
Chapter 4

Macroscopic Conductors

There are two types of intrinsic noise in every physical system: thermal noise and quan-
tum noise. These two types of noise cannot be eliminated even when a device or system
is perfectly constructed and operated. Thermal noise is a dominant noise source at high
temperatures and/or low frequencies, while quantum noise is dominant at low tempera-
tures and/or high frequencies. A conductor with a finite electrical resistance is a simplest
system which manifests these two types of intrinsic noise. The intrinsic noise of a macro-
scopic conductor will be discussed in this chapter, and that of a mesoscopic conductor will
be discussed in the next chapter.

A conductor in thermal equilibrium with its surroundings (heat reservoir) shows, at its
terminals, an open-circuit voltage or short-circuit current fluctuation, as shown in Fig. 4.1.
Thermal equilibrium noise was first experimentally discovered by J. B. Johnson in 1927[1].

Figure 4.1: Open circuit voltage noise source and short circuit current noise source.

He discovered that the open circuit voltage noise power spectral density is independent of
the material a conductor is made of and the measurement frequency, and is determined
only by the temperature and electrical resistance: Sv(ω) = 4kBθR. The corresponding
short-circuit current noise spectral density is Si(ω) = 4kBθ/R. This noise is referred to as
thermal noise and is the most fundamental noise.

The physical origin of the thermal noise in a macroscopic conductor is a “random-walk”
of thermally-fluctuated charged carriers (electrons, holes or ions). An electron in a metallic
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conductor undergoes a Brownian motion via collisions with the lattices of a conductor. The
fundamental properties of a Brownian particle were first studied by A. Einstein[2] and then
elegantly formulated by M. P. Langevin[3] twenty years before Johnson’s observation of
thermal noise. The electrons in a conductor are thermally energetic via collisions with the
lattice and travel randomly. The electron velocity fluctuation is a statistically-stationary
process. However, the mean-square displacement of an electron increases in proportion
to the observation time. The electron position fluctuation is a statistically-nonstationary
process. Such a microscopic approach can indeed explain Johnson’s observation.

Nyquist employed a completely different approach to the problem. He introduced the
concept of “electromagnetic field modes” as a degree-of-freedom (DOF) of the system
by assuming a transmission line terminated by two conductors. He then applied the
equipartition theorem of statistical mechanics to the transmission line modes. In this
way he could explain Johnson’s observation without going into the specific details of a
microscopic electron transport process. Nyquist’s approach is very general and is easily
extended to include quantum noise[4]. The microscopic theory of quantum noise in a
macroscopic conductor was established later by Callen and Welton[6].

Johnson-Nyquist thermal noise is the intrinsic property of a conductor at thermal
equilibrium, when there is no applied voltage and no net current (energy flow) in the
system. However, the Johnson-Nyquist thermal noise formula is experimentally known to
be valid even when there is a finite current flow across the conductor. This puzzling fact
has been fully understood only recently by the noise study of a mesoscopic system. The
current noise in a mesoscopic conductor with a finite dc current is often dominated by shot
noise, while shot noise is absent in a macroscopic conductor. This interesting issue will be
discussed in the next chapter in the context of a transition from mesoscopic conductor to
macroscopic conductor.

4.1 Brownian Particle Model of Thermal Noise

4.1.1 Mean Free-Time and Mobility

Consider a one-dimensional conductor under an applied dc voltage. We assume that an
electron is accelerated by the uniform electric field between collisions with the lattice and
that an electron velocity returns to zero at every collision event. This is not true in a real
collision process in a conductor, but the conclusion one obtains using this assumption is
essentially the same as that obtained by more realistic collision models. Since the electron
drift velocity is given by u(t) = αt = qE

m t during the time between collisions τf , the
displacement between two collisions is

x(τf ) =
α

2
τ2
f =

qE

2m
τ2
f . (4.1)

After K collisions with the lattice, the total displacement is qE
2m τ2

f K. In this chapter we
use a bar to indicate an ensemble average instead of a time average. Therefore, the mean
drift velocity u is given by

u ≡ total displacement
total time

=

(
qE
2mK

)
τ2
f

Kτf
=

qτ2
f

2mτf
E . (4.2)
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Here, τf and τ2
f are the mean free time and mean-square free time. The mobility µ is

defined by u = µE,

µ =
qτ2

f

2mτf
. (4.3)

τf is randomly distributed with a mean value τf . The probability pi(m, τ) that the ith

electron experiences exactly m collisions in a time interval [0, τ ] obeys a Poisson distribu-
tion if the probability of electron collision with the lattice is independent of the electron
drift velocity, which is a reasonable assumption for a weak dc field. Strictly speaking,
the electron collision with a lattice obeys a Bernoulli process with a very small collision
(success) probability, which is well approximated by a Poisson distribution, as discussed
in Chapter 1. Thus, one obtains

pi(m, τ) =
(νiτ)m

m!
e−νiτ , (4.4)

where νi is the mean rate for collision per second. The probability q(τfi)dτfifor a free time
τfi lying between τfi and τfi + dτfi is equal to the joint probability of zero collisions in a
time interval [0, τfi] and one collision in a time interval [τfi, τfi + dτfi]. Thus,

q(τfi)dτfi = pi(0, τfi)× pi(1, dτfi)
= νi e−νiτfi dτfi , (4.5)

where e−νidτfi ' 1 is assumed and νi e−νiτfi is considered a probability density function
by which we can calculate the mean free time and mean-square free time,

τfi = νi

∫ ∞

0
τfi e−νiτfi dτfi =

1
νi

, (4.6)

τ2
fi = νi

∫ ∞

0
τ2
fi e−νiτfi dτfi =

2
ν2

i

= 2τfi
2 . (4.7)

As seen from (4.6) and (4.7), τfi does not obey a Poisson distribution, but rather it obeys
a geometrical distribution. Figure 4.2 compares pi(m, τ) and qi(τfi). If N electrons behave
in a similar but independent way, the addition theorem of a Poisson process (see Chapter
1) is applied and the total probability of collision p(m, τ) still obeys a Poisson distribution

with the mean rate ν =
N∑

i=1

νi = N
τf

. The (collective) mean free time τ f is defined by

τf = N
ν .

Using (4.7) in (4.3), the mobility is uniquely related to the mean free time,

µ =
qτf

m
. (4.8)

According to this collision model, any departure of the drift velocity ∆u(t) = u(t) − u
from its mean value decays with a time constant τf = mµ

q .
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Figure 4.2: The two distribution functions pi(m, τ) and qi(τfi).

4.1.2 Langevin Equation for a Brownian Motion

A sufficiently small particle immersed in a liquid exhibits a random motion. This phe-
nomenon is called “Brownian motion” and reveals very clearly the statistical fluctuations
which occur in a system in thermal equilibrium.

There are a variety of important situations which are basically described by the Brow-
nian motion. Examples are the random motion of the mirror mounted on the suspension
fiber in a sensitive galvanometer and gravitational wave detection laser interferometer, and
the random motions of charged particle carriers in an electric resistor. Thus Brownian
motion can serve as a prototype problem whose analysis provides considerable insight into
the mechanisms responsible for the existence of fluctuations associated with the dissipa-
tion of energy. This problem is also of great practical interest because such fluctuations
imposes limitations on the possible accuracy of delicate physical measurements.

For the sake of simplicity we shall treat the problem of Brownian motion in one di-
mension. We consider a particle of mass m whose center-of-mass coordinate at time t
is designated by x(t) and whose corresponding velocity is υ ≡ dx/dt. This particle is
immersed in a heat reservoir at the absolute temperature θ. It would be a hopelessly
complex task to describe in detail the interaction of the center-of-mass coordinate x with
all the many degrees of freedom of the heat reservoir (for instance, those describing the
motions of the lattice of a resistor). These other degrees of freedom can be regarded as
constituting a heat reservoir at some equilibrium temperature θ, and their interaction with
x can be lumped into some net force F (t) effective in determining the time dependence
of x. In addition, the particle may also interact with some external systems, such as dc
electric field, gravity or electromagnetic field, through an external force denoted by F(t).
The velocity υ of the particle may, in general, be appreciably different from its mean value
in equilibrium.

Focusing attention on the center-of-mass coordinate x, Newton’s second law of motion
can then be written in the form

m
dυ

dt
= F(t) + F (t) . (4.9)
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Here very little is known about the force F (t) which describes the interaction of the system
with the many degrees of freedom of the reservoir. Basically, F (t) must depend on the
positions of very many atoms which are in constant motion. Thus F (t) is some rapidly
fluctuating function of the time t and varies in a highly irregular fashion. Indeed, one
cannot specify the precise functional dependence of F on t. To make progress, one has
to formulate the problem in statistical terms. One must, therefore, envisage an ensemble
of very many similarly prepared systems, each of them consisting of a particle and the
surrounding heat reservoir. For each of these, the force F (t) is some random function of
t. One can then attempt to make statistical statements about this ensemble.

The rate at which F (t) varies can be characterized by some “correlation time” τ∗

which measures roughly the mean time between two successive maxima (or minima) of
the fluctuation function F (t). This time τ∗ is quite small on a macroscopic scale. (It
ought to be roughly of the order of a mean intermolecular separation divided by a mean
molecular velocity, e.g., about 10−13 sec if F (t) describes interactions with molecules of
a typical liquid.) Furthermore, if one contemplates a situation where the particle is not
drifted to a certain direction, there is no preferred direction in space; then F (t) must be
as often positive as negative so that the ensemble average F (t) vanishes.

Equation (4.9) holds for each member of the ensemble, and our aim is to deduce from
it statistical statements about υ. Since F (t) is a rapidly fluctuating function of time, it
follows that υ also fluctuates in time. Moreover, superimposed upon these fluctuations,
the time dependence of υ may also exhibit a more slowly varying trend. For example, one
can focus attention on the ensemble average υ of the velocity, which is a much more slowly
varying function of the time than υ itself, and write

υ = υ + υ′ , (4.10)

where υ′ denotes the part of υ which fluctuates rapidly [although less rapidly than F (t),
since the mass m is appreciable] and whose mean value vanishes. The slowly varying
part υ is of crucial importance (even if it is small) because it is of primary significance
in determining the behavior of the particle over long periods of time. To investigate its
time dependence, let us integrate (4.9) over some time interval τ which is small on a
macroscopic scale, but large in the sense that τ À τ∗. Then one gets

m[υ(t + τ)− υ(t)] = F(t)τ +
∫ t+τ

t
F (t′)dt′ , (4.11)

where we have assumed that the external force F is varying slowly enough that it changes
by a negligible amount during a time τ . The last integral in (4.11) ought to be very small
since F (t) changes sign many times in the time τ . Hence one might expect that any slowly
varying part of υ should be due only to the external force F :

m
dυ

dt
= F . (4.12)

However, this order of approximation is too crude to describe the physical situation.
Indeed, the interaction with the environment expressed by F (t) must be such that it
always tends to restore the particle to the equilibrium situation. Suppose, for example,
that the external force F = 0. The interaction expressed by F must then be such that,
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if υ 6= 0 at some initial time, it causes υ to approach gradually its ultimate equilibrium
value υ = 0. Equation (4.12) fails to predict this kind of trend of υ toward its equilibrium
value. We did not consider the fact that the interaction force F must actually be affected
by the motion of the particle in such a way that F itself also contains a slowly varying
part F tending to restore the particle to equilibrium. Hence we shall write, analogously
to (4.10)

F = F + F ′ , (4.13)

where F ′ is the rapidly fluctuating part of F whose average value vanishes. The slowly
varying part F must be some function of υ which is such that F (υ) = 0 in equilibrium
when υ = 0. If υ is not too large, F (υ) can be expanded in a power series in υ whose first
nonvanishing term must then be linear in υ. Thus F must have the general form

F = −αυ , (4.14)

where α is some positive constant (called the “friction constant”) and the minus sign
indicates explicitly that the force F acts in such a direction that it tends to reduce υ to
zero as time increases. We can surmise that α must in some way be expressible in terms
of F itself, since the frictional restoring force is also caused by the interactions described
by F (t).

In the general case the slowly varying part of (4.9) becomes then

m
dυ

dt
= F + F = F − αυ . (4.15)

If one includes the rapidly fluctuating parts υ′ and F ′ of (4.10) and (4.13), (4.9) can be
written

m
dυ

dt
= F − αυ + F ′(t) , (4.16)

where we have put αυ ≈ αυ with negligible error [since the rapidly fluctuating contribu-
tion αυ′ can be neglected compared to the predominant fluctuating term F ′(t)]. Equa-
tion (4.16) is called the “Langevin equation.” It differs from the original (4.9) by explicitly
decomposing the force F (t) into a slowly varying part −αυ and into a rapidly fluctuat-
ing part F ′(t) which is “purely random,” i.e., such that its mean value always vanishes
irrespective of the velocity or position of the particle. The Langevin equation(4.16) de-
scribes in this way the behavior of the particle at all later times if its initial conditions are
specified.

Since the Langevin equation contains the frictional force−αυ, it implies the existence of
processes whereby the energy associated with the coordinate x of the particle is dissipated
in the course of time to the other degrees of freedom (e.g., to the molecules of the liquid
surrounding the particle). Consider a system A in contact with some large system B. The
microscopic equations governing the motion of the combined system (A+B) do not involve
any frictional forces. The total energy is conserved, and the motion is reversible. (That
is, if the sign of the time t were reversed, the equations of motion would be essentially
unchanged and all particles would retrace their paths in time.) But if one focuses attention
on A, its interaction with the heat reservoir B can be adequately described by equations of
motion involving frictional forces. There is thus dissipation of energy from A to the heat
reservoir B and the motion of A is not reversible. The question is to understand in detail
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how this situation comes about, what conditions must be satisfied for this description to
be approximately valid, and how the modified equations of motion for A are derivable
from the microscopic equations. The interested reader may consult with excellent texts
on statistical mechanics[6], [7].

Our interest is the problem of an electrical conductor with self-inductance L carrying
a current I. Let the applied voltage be V(t). The current I carried by the electrons is
affected by the interactions with the lattice of the conductor. The net effect of these
interactions on the current I can be represented by some effective fluctuating voltage
V (t). The latter can be decomposed into a slowly varying part −RI (where R is some
positive constant) and into a rapidly fluctuating part V ′(t) whose mean value vanishes.
The analogue of the Langevin eauation (4.16) then becomes

L
dI

dt
= V −RI + V ′(t) . (4.17)

The friction constant R is here simply the electrical resistance of the conductor.

4.1.3 Mean-Square Displacement

Let us assume the validity of Langevin equation as an adequate phenomenological de-
scription of Brownian motion and illustrate how it can be applied to the calculation of
quantities of physical interest. In the absence of external forces (4.16) becomes

m
dυ

dt
= −αυ + F ′(t) . (4.18)

Consider the situation of thermal equilibrium. Clearly the mean displacement x of
the particle vanishes (i.e., x = 0) by symmetry, since there is no preferred direction in
space. To calculate the magnitude of the fluctuations, we now use (4.18) to calculate the
mean-square displacement x2 of the particle in a time interval t. Equation (4.18) contains
the quantities υ = ẋ and dυ/dt = dẋ/dt. Multiplying both sides of (4.18) by x, one thus
gets

mx
dẋ

dt
= m

[
d

dt
(xẋ)− ẋ2

]
= −αxẋ + xF ′(t) . (4.19)

One can now take the ensemble average of both sides of (4.19). As pointed out in connec-
tion with the Langevin (4.16), the mean value of the fluctuating force F ′ always vanishes,
irrespective of the value of υ or x. Hence xF ′ = xF ′ = 0. Furthermore, the equipartition
theorem yields 1

2mẋ2 = 1
2kBθ. Thus (4.19) becomes

m
d

dt
xẋ = m

d

dt
xẋ = kBθ − αxẋ . (4.20)

The relation (4.20) is a simple differential equation which can immediately be solved for
the quantity xẋ = 1

2(dx2/dt). Thus one obtains

xẋ = Ce−γt +
kBθ

α
, (4.21)

where C is a constant of integration and

γ ≡ α

m
, (4.22)
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so that γ−1 denotes a characteristic time constant of the system. Assuming that each
particle in the ensemble starts out at t = 0 at the position x = 0, so that x measures
the displacement from the initial position. The constant C in (4.21) must be such that
0 = C + kBθ/α. Hence (4.21) becomes

xẋ =
1
2

d

dt
x2 =

kBθ

α
(1− e−γt) . (4.23)

Integrating once more one obtains the final result

x2 =
2kBθ

α

[
t− γ−1(1− e−γt)

]
. (4.24)

Note two interesting limiting cases. If t ¿ γ−1, then

e−γt = 1− γt +
1
2
γ2t2 − · · · .

Thus, for t ¿ γ−1,

x2 =
kBθ

m
t2 . (4.25)

The particle behaves during a short initial time interval as though it were a free particle
moving with the constant thermal velocity υ = (kBθ/m)

1
2 .

On the other hand, if t À γ−1, e−γt → 0. Thus (4.24) becomes simply

x2 =
2kBθ

α
t . (4.26)

The particle then behaves like a diffusing particle executing a random walk. Indeed, since
the diffusion equation leads to the relation x2 = 2Dt, comparison with (4.26) shows the
corresponding diffusion coefficient to be given by

D =
kBθ

α
. (4.27)

4.1.4 Einstein relation

If the particle carries an electric charge q and is placed in a uniform electric field E , the
Langevin equation (4.16) becomes

m
dυ

dt
= qE − αυ + F ′(t) . (4.28)

Taking the mean values of both sides and considering the steady-state situation where
dυ/dt = 0 this yields

eE − αυ = 0 . (4.29)

This shows that υ ∝ E . The “mobility” µ ≡ υ/E is then given by

µ ≡ υ

E =
q

α
. (4.30)

Thus the mobility µ and the diffusion coefficient D in (4.27) are both expressible in terms
of α. There exists therefore an intimate connection between these two coefficients, namely,

µ

D
=

q

kBθ
. (4.31)

This is know as the “Einstein relation” between the mobility and the diffusion coefficient.
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4.1.5 Particle Velocity and Current Fluctuations

In a thermal equilibrium condition (zero applied voltage), the mean drift velocity of an
electron is zero, υ = 0. However, an electron acquires a non-zero momentum when it
collides with a lattice which decays toward the mean value of υ = 0 with a time constant
τf = m

α . The equation of motion is then

dυ(t)
dt

= −υ(t)
τ f

+
F ′(t)
m

. (4.32)

The drift velocity υ(t) is kicked randomly by the Langevin noise source [second part of
the RHS of (4.32)] and is simultaneously damped by the friction term [first part of the
RHS of (4.32)]. The Fourier analysis of (4.32) requires the introduction of a gated function
υT (t) = υ(t) for −T

2 ≤ t ≤ T
2 and 0 for otherwise, because υ(t) is a statistically-stationary

process. [see Chapter 1 for the detailed discussion on the Fourier analysis of a statistically
stationary process.] The Fourier transform of this gated function leads to

VT (iω) =
µ
q F ′

T (iω)

1 + iωτ f
. (4.33)

From the Carson theorem, the power spectral density of the velocity fluctuation is given
by

Sυ(ω) = 2ν|FT (iω)|2 (µ/q)2

1 + ω2τ2
f

, (4.34)

where ν =
1
τ f

is the mean rate of collisions per second, and |FT (iω)|2 is the mean square

of the Fourier transformed Langevin noise force.
In order to determine |FT (iω)|2, we need to invoke the equipartition theorem again. For

a thermal equilibrium condition, the mean square of the electron momentum is determined
by the equipartition theorem:

p2

2m
=

m

2

∫ ∞

0
Sυ(ω)

dω

2π
(Parseval Theorem)

=
1
2
kBθ (one− dimensional case) . (4.35)

From (4.34) and (4.35), one obtains |FT (iω)2| = 2kBθm and thus (4.34) becomes

Sυ(ω) =
4kBθµ/q

1 + ω2τ2
f

, (4.36)

where (4.8) is used.
From the Wiener-Khintchine theorem [see Chapter 1 for detail], one can calculate the

autocorrelation function

φυ(τ) =
1
2π

∫ ∞

0
Sυ(ω) cos ωτ dω

=
kBθ

m
exp

(
−|τ |

τ f

)
. (4.37)
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Therefore, the mean square value of υ(t) is given by φυ(0) = kBθ
m . Figures 4.3 (a) and (b)

show the normalized Sυ(ω) and φυ(τ).
According to the Ramo theorem introducen in Chapter 1, the velocity fluctuation υ(t)

of the electron produces a short-circuited current fluctuation i(t) = qυ(t)/L in an external
circuit, where L is the length of the conductor. Since the current fluctuation of each
electron is additive, the total current noise power spectral density is given by

Si(ω) = Sυ(ω)
q2

L2
ALn , (4.38)

where A is a cross-sectional area of the conductor and n is the electron density. If one uses
(4.36) and the expression for electrical resistance, R = ρL

A = L
nqµA , where ρ is a resistivity,

in (4.38), one obtains

Si(ω) =
4kBθ/R

1 + ω2τ2
f

. (4.39)

Therefore, the short-circuited current fluctuation power spectral density at low frequency
is equal to 4kBθ/R. This is exactly what Johnson observed experimentally[1].

Figure 4.3: The power spectrum and the autocorrelation function of an electron
velocity υ(t) in a resistor at thermal equilibrium.

4.1.6 Particle Position and Charge Fluctuations

The integral of a statistically-stationary process with a white power spectral density is a
statistically non-stationary process and is called a Wiener-Levy process[8]. The surface
charge induced at two terminal electrodes by the fluctuating short-circuited current across
a conductor is

q(t) =
∫ t

0
i(t′)dt′ . (4.40)

Consider again the one-dimensional conductor. An electron transit over a free path `f

between collisions gives rise to a surface charge on the electrode equal to q
(

`f

L

)
. If there
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are m = νt independent electron transit events in a time duration t , then the mean-square
value of the surface charge q(t) is calculated as

q(t)2 = q2(νt)
`2
f

L2
=

2kBθ

R
t , (4.41)

where ν = nAL/τ f is the mean rate of electron collision with lattice, `2
f = v2

T τ2
f =

kBT
m · 2τ2

5 = 2µkBθ τ f/q is the mean-square free path, and v2
T = kBθ/m is the mean-

square thermal velocity; therefore, the charge fluctuation is not stationary, but, rather,
diffuses with time. The diffusion coefficient, defined by q(t)2 = 2Dqt, is given by

Dq =
kBθ

R
=

1
4

Si(ω ≈ 0) . (4.42)

Since q(t) is a cumulative process, one can write

q(t + τ) = q(t) + ∆q(t, τ) , (4.43)

where ∆q(t, τ) is the charge fluctuation added between times t and (t + τ). Since the
correlation time of the additive fluctuations is very short (τ f ¿ τ), the two processes in
the RHS of Eq. (4.43) are uncorrelated; therefore, the covariance function is equal to the
mean square value:

q(t + τ)q(t) = q(t)2 + q(t)∆q(t, τ) ' q(t)2 . (4.44)

The autocorrelation function must be redefined in such a manner that the observation time
remains finite rather than infinite and the ordinate is set to zero outside the observation
time interval. Thus, the autocorrelation function is a function of the time delay τ and the
observation time T :

φq(τ, T ) =
1
T

∫ T−|τ |

0
q(t + τ)q(t)dt

=
1
T

∫ T−|τ |

0

2kBθ

R
t dt

=
kBθ

R
T

(
1− |τ |

T

)2

. (4.45)

The power spectral density is obtained by the Wiener-Khintchine theorem as:

Sq(ω, T ) = 4
∫ T

0
φq(τ, T ) cos ωτ dτ

=
8kBθ

ω2R

[
1− sin(ωT )

ωT

]
. (4.46)

When ωT À 1, the power spectral density is proportional to ω−2, which is the charac-
teristic feature of a Wiener-Levy process. Figure 4.4 (a)–(c) show the real-time function,
autocorrelation function, and power spectral density of the surface charge q(t).

The integral of an electron velocity υ(t) is an electron displacement x(t), which is
also a Wiener-Levy process, as shown in the previous section. By performing the similar
calculation described above, one obtains the (position) diffusion coefficient,

Dx =
kBθτ f

m
=

kBθµ

q
=

1
4

Sυ(ω ' 0) . (4.47)
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τ/T

Figure 4.4: The real time (sample) function q(t), the power spectrum Sq(ω, T ),
and the autocorrelation function φq(τ, T ) of a surface charge.

4.2 Fluctuation-Dissipation Theorem

If we assume ε = 0 (zero external force) in (4.27), the equation of motion for the particle
velocity v(t) is rewritten as

d

dt
eγtv(t) =

eγt

m
F ′(t) . (4.48)

The formal integral of (4.48) from t = −∞ to t = 0 results in

[
eγtv(t)

]0

−∞ = v(0) =
1
m

∫ 0

−∞
eγtF ′(t)dt . (4.49)

Therefore the mean square of v(0) is given by

〈v(0)2〉 =
1

m2

∫ 0

−∞

∫ 0

−∞
dtdt′eγ(t+t′)〈F ′(t)F ′(t′)〉 . (4.50)

Since F ′(t) is a statistically stationary process, the two time correlation function
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〈F ′(t)F ′(t′)〉 can be expressed in terms of s′ = t− t′:

K(s′) = 〈F ′(t)F ′(t− s′)〉 (4.51)
= 〈F ′(t + s′)F ′(t)〉
= 〈F ′(t)F ′(t + s′)〉
= K(−s′) .

K(s′) = K(−s′) is non-zero only in a small range of |s′| . τ∗, where τ∗ is the correlation
time of the heat reservoir. We further introduce s = t + t′. Then, (4.52) is rewritten in
terms of new time coordinates s and s′:

〈v(0)2〉 =
1

m2

∫ 0

−∞
dseγs

∫

A
ds′K(s′) , (4.52)

where the integral range A is a small range of |s′| mentioned above. See Fig. 4.5 for the
integral range. We can substitute,

A

t

s

t’

s’

Figure 4.5: The integral range of (4.52).

∫ 0

−∞
dseγs =

1
γ

, (4.53)

∫

A
ds′K(s′) =

1
2

∫ ∞

−∞
〈F ′(s′)F ′(0)〉ds′ , (4.54)

〈v(0)2〉 =
kBT

m
, (4.55)

into (4.80) to finally obtain

γ =
1

2kBθm

∫ ∞

−∞
〈F ′(s′)F ′(0)〉ds′ . (4.56)
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This is the fluctuation-dissipation theorem. If a particle with a mass m is at thermal
equilibrium, the damping rate γ for the velocity deviation v(t) from an equilibrium value
〈v(t)〉 = 0 is uniquely related to the correlation function 〈F ′(s)F ′(0)〉 of the reservoir
fluctuating force.

4.3 Transmission Line Model of Thermal Noise

4.3.1 Nyguist model

Nyquist’s treatment of thermal noise[4] appeared very soon after Johnson’s observation[1]
and thus thermal noise is often referred to as Johnson-Nyquist noise. Nyquist model ini-
tially considered two electrical resistors, R1 and R2, connected in parallel, as shown in
Fig. 4.6. The open-circuit voltage noise source v1 associated with resistance R1 produces
a current fluctuation in the circuit, leading to an absorbed power R2v2

1/(R1+R2)2 by resis-
tance R2. A similar flow of absorbed power, R1v2

2/(R1 +R2)2, exists from R2 to R1. Since
the two conductors are at the same temperature, the power flow in each direction must be
exactly the same and cancel each other out; otherwise, the second law of thermodynamics
would be violated.

The second law of thermodynamics[6], [7] states that it is impossible to take heat from
one reservoir and put it to another reservoir at an equilibrium temperature. That is, the
entropy of the whole system does not decrease spontaneously. In order to satisfy this
exact cancellation of power flow from R1 to R2, and vice versa, the open circuit voltage
noise v2

i should be proportional to the electrical resistance Ri. This exact cancellation
of power flow must hold not only for the total power, but also for the power exchanged
in any frequency band; otherwise, the second law of thermodynamics would be violated
simply by inserting a frequency filter between the resistors. In other words, the power
spectrum Sv(ω) of the voltage fluctuation should be independent of the detailed structure
and material of the conductor and should be a universal function of R, θ, and (angular)
frequency ω. If the conductors R1 and R2 are at different temperatures, θ1 and θ2, the
net heat flow should be proportional to the temperature difference θ1 − θ2 and thus the
power spectrum Sv(ω) is proportional to the temperature θ.

Figure 4.6: Two parallel resistors and the balance of power flow at thermal equilibrium.

Nyquist model then extended the above thought experiment to a long, lossless trans-
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mission line terminated at either end by resistors with electrical resistance R1 and R2

(Fig. 4.7). This lossless LC transmission line has a characteristic impedance Z0 =
√

L
C

which is made equal to the end terminal resistance R1 = R2 = R. The electromagnetic
wave propagates with a velocity v = 1√

LC
, where L and C are the inductance and capac-

itance of the transmission line per unit length. The power delivered to the transmission
line from R1 or R2 in a frequency interval dω/2π is

dP =
1

4R
Sv(ω)

dω

2π
. (4.57)

A time duration in which this noise power travels in the transmission line is t = `
v , where

` is the length of the transmission line. Hence, the total energy stored in the transmission
line in the same frequency band is

dE = dP × t× 2 =
`

2Rv
Sv(ω)

dω

2π
. (4.58)

Suppose the transmission line is suddenly short-circuited by closing the two switches

Figure 4.7: Two resistors separated by a transmission line with a switch. After
closing the two switches, the thermal excitation from two resistors is trapped
as resonant modes of a transmission line cavity.

across R1 and R2. Then, the energy density (4.58) on the transmission line is “trapped”

15



as standing waves of a transmission line cavity with perfect reflectors. The resonant
frequencies of these standing waves are νN = v

2` N , where N is a positive integer. The
number of standing modes in the frequency interval dω

2π is given by

m =
(

dω

2π

)/( v

2`

)
=

dω · `
πv

. (4.59)

As the transmission line length ` increases, the number of degrees of freedom (DOF) of
the system (given by the number of the standing modes) also increases and the energy
separation becomes much smaller than kBθ. Moreover, the electric field energy and the
magnetic field energy of each mode are proportional to the square of the electric and mag-
netic field amplitudes, respectively. Therefore, it is permissible to invoke the equipartition
theorem to determine the total energy in the transmission line at thermal equilibrium.
The average energy per mode (with two DOFs: electric and magnetic fields) is kBθ and
thus the stored energy in the frequency band dω

2π is given by

dE = mkBθ =
dω`

πv
kBθ . (4.60)

From (4.58) and (4.60), the power spectrum is obtained as

Sv(ω) = 4kBθR . (4.61)

As expected from a thermodynamic argument, Sv(ω) is indeed proportional to R and θ.
If an angular frequency ω becomes greater than kBθ/~, the quantized (photon) energy

of the standing mode becomes larger than kBθ. In such a case, the average thermal energy
per mode is calculated as

~ω nth =
~ω

exp
(
~ω
kBθ

)
− 1

, (4.62)

where nth is the average photon number of a mode at frequency ω and temperature θ[6],
[7]. The photon number distribution function Pn obeys the photon statistics

Pn =
nn

th

(1 + nth)n+1
= exp

(
−n~ω

kBθ

)[
1− exp

(
− ~ω

kBθ

)]
, (4.63)

and thus the mean thermal photon number is

nth ≡
∞∑

n=0

nPn =
1

exp
(
~ω
kBθ

)
− 1

. (4.64)

Therefore, the total energy in the frequency band dω
2π is

dE = m~ωnth =
dω`

πv
· ~ω

exp
(
~ω
kBθ

)
− 1

. (4.65)

Comparing this result with (4.58), the power spectral density of the voltage noise is found
to be[4]

Sv(ω) =
4~ωR

exp
(
~ω
kBθ

)
− 1

. (4.66)
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In (4.66), the quantized energy ~ω of a transmission line cavity mode is correctly taken
into consideration and the spectral density Sv(ω) is reduced to 4kBTR when ~ω ¿ kBT .
However, the full quantum mechanical analysis of the problem suggests that (4.66) is still
insufficient since the zero-point fluctuation is not included.

4.3.2 Quantum Noise

Let us consider a lossless LC circuit. The resonant frequency of such an LC circuit,
ω0 = 1√

LC
, corresponds to that of a transmission line cavity mode, νN = υ

2lN in our
previous model. If the current flowing in the inductance L is denoted by i(t) and the
voltage across the capacitance C is denoted by v(t), the Kirchhoff laws are represented by

C
dv(t)
dt

= i(t) , (4.67)

L
di(t)
dt

= −v(t) . (4.68)

These equations can be expressed in terms of the normalized “voltage,” q(t) ≡ Cv(t), and
the normalized “current,” p(t) ≡ Li(t):

dq(t)
dt

=
1
L

p(t) , (4.69)

dp(t)
dt

= − 1
C

q(t) . (4.70)

The total energy stored in the lossless LC circuit is given by

H =
1
2
Li2 +

1
2
Cv2 =

p2

2L
+

q2

2C
. (4.71)

Suppose one interprets the above expression in terms of an analogy with a mechanical
harmonic oscillator with a mass m and spring constant k. One can then identify the
inductance L corresponding to the mass m, the capacitance C corresponding to the inverse
of the spring constant 1

k , and p and q corresponding to the momentum and position,
respectively. If one considers (4.71) as a Hamiltonian function of the system, the classical
Hamilton equations for the position q and momentum p are written as[9]

dq

dt
≡ ∂H

∂p
=

1
L

p , (4.72)

dp

dt
≡ −∂H

∂q
= − 1

C
q , (4.73)

which are identical in form to the Kirchhoff equations (4.67) and (4.68) for the “voltage”
q and “current” p. Hence, one can conclude that the “voltage” and “current” in a lossless
LC circuit are a pair of conjugate observables, just like the position and momentum of
a mechanical harmonic oscillator. Quantum mechanically, conjugate observables q and p
must satisfy the following commutation relation,

[q, p] ≡ qp− pq = i~ , (4.74)
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where q and p are no longer complex numbers (c-numbers); rather, they are quantum
mechanical operators (q-numbers). Using the Schwartz inequality, one can derive the
following Heisenberg uncertainty principle for the product of the variances of q and p [see
Chapter 2 for the detailed discussion]:

∆q2 ∆p2 ≥ ~2

4
. (4.75)

Equation (4.75) indicates that the current and voltage of an LC circuit have intrinsic
quantum noise which does not disappear even at absolute zero temperature.

We now introduce the (non-Hermitian) creation (a†) and annihilation (a) operators
for a circuit photon defined by:

a =
1√

2~ω0L
(ω0Lq + ip) , (4.76)

a† =
1√

2~ω0L
(ω0Lq − ip) . (4.77)

The Hamiltonian function (4.71) and the commutation relation (4.74) are rewritten as

H = ~ω0

(
a†a +

1
2

)
, (4.78)

[a, a†] = 1 . (4.79)

If the LC circuit is not excited at all, the quantum mechanical state of such an unexcited
LC circuit is referred to as a ground state, or a “vacuum state.” The vacuum state is
mathematically defined as an eigenstate of the annihilation operator a with an eigenvalue
of zero:

a|0〉 = 0 . (4.80)

The operation of the circuit creation operator on the vacuum state creates a single-
quantum:

a†|0〉 = |1〉 . (4.81)

Similarly, the operation of the circuit annihilation operator on the one quantum state
creates a vacuum state:

a|1〉 = |0〉 . (4.82)

The mean and mean-square of the “voltage” and “current” of the vacuum state are cal-
culated by taking the ensemble average of the respective operators:

q ≡ 〈0|q|0〉 = 〈0|
√
~ω0C

2
(a† + a)|0〉 = 0 , (4.83)

q2 ≡ 〈0|q2|0〉 = 〈0|~ω0C

2
(a†2 + a2 + a†a + aa†)|0〉 =

~ω0

2
C , (4.84)

p ≡ 〈0|p|0〉 = 〈0|i
√
~ω0L

2
(a† − a)|0〉 = 0 , (4.85)

p2 ≡ 〈0|p2|0〉 = 〈0|~ω0L

2
(−a†2 − a2 + a†a + aa†)|0〉 =

~ω0

2
L . (4.86)
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Here, the orthogonality relations between energy eigenstates such as 〈0|1〉 = 〈0|2〉 = 0
are used. The variances of the “voltage” and “current” satisfy the minimum uncertainty
product,

∆q2 ≡ q2 − q2 = ~ω0
2 C ↘

∆p2 ≡ p2 − p2 = ~ω0
2 L ↗ ∆q2 ∆p2 =

~2

4
. (4.87)

The expectation value of the zero-point energy is given by

〈0|H|0〉 =
~ω0

2
. (4.88)

If the system of Fig. 4.7 is at an absolute zero temperature, each transmission line cavity
mode should have this zero-point fluctuation energy. This intrinsic noise must be provided
by the two terminal resistors, because the lossless transmission line cavity does not have
any dissipation and thus there should not be internal noise source.

If one adds this zero-point fluctuation contribution to (4.66), one obtains the full
quantum mechanical expression for an open-circuit voltage fluctuation spectral density:

Sv(ω) = 2~ωR coth
(
~ω

2kBθ

)
. (4.89)

As shown in Fig. 4.8, Sv(ω) is reduced to the thermal noise value (4kBθR) in the high-
temperature limit (kBθ À ~ω) and is reduced to the quantum noise value (2~ωR) in the
low-temperature limit (kBθ ¿ ~ω). Equation (4.89), including the quantum mechanical
zero-point fluctuation, is referred to as the generalized Nyquist noise[5].

Figure 4.8: An open-circuit voltage noise spectrum including the zero-point fluctuation.

The generalized Nyquist formula (4.89) deserves some remarks. The thermal noise,
4kBθR, is a real fluctuation energy that can be measured directly. It is an intrinsic noise
source in a sense that we cannot avoid it if a system is at a finite temperature θ. On
the other hand, the quantum noise, 2~ωR, is a virtual fluctuation energy that cannot
be measured directly. It manifests itself only indirectly in a form of photon shot noise
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in a laser[10] or mechanical (Casimir) force in metallic parallel plates[11]. Moreover, as
(4.87) suggests, we can artificially squeeze the current fluctuation to zero by allowing the
voltage fluctuation to increase indefinitely by some nonlinear processes[12]. Nevertheless,
the generalized Nyquist formula (4.89) provides an adequate basis for an open dissipative
device operating at a regime of ~ω À kBθ. A laser and photon detector are such classic
examples. We will see in Chapter 10 that a cavity loss and stimulated emission gain in a
laser can be described by a positive and negative resistance, respectively, and that noise
associated with such dissipative elements are given by 2~ω|R| under standard operation.
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