-squares fit of
Eq. (1), while the solid lines in (d) fit a sinusoid plus an offset,
resulting in the shown visibilities �max 2 min���max 1 min�.

was used to measure the emission rate versus pump power,
with the detection band tuned to accept peak 1 but reject
peak 2 (see dashed line, Fig. 1c). A simple saturation func-
tion for unregulated absorption that fits the data well is

I � I0�1 2 e2P�Psat� , (1)

where I is the measured intensity for single-exciton emis-
sion, P is the pump power, and I0 and Psat are fitting
parameters that characterize the total collection efficiency
and the absorption rate, respectively.

The emission from peak 1 was also linearly polarized.
Since the degree of polarization of the emission depended
strongly on the pump polarization angle, we believe that
the effect is largely due to the selection rules for photon
absorption and emission [20,21]. The polarization of a
pump photon is transferred into the spin of an exciton, and
if no spin relaxation occurs, the spin is transferred back
to the emitted photon polarization. The polarization is
linear, as would be expected for asymmetric dots under no
magnetic field [22,23]. At the optimal pump polarization
used in this experiment, emission polarization with up to
72% visibility was observed at weak pump (Fig. 2d). The
lack of perfect visibility was perhaps due to spin relaxation,
imperfect selection rules, or effects of the post geometry.
The visibility was partially degraded when the pump power
was increased into the saturation regime.

We next examine the photon correlation function,
g�2��t�, which contains information on photon emission
statistics [1]. For a pulsed source, g�2��t� becomes a
1503
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series of peaks separated by the laser repetition period,
and the areas of these peaks give information on photon
number correlations between pulses separated by time t.
Of special interest is the central peak at t � 0, which
gives an upper bound on the probability that two or more
photons are emitted from the same pulse:

2P�nj $ 2���n�2 #
1
T

Z e

2e
g�2��t� dt , (2)

where nj is the number of photons in pulse j, e is chosen
to include the entire central peak in the integration region,
and T is the pulse repetition period. This result, along
with g�2��t�, is independent of the collection and detec-
tion efficiencies. For a “classical” (Poisson) source, the
normalized central peak area [right-hand side of Eq. (2)]
is one.

Histograms of the time interval t � t2 2 t1 taken at
four different pump powers are shown in Fig. 3. In the
limit of low collection and detection efficiency (�0.0003
combined in our case), these histograms, after correct nor-
malization, approximate the photon correlation function.
The peaks are broader than the limit imposed by the photon
counter timing resolution (0.3 ns) and indicate a lifetime
for the single-exciton state of about 0.7 ns. The t � 0
peak shows a large reduction in area, indicating strong an-
tibunching. The numbers printed above the peaks indicate
the peak areas, properly normalized by dividing the his-
togram areas by both singles rates, the laser repetition pe-
riod, and the measurement time. For the numbers shown,
the only background counts subtracted were those due to
the known dark count rates of the photon counters (130 and
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FIG. 3. Histograms of the time intervals t � t2 2 t1 between
photons detected by the “start” and “stop” counters, for four
different excitation powers: (a) 0.44 mW, (b) 0.88 mW,
(c) 1.32 mW, and (d) 2.63 mW. The numbers printed above
the peaks give the normalized correlation peak areas, calculated
using a 5.6-ns-wide integration window. The reduction of the
t � 0 peak demonstrates antibunching.
1504
180 s21), almost negligible compared to the singles rates,
19 800 and 14 000 s21 for the two counters at 0.88 mW
pump power. When only counts within 2.8 ns of t � 0
were included, a normalized g�2��t � 0� peak area of 0.12
was obtained at 0.88 mW. Subtracting the constant back-
ground floor seen in the data gave an even lower value of
0.095.

The observed antibunching has two causes. The first
cause is a suppression of the probability for the dot to
absorb a second photon after the first photon has been
absorbed. If one collects emission from both the single-
exciton and multiexciton lines, the g�2��t � 0� peak area
is still reduced to about 0.32 due to limited absorption. A
possible explanation for reduced absorption of the second
photon is that electrostatic interactions, similar to those re-
sponsible for the 1.7 meV biexcitonic energy shift, move
the absorption resonance to a lower energy for the second
photon [24]. The second cause for the observed antibunch-
ing is that, even if more that one exciton is created, only
the last exciton to recombine emits at our collection wave-
length. Under these collection conditions, we see a fair de-
gree of antibunching at all pump wavelengths, even above
band, if the pump power is not too high. The remaining
counts seen at t � 0 under optimal pump and collection
conditions are most likely due to imperfect filtering to re-
ject multiexcitonic emission.

While the central correlation peak area is reduced, the
adjacent peaks have normalized areas larger than one. This
indicates positive correlations between the detected photon
numbers from adjacent pulses. This longer-term bunching
behavior is better seen in Fig. 4, which plots normalized
correlation peak areas versus peak number over a longer
time span. The extra peak area above one is seen to decay
exponentially away from t � 0. For larger pump powers,
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the time scale and the magnitude of the effect decrease.
A simple model to describe this behavior assumes that
the dot randomly “blinks” between two conditions, a fully
functioning condition and a “dark” (or wavelength-shifted)
condition in which photons are not observed, with time
constants ton and toff. This model results in

hmfi0 � 1 1
toff

ton
e2�1�toff11�ton� jmT j, (3)

where hm is the mth normalized correlation peak area, and
T is the laser repetition period. Fitting this model to the
data gives the values for ton and toff shown on the plots,
which are on the order of 100 ns. Long-term (.1 s) blink-
ing behavior has already been reported in strain-induced
GaAs dots [25] and InP dots [26], and emission wave-
length fluctuations have been reported for InGaAs dots
[27]. These effects have been attributed to nearby defects
[26] and trapped charges [27]. The more rapid blinking be-
havior seen here is unwanted and necessarily decreases the
efficiency of the device, but it should be contrasted with
the bleaching behavior of single molecules. The quantum
dot described here has been studied for months and cooled
down to 5 K about 30 times without ceasing to function or
changing significantly.

In summary, we have demonstrated a new method for
generating triggered single photons, using a single quan-
tum dot excited on resonance by laser pulses. The method
takes advantage of Coulomb interactions between excitons
and the resulting spectral shifts to isolate single emitted
photons. We observed a tenfold two-photon probability
suppression and strongly polarized emission, suggesting
that a single quantum dot is a promising candidate for a
practical single-photon source, although some unwanted
blinking was also observed. The main remaining challenge
is to improve the collection efficiency, which we expect can
be accomplished by growing a microcavity around the dot.
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Science Foundation. Financial assistance for C. S. and
M. P. was provided by Stanford University.

Note added.—After submission of this work, another
demonstration of a single-photon source based on pulsed
optical excitation of a quantum dot was reported [28]. Our
work and this work were performed independently.

*Also at Solid-State Photonics Laboratory, Stanford Uni-
versity, Stanford, CA.
†Also at NTT Basic Research Laboratories, Atsugishi,
Kanagawa, Japan.

[1] D. F. Walls and G. J. Milburn, Quantum Optics (Springer-
Verlag, Berlin, 1994).

[2] G. Brassard, N. Lütkenhaus, T. Mor, and B. Sanders, Phys.
Rev. Lett. 85, 1330 (2000).

[3] G. Brassard and C. Crépeau, SIGACT News 27, 13 (1996).
[4] H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett.

39, 691 (1977).
[5] F. Diedrich and H. Walther, Phys. Rev. Lett. 58, 203 (1987).
[6] F. De Martini, G. Di Giuseppe, and M. Marrocco, Phys.

Rev. Lett. 76, 900 (1996).
[7] B. Lounis and W. E. Moerner, Nature (London) 407, 491

(2000).
[8] C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, Phys. Rev.

Lett. 83, 2722 (1999).
[9] B. Ohnesorge et al., Phys. Rev. B 56, R4367 (1997).

[10] J. M. Gérard et al., Phys. Rev. Lett. 81, 1110 (1998).
[11] J. Kim, O. Benson, H. Kan, and Y. Yamamoto, Nature

(London) 397, 500 (1999).
[12] C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, Phys.

Rev. Lett. 85, 290 (2000).
[13] R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, Opt.

Lett. 25, 1294 (2000).
[14] P. Michler et al., Nature (London) 406, 968 (2000).
[15] D. Bimberg et al., Quantum Dot Heterostructures (John

Wiley & Sons, Chichester, 1999). For MBE growth of
InAs self-assembled dots, see Chap. 4.2.

[16] A. Kuther et al., Phys. Rev. B 58, R7508 (1998).
[17] M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel,

Nature (London) 405, 923 (2000).
[18] L. Landin, M. S. Miller, M.-E. Pistol, C. E. Pryor, and

L. Samuelson, Science 280, 262 (1998).
[19] R. J. Warburton et al., Nature (London) 405, 926 (2000).
[20] Y. Toda, S. Shinomori, K. Suzuki, and Y. Arakawa, Phys.

Rev. B 58, R10 147 (1998).
[21] H. Gotoh, H. Ando, H. Kamada, A. Chavez-Pirson, and

J. Temmyo, Appl. Phys. Lett. 72, 1341 (1998).
[22] D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer,

and D. Park, Phys. Rev. Lett. 76, 3005 (1996).
[23] M. Sugisaki et al., Phys. Rev. B 59, R5300 (1999).
[24] This is consistent with our observation that, if the pump

wavelength is tuned 1.7 meV below the first-photon reso-
nance, strong photon bunching [g2�0� enhancement factor
of about 3.5] occurs. In this case, the energy shift brings
the second-photon absorption closer to resonance.

[25] D. Bertram, M. C. Hanna, and A. J. Nozik, Appl. Phys.
Lett. 74, 2666 (1999).

[26] M.-E. Pistol, P. Castrillo, D. Hessman, J. A. Prieto, and
L. Samuelson, Phys. Rev. B 59, 10 725 (1999).

[27] H. D. Robinson and B. B. Goldberg, Phys. Rev. B 61,
R5086 (2000).

[28] P. Michler et al., Science 290, 2282 (2000).
1505



..............................................................

Indistinguishable photons from a
single-photon device
Charles Santori*, David Fattal*, Jelena Vučković*, Glenn S. Solomon*†
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Single-photon sources have recently been demonstrated using a
variety of devices, including molecules1–3, mesoscopic quantum
wells4, colour centres5, trapped ions6 and semiconductor quan-
tum dots7–11. Compared with a Poisson-distributed source of the
same intensity, these sources rarely emit two or more photons in
the same pulse. Numerous applications for single-photon sources
have been proposed in the field of quantum information, but
most—including linear-optical quantum computation12—also
require consecutive photons to have identical wave packets. For
a source based on a single quantum emitter, the emitter must
therefore be excited in a rapid or deterministic way, and interact
little with its surrounding environment. Here we test the indis-
tinguishability of photons emitted by a semiconductor quantum
dot in a microcavity through a Hong–Ou–Mandel-type two-
photon interference experiment13,14. We find that consecutive
photons are largely indistinguishable, with a mean wave-packet
overlap as large as 0.81, making this source useful in a variety of
experiments in quantum optics and quantum information.

When identical single photons enter a 50–50 beam splitter from
opposite sides, quantum mechanics predicts that both photons
must leave in the same direction, if their wave packets overlap
perfectly. This two-photon interference effect originates from the
Bose–Einstein statistics of photons. This bunching effect was first
observed using pairs of highly correlated photons produced by
parametric downcoversion14, but it should also occur with single,
independently generated photons. Most proposed applications for
single-photon sources in the field of quantum information (with
the notable exception of quantum cryptography15) involve two-
photon interference. Such applications include quantum teleporta-
tion16, post-selective production of polarization-entangled pho-
tons17, and linear-optics quantum computation12. It is therefore
important to demonstrate that consecutive photons emitted by a
single-photon source are identical and exhibit mutual two-photon
interference effects.

The experiment described here used a semiconductor quantum
dot as the photon source. Quantum dots are attractive as single-
photon sources because they are relatively stable, have narrow
spectral linewidths and rapid radiative decay rates, and can be
integrated into larger fabricated structures—such as microcavities—
to improve the collection efficiency18,19. A quantum dot excited on
resonance by a pulsed source can have an extremely small prob-
ability of generating two photons in the same pulse—as required for
this experiment. Furthermore, recent reports have indicated coher-
ence times20, and even time-averaged linewidths21,22, fairly close to
the radiative limit in some cases, suggesting that dephasing is slow,
and thus indistinguishable photons may be achievable.

Our sample contains self-assembled InAs quantum dots (about
25 mm22) embedded in GaAs and sandwiched between distributed-
Bragg-reflector (DBR) mirrors, grown by molecular-beam epi-
taxy19. Pillars (Fig. 1a) with diameters ranging from 0.3 to 5 mm
and heights of 5 mm were fabricated in a random distribution by
chemically assisted ion beam etching (CAIBE), using sapphire dust
particles as etch masks. The resulting microcavities, exhibiting

three-dimensional photon confinement, have quality factors of
approximately 1,000 and measured spontaneous-emission rate
enhancement (Purcell) factors as high as 5. Many pillars with only
one or two quantum dots on resonance with a fundamental cavity
mode were found. The sample was cooled to 3–7 K in a cryostat. To
generate single photons, we focused 3-ps pulses from a Ti–sapphire
laser every 13 ns onto these pillars from a steep angle. The laser was
tuned to an excited-state absorption resonance of the quantum dot,
typically 20–30 nm shorter in wavelength than the first-level emis-
sion wavelength. The quantum-dot emission was collected, and a
single polarization was selected. The emission was then spectrally
filtered with a resolution of about 0.1 nm using a diffraction grating,
and coupled into a single-mode fibre.

By this method, we obtained bright, single-photon sources with
excellent two-photon suppression and negligible background emis-
sion. We have chosen three quantum dots for this study, denoted as
dots 1, 2 and 3, with emission wavelengths (in nm) of 931, 932 and
937, respectively. A photon-correlation measurement for dot 2 is
shown in Fig. 1b. A parameter often used to quantify two-photon
suppression is g (2), the probability of generating two photons in the
same pulse, normalized by an equally bright Poisson-distributed
source. We estimate g (2) ¼ 0.053, 0.067 and 0.071 for dots 1, 2 and
3, respectively. But for the experiment described below, the import-
ant parameter is the probability of generating two photons in the
same pulse, for either of two consecutive pulses, divided by the

Figure 1 The single-photon source. a, Pillar microcavity structures containing InAs

quantum dots in a one-wavelength-thick GaAs spacer, sandwiched between distributed-

Bragg-reflector (DBR) mirrors, grown by molecular-beam epitaxy. The DBR mirrors were

constructed by stacking quarter-wavelength-thick GaAs and AlAs layers on top of each

other. There are 12 DBR pairs above, and 30 DBR pairs below, the spacer. Pillars with

diameters ranging from 0.3 to 5 mm and heights of 5 mm were fabricated in a random

distribution by chemically assisted ion beam etching (CAIBE) with Arþ ions and Cl2 gas,

using sapphire dust particles as etch masks. Owing to the irregular shapes of the pillars,

the fundamental mode is typically polarization-nondegenerate. b, Photon correlation

histogram of emission from quantum dot 2 under pulsed, resonant excitation, obtained

using a Hanbury Brown and Twiss-type set-up. The emission was split into two paths by a

beam splitter, each path leading to a photon counter. A histogram was generated of the

relative delay t ¼ t 2 2 t 1 between a photon detection at one counter (t 1) and the other

(t 2). The vanishing central peak is the signature of suppressed two-photon emission. The

parameter g described in the text was obtained by dividing the area of the central peak at

t ¼ 0 by that of the nearest side peaks. The decrease of the side peaks away from t ¼ 0

indicates blinking with a timescale of 85 ns, an effect that we usually see with resonant

excitation8. For this measurement, the set-up shown in Fig. 3a was used, with one arm

blocked.
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probability of generating one photon in each pulse. We estimate this
quantity to be g ¼ 0.039, 0.027 and 0.025 for quantum dots 1, 2 and
3, respectively. The difference between g (2) and g is due to blinking
in our source.

Two other properties of the quantum-dot emission are also
important for the two-photon interference experiment described
below: the spontaneous emission lifetime and the coherence length.
The average emission intensity of quantum dots 1, 2 and 3 is plotted
versus time after an excitation pulse, measured under resonant
excitation by a streak camera (Fig. 2a). By fitting decaying expo-
nential functions, we estimate the spontaneous emission lifetimes ts

of dots 1, 2 and 3 to be (in ps) 89, 166 and 351, respectively. This
variation is due largely to differences in how well each quantum dot
couples to its microcavity. A Michelson interferometer is used to
measure the coherence length of the time-averaged emission (Fig.
2b). The curves show how the interference fringe contrast varies
with path-length difference, and give the magnitude of the Fourier
transform of the intensity spectra. When we did not select a single
polarization, we sometimes observed oscillatory behaviour due to
polarization splitting of the emission lines23. For dots 2 and 3 (with
splittings of 13 and 17 meV), we were able to eliminate this effect by
selecting a particular linear polarization. For dot 1, the 45-meV
splitting could not easily be eliminated, probably because the
quantum-dot emission couples to just one cavity mode having a
polarization rotated ,458 relative to the splitting axis of the
quantum dot. We estimate the 1/e coherence lengths tc (divided
by c) for quantum dots 1, 2 and 3 to be (in ps) 48, 223 and 105,
respectively. Quantum dot 2 is closest to being Fourier-transform-

limited, with 2ts/tc ¼ 1.5. When this ratio is equal to 1, no
dephasing can be present, and perfect two-photon interference is
expected.

The main elements of the two-photon interference experiment
are shown in Fig. 3a. The single-photon source is as described above,
except that the quantum dot is excited twice every 13 ns by a pair of
equally intense pulses with 2 ns separation. Two pulses, each
containing zero or one photons, emerge from the single-mode
fibre. They are split into two arms by a beam splitter, with one arm
(2 ns þ Dt) longer than the other. The beams then recombine at a
different place on the same beam splitter. The two outputs of this
interferometer are collected by photon counters, and a photon
correlation histogram is generated of the relative delay time t¼
t2 2 t1 for two-photon coincidence events, where t 1 and t 2 are the
times at which photons are detected at detectors 1 and 2, respect-
ively. A histogram obtained in this way for dot 2 with Dt ¼ 0 is
shown in Fig. 3b.

Five peaks appear within the central cluster, corresponding to
three types of coincidence events. For peaks 1 and 5 at t ¼ 74 ns,
the first photon follows the short arm of the interferometer, the
second photon follows the long arm, and one photon goes to each
counter. For peaks 2 and 4 at t ¼ 72 ns, both photons follow the
same arm. For peak 3 at t ¼ 0, the first photon follows the long arm,
and the second photon follows the short arm, so that the two
photons collide upon their second pass through the beam splitter.
Only in this case can two-photon interference occur, and for perfect
two-photon interference, peak 3 vanishes.

When the source successfully delivers a pair of photons, the two-
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Figure 2 Time-averaged emission properties of quantum dots 1, 2 and 3. a, Spontaneous

emission decay under resonant excitation, measured by a streak camera. By fitting

exponentials, lifetimes ts of 89, 166 and 351 ps for dots 1, 2 and 3, respectively, are

obtained. b, Coherence length, measured using a Michelson interferometer, showing

fringe contrast versus path-length difference. The set-up was similar to the one shown in

Fig. 3a, but with the 2-ns delay removed. The fringe contrast was measured by monitoring

the intensity of one of the interferometer outputs while varying one of the arm lengths over

several wavelengths using a piezoelectric transducer. The arm length was then moved

over long distances by a motor stage. The 1/e coherence lengths tc are 48, 223 and

105 ps for dots 1 (diamonds), 2 (filled circles) and 3 (squares), respectively.

Figure 3 Two-photon interference experiment. a, Every 13 ns, two pulses, separated by

2 ns and containing 0 or 1 photons, arrive through a single-mode fibre. The pulses are

interfered with each other using a Michelson-type interferometer with a (2 ns þ Dt )

path-length difference. Corner-cube retroreflectors are used at the ends of the arms, so

that the mode overlap is insensitive to slight angular misalignment of the optical elements.

The length of the short arm can be adjusted over long distances by a 15-cm motor stage.

The fringe contrast measured using a laser with a long coherence length was 0.92, limited

by optical surface imperfections. The interferometer outputs are collected by photon

counters, and the resulting electronic signals are correlated using a time-to-amplitude

converter followed by a multi-channel analyser card, which generates a histogram of the

relative delay time t¼ t 2 2 t 1 between a photon detection at one counter (t1) and the

other (t2). b, Such a histogram (53-ps bin size) obtained for quantum dot 2, with Dt ¼ 0.

The number of repetitions was N ¼ 2:3 £ 1010 (5 min), and the combined two-photon

generation and detection efficiency was hð2Þ ¼ 2:5 £ 1026; which includes all losses in

the experimental set-up. The small area of peak 3 demonstrates two-photon interference.
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photon state can be written as

jwl¼
ð

ds xðsÞ

ð
dt yðtÞa†ðsÞa†ðtþ 2 nsÞj0l ð1Þ

where a†(t) is the photon creation operator at time t, x(s) and y(t)
define the photon wave packets, and j0l is the vacuum state. We
assume that the photon wave packets are much shorter than 2 ns. In
the limit of low collection efficiency, the mean areas of peaks 1–5 are

A1 ¼Nhð2ÞR3T; A2 ¼Nhð2Þ½R3Tð1þ 2gÞþRT3�

A3 ¼Nhð2Þ½ðR3TþRT3Þð1þ 2gÞ2 2ð1 2 1Þ2R2T2VðDtÞ�

A4 ¼Nhð2Þ½R3TþRT3ð1þ 2gÞ�; A5 ¼Nhð2ÞRT3

ð2Þ

where N is the number of repetitions, h (2) is the combined two-
photon generation and detection efficiency, and R and T are the
beam-splitter intensity coefficients of reflection and transmission,
respectively. As defined above, the parameter g characterizes the
two-photon emission probability, with g ¼ 0 for an ideal single-
photon source, and g ¼ 1 for a Poisson-distributed source (without
blinking). The parameter 1 2 1 is the interference fringe contrast
measured when an ideal monochromatic calibration source is sent
into the interferometer, and accounts for optical surface imperfec-
tions. The parameter VðDtÞ ¼ kj

Ð
dt xðtÞy* ðtþDtÞj

2l in the
expression for peak 3 is the mean overlap between the wave packets
of the two photons for interferometer path-length difference
(2 ns þ Dt). An ensemble average is performed over all possible
two-photon states generated by the source.

The signature of two-photon interference that we observe is the
small size of peak 3 in Fig. 3b, compared with peaks 2 and 4. We
define the quantity MðDtÞ ¼ A3=ðA2þA4Þ in terms of the peak
areas in equation (2). This quantity is equal to the conditional
probability, given that two photons collide at the beam splitter, that
the photons leave in opposite directions, in the limit g < 0. We
measured M(Dt) while varying the interferometer path length offset

Dt (Fig. 4). For all three quantum dots, we observe reductions in the
coincidence probability near Dt ¼ 0, by factors of 0.61, 0.69 and
0.62 for dots 1, 2 and 3, respectively. The remaining coincidences we
see are partly due to independently measured optical imperfections
in our set-up, R/T ¼ 1.1 and ð1 2 1Þ ¼ 0:92: Without these imper-
fections, the coincidence reduction factors would be V(0) ¼ 0.72,
0.81 and 0.74 for quantum dots 1, 2 and 3, respectively.

To analyse these data, we fitted the function MðDtÞ ¼ 0:5½1 2

a expð2jDtj=tmÞ�; where the fitting parameters a and tm charac-
terize the depth and the width of the coincidence dip, respectively.
The fits, shown as solid lines in Fig. 4, match the data well. For an
ideal spontaneous-emission source, with instantaneous initial exci-
tation and no decoherence, a would differ from 1 only because of
imperfections in the optical set-up, and tm would be equal to the
spontaneous emission lifetime. The fitted values of tm we obtain (in
ps) are 80, 187 and 378 for quantum dots 1, 2 and 3, respectively.
These values agree quite well with the spontaneous emission decay
lifetimes ts obtained in Fig. 2a (see also Table 1). For quantum dots 1
and 3, this result is surprising, given the short coherence lengths tc

listed above. We conclude that, for quantum dots 1 and 3, the
primary spectral broadening mechanism occurs on a timescale
much longer than 2 ns. Such a ‘spectral diffusion’ effect could
occur owing to charge fluctuations in the vicinity of the quantum
dot, for example22.

For quantum dot 2, we calculate a mean two-photon overlap of at
least 0.81. The remaining imperfection could arise from several
decoherence mechanisms. When the quantum dot is first excited by
a laser pulse, the generated electron–hole pair is initially in an
excited state, and must relax to its lowest state through phonon
emission before a photon can be emitted at the proper wavelength.
The ratio of this relaxation time, which could be as long as tens of
picoseconds, to the lowest-state radiative lifetime could limit the
performance of this source. Decoherence by phonons24,25 is another
possible mechanism, though we see little temperature dependence
from 3 to 7 K. Finally, the spectral diffusion mechanism noted above
could also potentially contribute to decoherence on short
timescales.

The two-photon interference effect that we observe indicates a
large enough degree of photon indistinguishability to perform
interesting quantum-optical experiments. The performance of
most schemes based on two-photon interference depends on the
same wave-packet overlap as measured here. For example, for a
single-photon implementation of a scheme to generate single pairs
of polarization-entangled photons17, the polarization correlation
would ideally be unity in the horizontal/vertical basis, and 0.81 in
theþ458/2458 basis, violating Bell’s inequality. We hope that other
applications, such as quantum teleportation and quantum logic
gates, will become feasible as the performance of single-photon
sources continues to improve. A
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Superconductivity at high temperatures is expected in elements
with low atomic numbers, based in part on conventional BCS
(Bardeen–Cooper–Schrieffer) theory1. For example, it has been
predicted that when hydrogen is compressed to its dense metallic
phase (at pressures exceeding 400 GPa), it will become super-
conducting with a transition temperature above room tempera-

ture2. Such pressures are difficult to produce in a laboratory
setting, so the predictions are not easily confirmed. Under
normal conditions lithium is the lightest metal of all the
elements, and may become superconducting at lower pressures3,4;
a tentative observation of a superconducting transition in Li has
been previously reported5. Here we show that Li becomes super-
conducting at pressures greater than 30 GPa, with a pressure-
dependent transition temperature (T c) of 20 K at 48 GPa. This is
the highest observed T c of any element; it confirms the expec-
tation that elements with low atomic numbers will have high
transition temperatures, and suggests that metallic hydrogen will
have a very high T c. Our results confirm that the earlier tentative
claim5 of superconductivity in Li was correct.

Previous theory 6 has predicted that dense Li will undergo a new
structural transition towards a ‘paired-atom’ phase at pressures near

 

 

Figure 1 Arrangement of sample and electrodes on the diamond anvils. a, Photograph of

a pit, 50 mm in diameter and 7 mm deep, on the 300-mm pressure surface of the synthetic

type Ib diamond anvil. The pit was prepared by a focused ultraviolet beam from pulsed

KrF-excimer laser, wavelength 248 nm. Scale bar, 0.3 mm. b, Electrodes on a thin

aluminium oxide layer. Two platinum-film electrodes, 5-mm thick, are placed to touch the

sample in the pit; scale bar, 0.1 mm. c, Schematic drawing of b. A quasi-four-wire

electrical resistance measurement was performed. The measured resistivity included one

of the platinum films which were placed in series connecting to the sample in the pit (p) on

the diamond-anvil surface (d). A direct current of 1 mA is applied through Iþ to I2, and

the voltage drop between Vþ and V2 is recorded. d, Schematic drawing of the cross-

section of our set-up at the top of the diamonds anvils. Ruby chips are located the bottom

of the pit; the pressure was controlled by helium gas, and determined by a conventional

ruby-fluorescence method through the optical windows of the cryostat.
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