
Chapter 12

Classical Communication Systems

In optical communication systems, a weak optical signal attenuated by fiber loss is am-
plified by an optical linear amplifier before the signal is detected by a photodetector and
electronically regenerated. An optical amplifier adds extra noise on the signal and thus the
signal-to-noise (S/N) ratio of the optical signal wave is degraded. However, an electronic
regeneration circuit has much higher thermal noise than the noise generated in an optical
amplifier; thus, the use of an optical amplifier improves the overall S/N ratio.

The use of an optical amplifier as an analog repeater is a very useful technique for ex-
panding an electronic regenerative terminal repeater spacing. The S/N ratio degradation
due to optical amplifier noise becomes less and less important when more optical ampli-
fiers are added into the system. The distinct difference between an optical preamplifier
and optical repeater amplifier is discussed in this chapter. An alternative technique of
optical receiver design, such an avalanche photodiode direct detection or coherent homo-
dyne/heterodyne detection, is also reviewed.

We will conclude this chapter with the channel capacity and the fundamental limit of
optical communication systems.

12.1 Regeneration in Digital Communication Systems

In digital communication systems, the information is encoded on the binary states of
either an amplitude, phase, or frequency of the carrier wave. These modulation schemes
are called amplitude-shift-keying (ASK), phase-shift-keying (PSK) and frequency-shift-
keying (FSK), respectively. A transmission line such as an optical fiber attenuates the
signal power through its loss and broadens the signal pulse through its dispersion. Once
the signal is weakened, distorted and buried in the background noise, the information
cannot be retrieved. One of the most important advantages of digital communication
systems is that, before information is completely lost due to the transmission line loss and
dispersion, the signal is detected and a clean pulse is regenerated.

How often it is necessary to regenerate the signal is an important factor for evalu-
ating the system because the cost and maintenance of the system critically depend on
the number of such regenerative repeaters. The signal-to-noise (S/N) ratio is gradually
degraded by the transmission loss but the S/N ratio can be improved after regeneration.
The penalty for the improvement of the original S/N ratio is a finite rate of erroneous
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regeneration. Even though the transmitted signal was state “0,” a decision circuit may
report state “1” and so the signal pulse of state “1” is transmitted to the next section. A
definite advantage of the regeneration in digital communication systems is that the error
rate increases only linearly with the number of regenerative repeaters, because the bit
error at each regenerative repeater is accumulated only additively. For instance, if each
regenerative repeater has a bit error rate of Pe = 10−9 while the total bit error rate of
the system should be less than Pe = 10−6, one can install 103 regenerative repeaters in
the whole system. The total system length for Pe = 10−6 can thus be increased 103 times
longer than the transmission length for Pe = 10−9. Without a regenerative repeater, the
bit error rate increases exponentially with transmission loss, and thus there is no substan-
tial difference between the system length for Pe = 10−9 and that for Pe = 10−6. In fact,
the required optical signal powers to achieve Pe = 10−6 and Pe = 10−9 differ by only ∼2
dB, which corresponds to only ∼10 Km of transmission distance.

12.2 Direct Detection in PCM-IM Communication Systems

12.2.1 Fundamental Limit

Consider a communication system in which information is carried by the presence or
absence of photons per pulse. This is called pulse code modulation-intensity modulation
(PCM-IM) signal. As shown already in Chapter 2 and Chapter 9, the optical pulse from
a laser transmitter does not necessarily contain the fixed number of photons, but, rather,
the photon number fluctuates from pulse to pulse due to the intensity noise of a laser
and the random deletion noise in a fiber. According to the Burgess variance theorem, the
laser noise is attenuated by the square of fiber loss, L2, so the dominant noise after large
attenuation becomes a partition noise, which is Poissonian. Therefore, the on-pulse has
Poissonian photon statistics with an average photon number 〈n〉,

pon(n) =
e−〈n〉〈n〉n

n!
, (12.1)

while, the off-pulse always has zero photons, as shown in Fig. ??. If a receiver is an ideal
single photon counter without a dark count, the best detection strategy is to set a decision
threshold at “0.5 photons”. That is, if no photons are received, assume an off-pulse was
sent; if more than one photon is received, assume an on-pulse was sent. In such an ideal
photon counting communication system, there is still a finite probability of error expected
in this decision process because the on-pulse has a finite probability of having no photons
due to Poissonian photon statistics. If one desires an error rate Pe smaller than 10−9,
which is a required bit error rate in a commercial system, one needs the average photon
number of the on-pulse to be larger than

〈n〉 > 21 −→ Pe ≡ pon(n = 0) = e−〈n〉 ≤ 10−9 . (12.2)

This is the ultimate limit on the receiver sensitivity in the PCM-IM optical communication
systems.

However, a practical optical receiver cannot achieve this ultimate sensitivity because
there are finite detector dark count and huge thermal noise generated in the electronic
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Figure 12.1: The Poissonian photon number distribution of an on-pulse.

amplifier following a photodiode. A pre-amplifier which adds extra noise to the amplified
signal can still improve the overall S/N ratio because of the thermal noise of the electronic
amplifier.

12.2.2 Digital Receiver System Considerations

A typical digital receiver system block diagram is shown in Fig. 12.2(a); associated wave-
forms are shown in Fig. 12.2(b). For now, assume a non-return-to-zero (NRZ) signal
format; if a bit is a “one,” the signal is high during the entire bit interval; if a bit is zero,
the signal is low during the entire bit interval. The receiver amplifier takes the photocur-
rent signal input, iph, and gives an output voltage, v0, of the same waveshape; however,
this output voltage also includes noise due to the detector and the receiver amplifier. The
average noise shown on v0 is much less than the signal; however, occasionally a random
fluctuation is bigger than the signal and can turn a 1 into a 0 or a 0 into a 1, causing
an error. Typical systems require a bit-error rate (BER) of 10−9, or one error per billion
bits. The digital-receiver sensitivity is then the input optical signal power required for a
signal-to-noise ratio high enough to get a BER of 10−9.

The receiver output noise can be reduced by filtering; the receiver bandwidth is usually
wider than necessary to pass the photocurrent signal; the extra bandwidth contains extra
noise. This extra noise is removed by the channel filter, improving the signal-to-noise ratio
at the input to the digital decision circuit. The total noise power on the channel filter
output signal, vf is the spectral noise power density S(ω) of the amplifier plus that of the
photodetector integrated over the filter bandwidth; the lower the filler cutoff frequency, fc

the lower the noise bandwidth and the less noise at the input to the decision circuit.
The digital decision circuit recovers the digital bit stream from vf . There are two types

of decision circuits. The asynchronous decision circuit is presently cheaper and has been
used in datalinks. The synchronous decision circuit, in which a clock is recovered from
the signal and is used to sample vf at the center of each zero or one, is more sensitive
because it allows the use of a narrower channel-filter bandwidth, which removes more
noise. In time, the synchronous circuit will be included in the receiver IC and will thus
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Figure 12.2: Optical receiver system: (a) block diagram, (b) typical waveforms.

cost essentially nothing.
Note that the receiver amplifier typically includes automatic gain control (AGC) so

that the peak-to-peak signal at the decision circuit input is held constant, independent
of the input optical signal level. This ensures proper decision circuit operation. This
AGC function has typically been implemented in a postamplifier (not shown) after the
input receiver amplifier in the new high-sensitivity, wide-dynamic-range amplifiers AGC
is provided in the input amplifier as well.

The asynchronous decision circuit (Fig. 12.3) is just a discriminator, It gives a logic
zero output when the filter output, vf is less than the decision threshold voltage, VT; is
gives a logic one output when vf is greater than VT. (Typically, VT is midway between
the “zero” and “one” analog signal levels.) Each digital transition (zero to one or one
to zero) in the output bit stream occurs at the moment the signal vf passes through VT .
Any noise as the signal transition passes through VT will cause a transition timing error.
These timing errors are minimized by maintaining fast rise and fall times on the signal vf ;
this means a wide channel-filter bandwidth, hence high noise, thus reducing the achievable
sensitivity.

The channel-filter bandwidth for an NRZ asynchronous receiver would typically be
about twice the bit rare B, giving a risetime of about 0.17 times the bit interval. (The
10% to 90% risetime is τr ≈ 0.35/BW).

The synchronous decision circuit (Fig. 12.4(a)) samples the filtered signal, vf , at the
center of each bit interval, as indicated by the arrows in Fig. 12.4(b), and decides whether
it represents a zero (vf < VT) or a one (vf > VT). The circuit then puts out a standard
length one or zero pulse exactly one bit-interval long. The sampling circuit is triggered at
the center of every bit by the clock recovery circuit, which reconstructs the transmitter’s
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Figure 12.3: Asynchronous decision circuit optical receiver system.

digital clock signal (timing) from the received signal. The decision circuit output bit
intervals are each one cycle of the recovered clock. Since the signal is sampled only in the
center of each bit interval, the rise and fall times can be very slow; this means a narrow
channel-filter bandwidth and hence low noise. Thus, the synchronous decision circuit gives
the best digital-receiver sensitivities.

The channel-filter bandwidth for a synchronous NRZ receiver is typically set at 0.56
times the bit rate thus removing the high-frequency part of the NRZ signal spectrum. The
resultant waveform, vf , is shown in Fig. 12.4(b); the risetime is now about 0.6. times the
bit interval; the waveform is still satisfactory because the time between sampling points
is one bit interval. The noise bandwidth is now only 28% of that of the asynchronous
receiver example; the receiver sensitivity is increased accordingly.

Figure 12.4: Synchronous decision circuit optical receiver system: (a) block
diagram, (b) typical waveforms.
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Typical optical receiver noise power spectra contain a term independent of frequency,
which dominates at low frequencies and a term proportional to the frequency squared,
which dominates at high frequencies. The frequency-independent noise term is due to the
device leakage currents and the circuit; the frequency-squared term is primarily due to the
input FET. In high-sensitivity designs, the frequency-independent term can essentially be
eliminated over most of the bandwidth. Therefore, the frequency-squared noise term is
dominant; integrating this term over the signal bandwidth gives a total electrical noise
power proportional to the receiver bandwidth cubed. Since the synchronous receiver ex-
ample has only 28% of the noise bandwidth of the asynchronous receiver, for example, the
electrical noise power is only 0.283 = 0.022 times as much; the noise voltage is 0.022 = 0.15
times as much. Since the signal voltage is proportional to the optical power, the minimum
optical signal is 0.15 times smaller. This is an 8.3-dB optical sensitivity advantage for the
synchronous detection, example.

Until now, transmission systems have used synchronous decision circuits for maxi-
mum sensitivity; asynchronous circuits are used in some very-short-haul, low sensitivity
datalinks. However, since a linear channel and synchronous detector circuit can ultimately
be very economically integrated on the same IC, asynchronous systems will no longer be
cheaper. This means that almost all transmission, loop, and local-area-network receivers
plus many datalink receivers will use synchronous detection for better sensitivity.

So far, this discussion has assumed an NRZ optical data transmission format. Other
formats such as return-to-zero (RZ), biphase or Manchester, and block codes have been
considered. Both RZ and biphase approximately double the receiver noise bandwidth,
for an approximately 4.5-dB optical sensitivity penalty; they therefore are not preferred.
Block-coding schemes in NRZ format have been used with the integrating receivers. These
involve a smaller sensitivity penalty. The biphase and block-coding schemes reduce the
low-frequency content of the signal, which can be hopeful in ac-coupled systems or in
integrating receivers; in addition, they provide more frequent signal transitions to help
maintain synchronization of the clock recovery circuit. At present, the NRZ format is
preferred for sensitivity; however, it may be used either with self-synchronizing scrambling
or with block coding; both can be realized in IC form on the same chip.

12.2.3 pin-Photodiode Receiver Noise and Sensitivity Calculations

This section discusses noise and sensitivity calculations for lightwave receivers using (non-
multiplying) pin photodiodes and FET input stages, and lays the noise-theory foundation
for the receiver circuit designs of the following Sections.

The receiver-circuit noise expressions are for equivalent RMS input noise currents;
the real noise sources in the amplifier and detector are replaced by a single equivalent
noise current source at the input to a noise-free equivalent amplifier. This is convenient
because the signal-to-noise ratio at the amplifier output is then just the photocurrent
divided by the equivalent input noise current. In addition, these results are not affected
by the feedback techniques the noise sources can be referred to the input before mentally
closing the feedback loop; the loop is thus closed around the noiseless equivalent amplifier;
by inspection, the equivalent input current noise source, which is outside the loop, is
unchanged.

For digital receiver systems, the signal-to-noise ratio at the digital decision circuit input
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is given by the photocurrent signal divided by the receiver-amplifier-equivalent input-noise
expression, provided that the noise bandwidth is taken as the channel-filter bandwidth.
As mentioned before the channel-filter bandwidth for a synchronous NRZ receiver system
is typically 0.56 times the bit rate B. The photocurrent signal can be had from the optical
signal power by remembering that a 1-eV photon has a wavelength of 1.240 µm; as that
wavelength, 1 watt of detected optical power gives 1 ampere of photocurrent. This then
gives

Ī = ηP̄
λ

1.240
, (12.3)

where Ī the average photocurrent in amperes, η is the photodiode quantum efficiency, P̄
is the average optical power in watts, and λ is the optical wavelength in micrometers.

The problem now is to turn this signal-to-root-mean-square noise ratio at the decision
circuit into a digital bit-error rate (BER). Consider a synchronous detection digital receiver
system. The digital decision circuit samples the signal once at the center of each bit
interval; if the signal, s, is below the decision threshold D, the bit is read as a zero; if
s is greater than D it is read as a one. The probability of error, i.e., the BER, is the
probability that the noise at the sampling instant will bring the zero signal above D or
the one signal below D.

By the central limit theorem, the noise amplitude probability distribution is Gaussian if
the noise amplitude is the sum of many small independent physical process The probability
distribution for the zero-level signal is then, following Smith and Personick[1]

P (s) =
1√

2πσ0

e−[s−s(0)]2/2σ2
0 , (12.4)

where s(0) is the noise-free, zero-level signal, σ0 is the signal variance, or root-mean-square
zero-level analog noise. The probability E01 of mistakenly identifying a zero bit as a one
is then (Fig. 12.5)

E01 = P (s > D) =
1√

2πσ0

∫ ∞

0
ds e−[s−s(0)]2/2σ2

0 .

The derivation of E10, the probability of mistakenly identifying a one-bit as a zero, is
similar. Changing variables, the general error probability is

P (E) =
1√
2π

∫ ∞

Q
dx e−X2/2 =

1
2
erfc

(
Q√
2

)
, (12.5)

where
Q =

(D − s(j))
σj

(12.6)

and for j = O,P (E) = E01; for j = l, P (E) = E10.
For pin receivers, the zero-signal-level RMS noise, σ0, and the one-signal-level RMS

noise, σ1, are essentially equal. Assuming a random bit stream (maximum information
content), ones and zeros are equally frequent. The optimum decision level D is then
midway between s(0) and s(1), and E01 = E10. The bit-error rate (BER) is now

BER =
1
2
erfc

(
Q√
2

)
, (12.7)
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Figure 12.5: Error probabilities for two-level digital system. E01 is the proba-
bility of mistakenly identifying a zero bit as a one bit; E10 is the probability
of mistakenly identifying a one bit as a zero bit.

where

Q =
s(1)− s(0)
2〈s2

n〉1/2
,

where 〈s2
n〉1/2 = σ is the RMS noise. Q is then just half the peak-to-peak signal to

RMS noise ratio at the digital decider input. However, as mentioned, this SNR is just
the photocurrent signal to equivalent spat RMS noise current ratio. Assuming that the
zero-level photocurrent is zero, the average photo current fin half the peak (one-level)
photocurrent Ipk and

Q =
Ī

〈i2n〉1/2
=

Ipk

2〈i2n〉1/2
, (12.8)

where 〈i2n〉1/2 is the RMS equivalent input noise current.
Equations (12.7) and (12.8) give the pin-receiver bit-error rate (BER) in terms of the

photocurrent signal to RMS equivalent input-noise current ratio. The BER as a function
of Q is shown in Fig. 12.6. A typical system requirement is for a BER of 10−9; this
corresponds to Q = 6 or an average photocurrent of six times the RMS equivalent input-
noise current. This corresponds to a peak-to-peak signal at the digital decider input that
is 12 times the RMS noise. The optical power to get that photocurrent in then the digital
optical receiver sensitivity.

A. Input Device Noise Theory for pin-FET Receivers
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Figure 12.6: Probability of error versus the average signal-to-RMS-noise ratio, Q.

Figure 12.7 shows a generalized pin-FET receiver amplifier. This subsection presents
a tutorial review for the noise due to the input devices shows in Fig. 12.7, i.e., the channel
noise of the input FET, the Johnson noise of the bias/feedback or input resistor, and the
shot noise due to the input FET gate and pin-photodiode leakage currents. This theory
gives much of the information about FET- and pin-technology requirements and amplifier
design constraints.

The input bias or feedback resistor Ri contributes a mean Johnson thermal input noise
current squared per frequency bandwidth df of

d〈i2n〉R =
4kT

Ri
df . (12.9)

The different frequency components of the noise are both independent and orthogonal.
Therefore, the total mean-square input noise 〈i2n〉 due to the input resistor is simply the
mean-square spectral noise density of Eq. (12.9) integrated over the channel frequency
bandwidth. If |F (f)| is the magnitude of the normalized channel-filter frequency response,
then

〈i2n〉R =
∫ ∞

0

4kT

Ri
|F (f)|2df ; (12.10)

the independent noise currents squared are multiplied by the filter response magnitude
squared, then integrated.

By inspection, this resistor-noise integral is proportional to the bandwidth or to the bit
rate B times a numerical factor that depends on the shape of the filter frequency response
function F (f). (The same filter function is scaled up or down in frequency for different bit
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Figure 12.7: General pin-FET receiver amplifier.

rates.) Changing variables from the frequency f to y = f/B (the frequency normalized to
the bit rate) gives

〈i2n〉R =
4kT

Ri
I2B , (12.11)

where
I2 =

∫ ∞

0
dy|F ∗(y)|2 (12.12)

where F ∗(y) is the filter frequency response shape; the numerical factor I2 is called the
second Personick integral.

The next question is how to normalize the channel frequency response F (f). F (f)
must give the fraction of the input-noise-current frequency component that appears at
the linear channel output to the digital decider. This is best done by first normalizing in
the time domain so that a unit input photocurrent pulse maps to a unit output pulse to
the decider. The corresponding filter frequency function normalization then applies to the
noise as well.

The receiver input is a photocurrent; the input pulse shape hp(t) is normalized to
correspond to a unit photocurrent over a bit interval T = 1/B:

1
T

∫ ∞

−∞
hp(t)dt = 1 . (12.13)

These receivers are used with synchronous decision circuits, which sample the waveform at
the center of each bit interval when the pulse is a maximum(logic one bit) or a minimum
(logic zero bit). Thus, a unit filtered pulse is one which is of unit amplitude at the sampling
instant, t0;

hout(t0) = 1 . (12.14)

Defining Hp(f) and Hout(f) as the fourier transforms of hp(t) and hout(t) then gives the
normalized filter function:

F (t) =
Hout(f)
Hp(f)

. (12.15)

Note that, for a given filler design, changing the input pulse shape changes the magnitude
but not the frequency dependence of F (f); F (f) is normalized such that a unit average
photocurrent pulse of whatever pulse shape chosen gives a unit amplitude input at the
sampling instant to the decision circuit, but the shape of F (f) depends only on the channel
filter design.
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The remaining question is how to arrive at the frequency dependence of the channel
filter function F (f); in other words, how to design the channel filter. By inspection, a
narrow channel-filter bandwidth means smaller Personick integrals and less receiver noise;
however, a narrow filter bandwidth also means slow rise and fall times, which cause the
filtered bit-pulse hout(t) to spread into the neighboring bit intervals. Thus, choosing the
filter function is a tradeoff between noise considerations in the frequency domain and
pulse-shape considerations in the time domain. Since the decision circuit samples the
waveform at the center of each bit interval, the bit-pulse hout(t) should peak at the center
of its own bit interval and should be zero at the centers of the neighboring bit-intervals to
avoid inter-symbol interference (ISI). The filter typically is designed by iterating between
the time and frequency domains, alternately minimizing the ISI and the noise bandwidth,
respectively. The result usually is a filter bandwidth of 0.5-0.6 times the bit rate for a
NRZ signal. For such a typical filter design, I2 worked out to be 0.56.

The FET gate-leakage current and the pin-leakage current contribute an input shot
noise current squared per unit frequency bandwidth of

d〈i2n〉` = 2qI`df , (12.16)

where the total leakage current I` is the sum of the pin-photodiode leakage current I`pin

plus the FET leakage current I`FET, and q is the electron charge. Integrating over fre-
quency, as before, gives the total input-leakage-current noise in the channel filter band-
width:

〈i2n〉` =
∫ ∞

0
2qI`|F (f)|2df (12.17)

or
〈i2n〉` = 2qI`I2B , (12.18)

where I2 is the second Personick integral as before.
The input FET channel noise is essentially the Johnson noise of the unpinched-off por-

tion of the channel next to the source. This channel conductance is simply the transcon-
ductance of the FET; the drain current noise per unit bandwidth is then

d〈i2n〉drain = 4kTgmΓdf , (12.19)

where Γ is a factor to account for high-field effects in short-channel transistors For 1-µm
gate length silicon MOSFETs, Γ is typically 1 to 1.2; for 1-µm GaAs FETs, Γ is typically
1.4 to 1.8.

This mean-square FET drain noise current must be turned into an equivalent in-
put mean-square noise current. The drain noise current squared can be turned into an
equivalent gate(input) noise voltage squared by dividing by the transconductance squared(
i2d = g2

me2
g

)
:

d〈e2
n〉FET =

4kTΓ
gm

df . (12.20)

The corresponding mean-square input noise current is simply the mean-square gate noise
voltage divided by the input impedance squared (without feedback.) For small input
bias/feedback resistor values, that mean-square equivalent input noise current would be
just 〈i2n〉FET = 〈e2

n〉FET/R2
i . However, this case is of no practical interest because the
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Johnson noise of that small-value resistor would swamp the FET noise and ruin the sensi-
tivity. In high-sensitivity amplifiers, the input impedance (without feedback) is essentially
the input FET gate capacitance, CFET, in parallel with the junction capacitance of the
pin photodiode, Cpin, plus any stray capacitance, Cs. The equivalent input noise current
is then

d〈i2n〉FET =
4kTΓ(2πfCT )2

gm
df , (12.21)

where the total input capacitance, CT is the sum of the FET input capacitance, CFET,
plus the photodiode capacitance Cpin, plus Cs.

The physical assumption behind Eq. (12.21) is that in the absence of feed-back, the
photocurrent signal will be integrated by the input capacitance CT (V = 1/CT

∫
idt); that

Ri is so large (for low noise) that it can be neglected over most of the bandwidth. For
example, in a 45-Mb/s receiver with Ri = 1 MΩ, and CT = 1 pF, CT dominates above
80 kHz. This means that the input voltage produced by the photocurrent is inversely
proportional to the frequency; since the input noise voltage is fixed, the signal-to-noise
ratio is also inversely proportional to the frequency. When the signal is equalized (dif-
ferentiated), the low-frequency signals (and noise) are attenuated; the high frequencies
are boosted. Thus, with the signal now proportional to the input photocurrent, the noise
is proportional to frequency, and the mean-square noise is proportional to the frequency
squared, as in Eq. (12.21). Again, using feedback to avoid signal integration does not
change the signal-to-noise ratio versus frequency.

The total equivalent menu-square input noise current of the FET is obtained by inte-
grating over the channel-filter frequency response as before:

〈i2n〉FET = 4kTΓ
(2πCT )2

gm

∫ ∞

0
f2|F (f)|2df , (12.22)

or, changing variables from f to y = f/B as before,

〈i2n〉FET = 4kTΓ
(2πCT )2

gm
I3B

3 , (12.23)

where
I3 =

∫ ∞

0
|F (y)∗|2y2dy (12.24)

is the third Personick integral.
The total mean-square equivalent input-noise current due to the input devices (pin

photodiode plus FET pins bias resistor) is then

〈i2n〉T = 〈i2n〉Ri + 〈i2n〉` + 〈i2n〉FET (12.25)

or

〈i2n〉T =
4kT

Ri
I2B + 2qI`I2B + 4kTΓ

(2πCT )2

gm
I3B

3 , (12.26)

where I` = I`FET + I`pin and CT = Cpin + CFET + Cs.
Equation (12.26) for the total equivalent input noise due to the input devices contains

much of the information about pin-photodiode and FET technology requirements and
about amplifier design constraints. In high-sensitivity designs, the input resistor Johnson
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noise term 〈i2n〉Ri , is made almost negligible by making Ri large. The leakage current shot
noise has been made negligible by reducing the pin photodiode and FET leakage currents.
This leaves the input FET noise as the fundamental noise source; the receiver noise with
low-leakage devices and state-of-the-art circuitry reduces to approximately.

〈i2n〉T ∼= 4kTΓ
(2πCT )2

gm
I3B

3 . (12.27)

Thus, the circuit-equivalent input-noise power (or mean-square noise current) is ap-
proximately proportional to B3, C2

T /gm and the channel noise factor Γ. One can write an
input circuit figure of merit that is independent of bit rate

M =
gm

C2
T Γ

. (12.28)

The receiver optical sensitivity is inversely proportional to the root-mean-square noise
current and therefore is approximately proportional to

√
MB−3/2.

Note that if the mean-square noise current were proportional to B2 rather than B3,
the photocurrent charge per bit would be constant. In fact, the charge per bit goes up
approximately as the square root of the bit rate.

B. Complete Receiver Circuit Noise Expressions with Device Figures of Merit

This subsection first derives figure-of-merit expressions for pin-photodiode, FET, and
FET IC technologies, then extends the Smith and Personick noise expression to include
the noise from the input FET load device and the rest of the receiver circuit. The resultant
expression is used to calculate the theoretical receiver sensitivities.

The front-end figure of merit of Eq. (12.28) can be rewritten as the product of an
FET technology figure-of-merit times a pin-photodiode figure-of-merit. In a typical high-
performance FET technology, the source-to-drain spacing or channel length is fixed at the
minimum reliable resolution of the lithography. The FET transconductance and input
capacitance are both proportional to the channel width; the gm/CFET ratio is set by the
FET technology. Rewriting gm as (gm/C)CFET, where CFET determines the FET size,
and taking CT = CFET + Cpin + Cs gives

M =
(

gm

ΓCFET

) (
CFET

CFET + Cpin + Cs)2

)
. (12.29)

Differentiating the second bracketed term with respect to CFET says that the optimum-size
FET in a given technology has a gate width such that

CFET = Cpin + Cs =
1
2
CT . (12.30)

Assuming such an optimum-sized FET, one can now write

M = MFETMpin , (12.31)

where the FET-technology figure of merit is

MFET =
gm

ΓCFET
=

2πfT

Γ
, (12.32)
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where fT = gm/2πCFET is the unity gain frequency of the FET technology. Mpin, the
pin-photodiode (and stray capacitance) figure of merit is

Mpin =
1

4(Cpin + Cs)
(12.33)

The optical receiver sensitivity is, again, proportional to the square root of the product of
these figures of merit.

The FET figure of merit indicates that high-sensitivity receivers should be made with
microwave or VHSIC technologies because such FETs have the highest fTs. The optical
sensitivity of such receivers is approximately proportional to the square root of fT; thus,
these high-frequency FETs are preferred, even at low bit rates (e.g., 10 Mb/s), but for
noise, not frequency-response, reasons.

The photodiode and stray-capacitance figure of merit of Eq. (12.33) indicates that the
pin-photodiode capacitance Cpin, and the stray capacitance Cs must be made as small as
possible. Assuming an optimum-size amplifier input FET (gate width such that CFET =
Cpin + Cs), the optical receiver sensitivity is inversely proportional to the square root of
(Cpin + Cs). For small Cs, the optical sensitivity is inversely proportional to the square
root of the pin-photodiode capacitance.

Thus, the pin-photodiode technology objectives are low capacitance, low leakage cur-
rent, and high quantum efficiency. Low capacitance means either a low doping (1014 −
1015/cc) for a wide depletion region, a small diameter (area), or both.

Thus, a high-sensitivity pin-FET receiver is a combined FET technology problem (high
gm/CΓ), pin-photodiode problem (low Cpin, low leakage current) circuit design problem
(large Ri for low Johnson noise while preserving a wide bandwidth and dynamic range),
and packaging problem (low stray capacitance Cs, small photodiode diameter if economic).

The pin-photodiode figure of merit can also be read as a total-input-capacitance figure
of merit. For an optimized receiver, Mpin = 1/(2CT) by Eq. (12.30); thus, for a given
FET figure of merit, the sensitivity of an optimized receiver is inversely proportional to
the square root of CT.

Actual sensitivity calculations should also include corrections for the noise due to the
input FET drain load device and for the noise of following stages. The Smith and Personick
noise calculations are readily expendable to include these effects.

The input FET’s load device Q1 is typically another FET. The IC load transistor QL

adds an extra mean-square noise current at the drain of Q1 of

d〈i2n〉L = 4kT gmLΓ df . (12.34)

where gmL is the transconductance of QL. Equation (12.19) can then be rewritten as

d〈i2n〉drain = 4kT (gm1 + gmL)Γ df , (12.35)

where gm1 is the transconductance of input FET Q1. Retracing the derivation of Eqs. (12.20)-
(12.23) then gives a total mean-square equivalent input noise current due to Q1 (input
FET) and QL (load FET) of

〈i2n〉Q1+QL
= 4kTΓ(2πCT)2

(
gm1 + gmL

g2
m1

)
I3B

3 . (12.36)
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The optimum ratio of QL size (gate width) to Q1 size is a tradeoff. A large QL gives
a higher drain current density in Q1 and therefore a higher gm1; a small QL gives less
drain current noise due to QL. Assuming an optimum QL to Q1 ratio for the particular
technology, one can revise Eq. (12.32) to give a figure of merit for the FET IC technology:

MIC =
g2
m1

(gm1 + gmL)ΓCFET
. (12.37)

MIC depends only on the IC technology, so long as the input FET Q1 is scaled so that
CFET = CT/2 and QL is scaled for minimum noise. The receiver figure of merit now is
MIC ·Mpin, where Mpin is given by Eq. (12.33) as before; the overall receiver sensitivity is
approximately proportional to the square root of the receiver figure of merit. As will be
shown below, the QL noise term typically is more important than the all following stage
noise terms combined; thus, Equation (12.37) is a good IC technology figure of merit and
gives good approximate sensitivities.

The noise of the following stages of the receiver can be represented as an equivalent
stage input mean-square noise voltage of d〈e2

s〉 per unit bandwidth df . If as−1 is the total
voltage gain of the s− 1 stages preceding stage s, the mean-square equivalent input noise
voltage due to stage s is

d〈e2
s〉I = d〈e2

s〉/a2
s−1 . (12.38)

Assuming 〈e2
s〉 is constant in frequency, one can repeat the derivation of Eqs. (12.20)-

(12.23), substituting d〈e2
s〉I for d〈e2

n〉FET. This gives the mean-square equivalent input
noise current due to stage s:

〈i2n〉s =
d〈e2

n〉s
a2

s−1

(2πCT)2I3B
3 . (12.39)

The total mean-square equivalent input noise current of the receiver is then

〈i2n〉 =
4kT

R1
I2B + 2qI`I2B + 4kTΓ

(2πCT )2

gm1
I3B

3

+ 4kTΓ(2πCT )2
gmL

g2
m1

I3B
3 + (2πCT )2I3B

3
N∑

s=2

d〈e2
n〉s

a2
s−1

, (12.40)

where the first two terms are the input-resistor Johnson noise and the leakage-current shot
noise, respectively, the third term is the input FET noise, the fourth term is the noise of
the input FET load (QL), and the last term is the sum over the noise contributions of
the following stages. Generally, the following-stage noise current is less important than
the load device contribution; even the second-stage mean-square noise is divided by the
first-stage voltage gain squared. Thus, Eq. (12.37) is a good figure of merit for comparing
FET IC technologies.

C. Sensitivities of Present-Technology pin-FET Receivers

This subsection calculates theoretical sensitivities for present-technology silicon and
GaAs FET IC receivers and compares the two technologies. It also includes sensitivity
results from the literature.

15



For the numerical sensitivity calculations, gm/C is taken as 70 mS/pF for 1-µm silicon
MOSFETs and 90 mS/pF for 1-µm GaAs MESFETs; Γ is taken as 1.2 for the silicon and
1.5 for the GaAs. Since the FET technology figure of merit is gm/(CΓ) by Eq. (12.32),
the silicon and GaAs sensitivities are essentially equal in theory; GaAs FETs have higher
transconductances, but silicon FETs have lower channel noise. In practice, GaAs designs
are presently a few decibels more sensitive.

The Personick integrals I2 and I3 can be roughly estimated by remembering that the
channel-filter bandwidth is typically 0.56 times the bit rate B for synchronous detection
NRZ receivers. Thus, taking |F (y)| = 1 for y < 0.56 and F (y) = 0 for y > 0.56 in
Eq. (12.12) for I2 gives I2 = 0.56; using this approximation in Eq. (12.24) for I3 gives
I3 = 0.059. Values for I2 and I3 for different input and output (filtered) pulse shapes are
found in [1] and [2].

Figure 12.8 shows theoretical digital optical-receiver sensitivities versus bit rate for
1-µm gate length GaAs and silicon IC receivers using InGaAs pin photodiodes. The
optical wavelength is 1.3 µm. The calculations assume the new high-sensitivity, micro-
FET feedback IC receiver designs, in which the input/feedback resistor noise is almost
negligible; the sensitivities were calculated on paper designs using Eq. (12.40) for the
total receiver noise. Figure 12.8 assumes a 1-pF total front-end capacitance, e.g., Cpin =
0.40 pF, Cs = 0.10 pF, CFET = 0.5 pF; the silicon input FET then has a transconductance
of 35 mS; the GaAs input FET has a transconductance of 45 mS. The photodiode leakage
current is taken as 1 nA at 20◦C and 15 nA at a maximum operating temperature of
85◦C (the 15x increase assumes that the leakage is a G-R current via midgap states.) The
bit-error rate is 10−9.

Figure 12.8: Theoretical sensitivities of present-technology pin-FET lightwave
receivers. Dots show GaAs FET receiver measurements from the literature;
triangles show silicon FET receiver measurements.

Since the theoretical sensitivities of the silicon and GaAs FET IC receivers are es-
sentially the same, only one curve is plotted for both. Note also that the calculated
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sensitivities go approximately as B−3/2; the first two terms in Eq. (12.40) for the input
noise squared are negligible except at low bit rates; the others go as B3 except for the
(small) following-stage noise summation, which increases slightly faster than B3 because
the gain per stage is less for wider bandwidth stages. Finally, note that the calculated
sensitivities are competitive with those calculated for present APD receivers to 100-200
Mb/s.

Figure 12.8 also shows the best experimentally achieved pin-FET receiver sensitivities.
Unfortunately, the silicon MOSFET optical receivers are presently a few decibels less

sensitive than either theory or RMS noise measurements would indicate. This may be
because fine-line silicon FETs were developed as a digital IC technology in which noise
was not important. The fine-line GaAs MESFET technology was developed as an analog
technology for microwave receivers. Therefore, the GaAs noise problems were important
and were solved.

12.2.4 Avalanche Photodiode Receiver Noise and Sensitivity Calcula-
tions

In an avalanche photodiode (APD), the primary photocurrent is multiplied by impact
ionization in the p-n junction, which is operated reversebiased near breakdown. The
multiplied photocurrent signal goes to the receiver circuit. Consider an APD in which the
primary photocurrent is multiplied (on average) by a factor 〈M〉. If the multiplication
process were noiseless and the APD leakage current negligible, the optical signal power
required by the receiver would be decreased by a factor 〈M〉 and the optical receiver
sensitivity increased by a factor 〈M〉.

In fact, the multiplication process is noisy because it is the result of random impact
ionizations. The equivalent mean-square primary photocurrent noise d〈i2i 〉D per bandwidth
df due to the APD is the shot noise of the photocurrent Iph plus leakage current I` times
the McIntyre excess noise factor F (〈M〉)[3]

d〈i2n〉D = 2q(Iph + i`)F (〈M〉)df . (12.41)

For noiseless multiplication, F (〈M〉) = 1, and the noise is just the photocurrent plus
leakage-current shot noise; F (〈M〉) is the factor by which the real avalanche multiplication
increases the noise over that of a noiseless multiplication.

If the avalanche is initiated by injection of photocarriers at one side of the avalanche
region, F (〈M〉) is given by[3]

F (〈M〉) = 〈M〉
[
1− (1− k)

(〈M〉 − 1
〈M〉

)2
]

, (12.42)

where k is the ratio of the electron and hole ionization coefficients. In silicon, electrons have
the higher ionization coefficient; the 0.8-µm wavelength silicon APDs use photoelectron
initiated multiplication, and k is the ratio of the hole ionization coefficient to the electron
ionization coefficient. In InGaAs/InP 1.3- to 1.6-µm wavelength APDs, the avalanche is
photo-hole initiated and k is the ratio of the electron ionization coefficient to that of holes.
In silicon APDs, k is typically 0.02[4]; in InGaAs/InP APDs, k is typically 0.4 at present.

The APD is not the “solid state equivalent of a photomultiplier” because both electrons
and holes can impact ionize in an APD; in a photomultiplier, only electrons impact ionize
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(on the dynodes); there are no holes in a vacuum. In an electron-initiated APD, the
electrons of the primary avalanche travel downstream, creating electron-hole pairs by
impact ionization; the resultant holes travel upstream and can create more electrons,
thus initiating secondary electron avalanches, etc. This hole feedback makees avalanche
carrier multiplication much noisier than photomultiplier electron multiplication. When
the electron-hole feedback loop-gain becomes unity, the avalanche is self-sustaining and
the diode breaks down. The higher the multiplication, the closer to breakdown and the
noisier the multiplication.

For k = 0 (best case), only one carrier ionizes and the APD multiplication process is
similar to that of a photomultiplier. In this limit, F (〈M〉) becomes

F (〈M〉) = 2− 1
〈M〉 . (12.43)

For k = 1 (worst case), F (〈M〉) becomes

F (〈M〉) = 〈M〉 ; (12.44)

the avalanche multiplication is then more noisy due to the carrier feedback. In general,
the lower the k, the less noisy the multiplication. Thus, the silicon APDs (k ∼ 0.02) are
much less noisy for a given multiplication than the InGaAs APDs (k ∼ 0.5); unfortunately,
silicon is transparent below 1.1 µm and cannot be used for 1.3- to 1.6-µm APDs.

The total equivalent mean-square primary photocurrent noise 〈i2n〉ph is the APD noise
integrated over the receiver bandwidth plus the equivalent mean-square input noise current
〈i2n〉T of the receiver amplifier, divided by 〈M〉2:

〈i2n〉ph = 2q(iph + I`)F (〈M〉)I1B +
〈i2n〉T
〈M〉2 , (12.45)

where the integral over frequency is I1B; I1 is the first Personick integral.
When a logic-zero bit is transmitted, the optical signal, hence the photocurrent iph, is

ideally zero; the zero-level mean-square noise then is due only to the APD leakage current
and to the amplifier noise. When a logic one bit is transmitted, the mean-square noise
is increased by 2qIph1F (〈M〉)I1B, which is the noise due to the avalanche multiplication
of the one-level photocurrent. Since an APD receiver’s one-level noise is greater than its
zero-level noise, the decision threshold D is typically set closer to the zero level than to
the one level.

In practice, the optical transmitter is not completely turned off during zero bits, for
reasons of transmitter response speed and (for laser transmitters) for reasons of optical
frequency stability. Take the zero-bit optical signal level P (0) as a fraction r of the one-bit
optical signal level P (1):

r =
P (0)
P (1)

=
〈iph(0)〉
〈iph(1)〉 , (12.46)

where 〈iph(0)〉 is the expected photocurrent at the sampling instant for a zero bit; 〈iph(1)〉
is the photocurrent for one bit. r is called the transmitter optical extinction ratio.

Ideally, r should be zero; in practice, r is may be as high as 0.2. This means a
smaller photocurrent signal component for a given average optical power. In addition,
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the zero-level photocurrent is the functional equivalent of a leakage current and adds a
corresponding noise term to both the zero and one signals.

Taking the avalanche-noise amplitude distribution as approximately Gaussian, the er-
ror probability or bit-error rate (BER) is given by Eq. (12.5): BER = 1

2erfc(Q/
√

2) where,
for a zero bit,

Q0 = (ith − 〈iph(0)〉)/〈i2n0〉1/2
ph , (12.47)

and ith is the decision threshold and 〈i2n0〉1/2 the root-mean-square noise for a zero bit.
Similarly, for a one bit,

Q1 =
(〈iph(1)〉 − ith)

〈i2n1〉1/2
ph

. (12.48)

Q0 = Q1 = 6 gives a bit-error rate of 10−9.
Taking Q0 = Q1 equal to the Q required for the desired, BER, and using the APD

receiver noise Eq. (12.45) to give 〈i1n0〉1/2 and 〈i2n1〉1/2 in Eqs. (12.47) and (12.48), yields
the photocurrent signal required for the desired BER. Assuming that zero bits and one
bits are equally probable, and converting the photocurrent to an input optical power, gives
an equation for the average optical power required for a given BER:

ηP̄ =
(

hc

λq

) (
1 + r

1− r

) 
(1 + r)

Q2qBI1F (〈M〉)
1− r

+




(
Q2qBI1F (〈M〉)

1− r

)2

· 4r

+ Q2

(
〈i2n〉T
〈M〉2 + 2qI`mF (〈M〉)I2B

))1/2

 , (12.49)

where Q is the photocurrent signal-to-average-noise ratio for the given BER, multiplied
by a prefactor that is unity for zero (ideal) extinction ratio r:

Q =
〈iph(1)〉 − 〈iph(0)〉
〈i2n0〉1/2

ph + 〈i2n1〉1/2
ph

=
(

1− r

1 + r

)
Īph

1
2(〈i2n0〉1/2 + 〈i2n1〉1/2)

, (12.50)

〈i2n〉T is the equivalent mean-square amplifier noise, I`m is the leakage current of the
APD that undergoes multiplication, and F (〈M〉) is the McIntyre excess noise factor of
Eq. (12.42).

Note that a high multiplication 〈M〉 reduces the effect of the receiver amplifier noise
but gives more avalanche multiplication noise and a higher F (〈M〉) in Eq. (12.45). A low
〈M〉 gives lower avalanche multiplication noise but increases the effect of amplifier noise.
The optimum 〈M〉 is determined by this trade-off.

In theory, Eq. (12.49) can be differentiated to find the optimum gain; the result is an
unmanageable expression of no particular physical interest. In practice, one is much better
off using a minimum finder program to find the optimum gain 〈M〉 and the minimum ηP̄
numerically.

Figure 12.9 shows theoretical InGaAs/InP APD receiver sensitivities versus bit rate.
The figure assumes that the APD is used with an optimized 1-µm gate technology GaAs
FET receiver amplifier, which is the most sensitive amplifier type at present. It also
assumes a total receiver input capacitance of 1 pF (this includes the APD capacitance),
a primary leakage current at 20◦C of 3 nA, and an APD k-ratio of 0.4. Figure 12.9 shows
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the pin-FET receiver sensitivities from Fig. 12.8 for comparison, plus the 20◦C and 85◦C
InGaAs/InP APD sensitivities. The 85◦C leakage current is taken as 45 nA. This assumes
that the APD leakage current is a generation-recombination current via midgap states in
the InGaAs, which gives a 15x increase in leakage current from 20◦C to 85◦C.

Figure 12.9 also shows InGaAs/InP APD-FET receiver measurements from the liter-
ature.

Figure 12.9: Theoretical InGaAs/InP APD receiver sensitivities. λ = 1.3 µm,
IL = 3 nA at 20◦C, 45 nA at 85◦C, CT = 1 pF, high-sensitivity receiver ICs.
Dots show APD receiver measurements from the literature.

Note however, that these measurements were made at room temperature; however, in
field use, the maximum operating temperature is typically 85◦C. Unless the receiver and
APD temperature is controlled, the 85◦C sensitivity is what matters in practice.

Figure 12.9 shows that present InGaAs/InP 1.3- to 1.6-µm APDs in theory offer little
sensitivity advantage below 100 Mb/s at a maximum operating temperature of 85◦C. This
is due to the noise caused by the avalanche multiplication of the primary leakage current;
an APD without leakage current would offer a sensitivity improvement at all bit rates.
In addition, reducing the leakage current is presently more important than improving the
k-ratio for bit rates less than ∼ 500 Mb/s at 85◦C.

12.2.5 Optical Preamplifier Receiver Noise

Consider as optical receiver system shows in Fig. 12.10, in which an intensity modulated
optical signal is incident on a traveling-wave (TW) optical linear preamplifier followed
by an optical bandpass filter and photodiode. Electronic receiver circuitry consists of a
baseband amplifier, an equalizer, and a decision circuit. The optical digital pulse signal
is linearly amplified in the preamplifier, which generates a spurious spontaneous emission
noise. The noise is partly reduced by the narrow-band optical bandpass filter.
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Figure 12.10: Optical receiver system model using a TW-type optical pream-
plifier in front of a photodetector. Here, n0 and n1 are numbers of preamplifier
input and output photons, G is the preamplifier gain, mt is the preamplifier
transverse mode number, ∆f is the optical filter bandwidth, η is the detec-
tor quantum efficiency, g is the detector internal gain, λd is the detector dark
current count,

√〈i2a〉 is the electronic amplifier input noise current,
√〈e2

a〉 is
the input noise voltage, Heq(ω) is the equalizer frequency response, D is the
decision threshold voltage, hp(t) is the optical input pulse shape, and hout(t)
is the equalized output pulse shape, respectively.

Let the mean and mean square of the photon number per second incident on the
preamplifier be 〈n0〉 and 〈n2

0〉. The signal is assumed to be a single transverse mode. The
variances in the incident photons for a completely coherent signal with Poisson distribution
and a completely incoherent signal with Bose-Einstein distribution are of the form

〈n2
0〉 − 〈n0〉2 =

{
〈n0〉 : coherent
〈n0〉2 + 〈n0〉 : incoherent

. (12.51)

The mean and variance in the photon number as the pre-amplifier output are described
by the photon master equation for an unit noise bandwidth (mt ·∆f · τ = 1)[5]

d〈n〉
dt

= (A−B − C)〈n〉+ A (12.52)

d〈n2〉
dt

= 2(A−B − C)〈n2〉+ (3A + B + C)〈n〉+ A (12.53)

where mt is a transverse mode number, ∆f is an optical bandwidth given, for example, by
the optical filter, τ is a sampling interval over which the number of photons are counted, A
and B are coefficients representing the stimulated emission and absorption, respectively,
and C is a coefficient representing other loss mechanisms, such as free carrier absorption
and waveguide scattering. The mean and variance of the photon number per second at
the preamplifier output are

〈n1〉 = G〈n0〉+ (G− 1)γmt∆f (12.54)
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〈n2
1〉 = G〈n0〉+ (G− 1)γmt∆f + 2G(G− 1)γ〈n0〉

+(G− 1)2γ2mt∆f + G2(〈n2
0〉 − 〈n0〉2 − 〈n0〉) (12.55)

where G is a signal gain given by exp[(A−B−C)(L/c0)],L is amplifier length, γ = A/(A−
B), and c0 is the light velocity in the amplifier medium. Five terms on the right-hand side
of Eq. (12.56) represent amplified signal shot noise, spontaneous emission shot noise, beat
noise between signal and spontaneous emission, beat noise between spontaneous emission
components, and signal excess noise, respectively. Factor mt∆f in the second terms of
Eqs. (12.54) and (12.55) represents optical noise bandwidth. The beat noise between
spontaneous emission components corresponds to an excess photon noise for lasers. The
last term disappears when the input signal is completely coherent.

The optical power incident on the avalanche photodiode is assumed to be of the form
for binary pulse signals:

p(t) = hν[G〈n0〉+ (G− 1)γmt∆f ]

=
∞∑

k=−∞
Gbkhp(t− kT ) + hν(G− 1)γmt∆f (12.56)

where hp(t− kT ) is the amplified signal pulse shape normalized as
∫∞
−∞ hp(t− kT )dt = 1,

T is a pulse spacing or the inverse of the data rate, hν is the energy of a photon, and bk

is the energy of the incident optical pulse which takes one of the two values bmax or bmin.
The average avalanche photodiode output current 〈is(t)〉 is given by

〈is(t)〉 =


 eη

hν

∞∑

k=−∞
Gbkhp(t− kT ) + eη(G− 1)mt∆f + eλd


 〈g〉 (12.57)

where

〈g〉 = average avalanche gain
e = electron charge

λd = detector dark current count
η = quantum efficiency of the avalanche photodiode.

The average pulse voltage at the equalizer output is given by

〈vout(t)〉 =
eη

hν
〈g〉RL




∞∑

k=−∞
Gbkhp(t− kT )


 ∗ ham(t) ∗ heq(t)

=
Aeη

hν
〈g〉RL




∞∑

k=−∞

Gbk

T
hout(t− kT )


 (12.58)

where A is an arbitrary constant, RL is a detector load resistance, the symbol ∗ indicates
convolution operation, ham(t) is the current impulse response of the baseband amplifier
input circuit, heq(t) is the current impulse response of the equalizer, and hout(t) is the
equalized output pulse shape, respectively. The equalizer response heq(t) is designed so
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that the equalized output pulse signal has no intersymbol interference at sampling time
t = {kT}:

hout(0) = 1 (12.59)

hout(kT ) = 0 (k 6= 0) . (12.60)

Having defined the equalized output signal voltage in Eq. (12.58) and the input photon
statistics in Eqs. (12.54) and (12.55), it is now possible to calculate the worst case variance
of νout(t), the noise voltage at the equalizer output. The worst case variance at sampling
time t = 0 is given by[2]

NW (b0) = max
{bk},k 6=0

[〈vout(0)2〉 − 〈vout(0)〉2] (12.61)

where the maximization is over all possible sets {bk} for k 6= 0, and b0 takes either bmax

or bmin. The worst case variance occurs when all the bk, except b0, are bmax. Combining
Eqs. (12.54), (12.55), (12.58) and (12.61), and after some algebraic calculation, we obtain

NW (b0) = 〈N2
s 〉+ 〈N2

sp〉+ 〈N2
s−sp〉+ 〈N2

sp−sp〉+ 〈N2
d 〉+ 〈N2

a 〉 (12.62)

where

〈N2
s 〉 = A2e2R2

L

〈g2〉
T 2

Gη

hν
{I1b0 + (I0 − I1)bmax} :

signal shot noise (12.63)

〈N2
sp〉 = A2e2R2

L

〈g2〉
T

I2η(G− 1)γmt∆f :

spontaneous emission shot noise (12.64)

〈N2
s−sp〉 = 2A2e2R2

L

〈g〉2
T 2

G(G− 1)γη2

hν
· {I1b0 + (I0 − I1)bmax} :

beat noise between signal and spontaneous emission (12.65)

〈N2
sp−sp〉 = A2e2R2

L

〈g〉2
T

I2η
2(G− 1)2γ2mt∆f :

beat noise between spontaneous emission components (12.66)

〈N2
d 〉 = A2e2R2

L

〈g2〉
T

I2λd :

shot noise caused by detector dark current (12.67)

〈N2
a 〉 =

I2

T
[〈i2a〉R2

L + 〈e2
a〉+ 2KθRL] +

2πCd

T 3
R2

LI3〈e2
a〉 :

thermal noise generated in baseband electronic amplifier circuit.(12.68)

Here, 〈g2〉 is the mean square of avalanche gain, which is conventionally expressed by
〈g〉2+x,

√〈i2a〉 is the baseband amplifier input noise current,
√〈e2

a〉 is the input noise volt-
age, Kθ is Boltzmann’s constant times absolute temperature, and Cd is the total parallel
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capacitance in the detector circuit, respectively. The input signal excess noise expressed
by the last term on the right-hand side of Eq. (12.55) is neglected here. The zeroth to
third Personick integrals are given by[1],[2]

I0 =
∞∑

k=−∞
Hp

(
2πk

T

) 



Hout

(
2πk
T

)

Hp

(
2πk
T

) ∗
Hout

(
2πk
T

)

Hp

(
2πk
T

)


 (12.69)

I1 =
∫ ∞

−∞
Hp

(
2πf

T

) 



Hout

(
2πf
T

)

Hp

(
2πf
T

) ∗
Hout

(
2πf
T

)

Hp

(
2πf
T

)


 df (12.70)

I2 =
∫ ∞

−∞

∣∣∣∣∣∣
Hout

(
2πf
T

)

Hp

(
2πf
T

)
∣∣∣∣∣∣

2

df (12.71)

I3 =
∫ ∞

−∞

∣∣∣∣∣∣
Hout

(
2πf
T

)

Hp

(
2πf
T

)
∣∣∣∣∣∣

2

f2df (12.72)

Error rate is the probability that the noise voltage superimposed on signal voltage
crosses a prescribed threshold voltage D at sampling time t = {kT}. By approximating
the statistics of vout(t) as Gaussian, the error rate is given by

Pe =
1
2





1√
2πNW (bmin)

∫ ∞

D
· exp


−

(
v − AeηRL

hνT 〈g〉Gbmin

)2

2NW (bmin)


 dv

+
1√

2πNW (bmax)

∫ D

−∞
· exp


−

(
v − AeηRL

hνT 〈g〉Gbmax

)2

2NW (bmax)


 dv





. (12.73)

The threshold voltage D is optimized so as to minimize the error rate. The incident
average power on the preamplifier is given by

Pin =
1

2T
(bmax + bmin) . (12.74)

Some numerical results on the TW-type preamplifier performance are presented in
Fig. 12.11. Figure 12.11 shows the incident optical average power Pmin at the preamplifier
input to achieve a 10−9 error rate, versus preamplifier gain G. It is assumed that avalanche
gain 〈g〉 is the unity photodiode operation, the detector dark current count λd is 6.3×10−9

s−1, the optical wavelength λ is 1.5 µm, data rate B0 is 1 Gbit/s, electronic amplifier input
noise current

√〈i2a〉 is 10 pA, and noise voltage
√〈e2

a〉 is 0.5 nV. Input pulse shape hp(t)
is assumed to be a nonreturn-to-zero (NRZ) rectangular pulse:

hp(t) =





1
T

(
−T

2
< t <

T

2

)

0 (otherwise)
(12.75)

Hp

(
2πf

T

)
=

sin πf

πf
. (12.76)
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The equalized output pulse shape is assumed to be a full cosine roll-off pulse:

hp(t) = sin
(

πt

T

)
cos

(
πt

T

)
/

[
πt

T

(
1−

(
2t

T

)2
)]

(12.77)

Hout(t) =





1
2

[
1− sin

(
πf − π

2

)]
(0 < |f | < 1)

0 (otherwise)
. (12.78)

The minimum detectable power obtained by an avalanche photodiode direct detection
scheme is depicted for comparison in Fig. 12.11. The excess noise coefficient x of the
avalanche detector depends on the diode material and structure.

Figure 12.11: Minimum detectable powers Pmin to achieve a 10−9 error rate in
the optical preamplifier and photodiode combination scheme versus preampli-
fier gain G. The minimum detectable power in the avalanche photodiode direct
detection scheme versus the average avalanche gain 〈g〉 is also plotted. Here,
optical wavelength λ = 1.5µm, data rate B0 = (1/T ) = 1 Gbit/s, η = 0.6,
λd = 6.3 × 109 s−1, detector load resistance RL = 50Ω,

√〈i2a〉 = 10 pA, and√〈e2
a〉 = 0.5 nV.

The dominant noise source in an optimized preamplifier realized by mt∆f ≥ 2×102B0

is the beat noise between signal and spontaneous emission given by Eq. (12.65), which is
inevitable in laser amplifiers. The signal-to-noise ratio is obtained from Eqs. (12.58) and
(12.65):

〈vout(0)〉2
〈N2

s−sp〉
=

b0

2hν
: G À 1 . (12.79)
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The criterion mt∆f ≤ 2×102B0 for optimized operation indicates that another dominant
noise source in a high gain amplifier is the beat noise between spontaneous emission com-
ponents given by Eq. (12.66), and it has to be made smaller than the beat noise between
signal and spontaneous emission. The above condition is calculated from Eqs. (12.65) and
(12.66) as

mt∆f

2B0
<

b0

hν
. (12.80)

The right side of Eq. (12.76) shows the number of input photons per pulse, which is more
than 200, to achieve a 10−9 error rate.

12.3 Optical Repeater Amplifiers in PCM-IM Systems

Consider an optical linear repeater system shown in Fig. 12.12, in which the attenuated
intensity modulated signal due to fiber loss L is recovered by gain G of the TW-type
amplifier.

Figure 12.12: Optical repeater system using TW-type optical linear amplifiers.
Here L is fiber loss and nr is the number of rth repeater output photons.

The mean and variance in the number of output photons from the rth amplifier are
calculated by using Eqs. (12.54) and (12.55) iteratively. Assuming that all amplifiers have
the same gain G and optical noise bandwidth mt∆f , and that fiber loss L is constant
between any two repeaters, we have

〈nr〉 = (GL)r〈n0〉+ (G− 1)γmt∆f · 1− (GL)r

1−GL
(12.81)

〈n2
r〉 − 〈nr〉2 = (GL)r〈n0〉+ (G− 1)γmt∆f · 1− (GL)r

1−GL

+2(GL)r〈n0〉(G− 1)γ
1− (GL)r

1−GL
+ (G− 1)2γ2mt∆f

[
1− (GL)r

1−GL

]2

+(GL)r(〈n2
0〉 − 〈n0〉2 − 〈n0〉) . (12.82)

Here 〈n0〉 and 〈n2
0〉 are the mean and mean square values for the laser transmitter output

photons.
From Eqs. (12.77) and (12.78) it is possible to calculate signal 〈vout〉 and worst case

variance NW (b0) for the equalized output voltage defined by Eqs. (12.58) and (12.62). Let
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the optical signal pulse shape falling on an avalanche photodiode be hp(t), the equalized
pulse shape hout(t), and the fiber input energy of a pulse bk. Then, we have

〈vout(t)〉 =
Aeη

hν
〈g〉RL





∞∑

k=−∞
(GL)r bk

T
hout(t− kT )



 (12.83)

〈N2
s 〉 = A2e2R2

L

〈g2〉
T 2

(GL)rη

hν
{I1b0 + (I0 − I1)bmax} (12.84)

〈N2
sp〉 = A2e2R2

L

〈g2〉
T

I2η(G− 1)γmt∆f · 1− (GL)r

1−GL
(12.85)

〈N2
s−sp〉 = 2A2e2R2

L ·
〈g〉2
T 2

· η2(GL)r(G− 1)γ[1− (GL)r]
hν(1−GL)

· {I1b0 + (I0 − I1)bmax} (12.86)

〈N2
sp−sp〉 = A2e2R2

L

〈g〉2
T

I2η
2(G− 1)2γ2mt∆f ·

[
1− (GL)r

1−GL

]2

(12.87)

〈N2
d 〉 = same as Eq. (12.67)

〈N2
a 〉 = same as Eq. (12.68)

The error rate is calculated by replacing G with (GL)r in Eq. (12.73).
The main feature of the repeater system performance is described by the signal-to-noise

ratio defined as follows:

S/N =
[〈vout(bmax)〉 − 〈vout(bmin)〉]2[

1
2(

√
NW (bmax) +

√
NW (bmin))

]2 . (12.88)

When the value of GL is equal to unity, the output signal level is constant for all repeaters,
while the noise component is accumulated with the number of repeaters. The signal-to-
noise ratio at the output of the rth repeater it shown in Fig. 12.13. It is assumed that
the fiber input power is -10 dBm and amplifier gain is 25 dB. The worst case variance
due to the signal-spontaneous emission beat noise 〈N2

s−sp〉 is in proportion to the number
of repeaters r, while the variance due to the beat noise between spontaneous emission
components 〈N2

sp−sp〉 is proportional to r2. Therefore, the signal-to-noise ratio decreases
with r−1 for a narrow bandwidth ideal amplifier, while it decreases with r−2 for a broad
bandwidth amplifier, at shown in Fig. 12.13.

Next, let us consider an optical amplifier repeater communication system by a simpli-
fied model. The S/N ratios at the transmitter output, the first fiber output, and the first
amplifier output are given, respectively, by

(S/N)0 =
〈n〉2
〈∆n2〉 = 〈n〉 (Poisson statistics) , (12.89)

(S/N)1 =
L2〈n〉2

L2〈∆n2〉+ L(1− L)〈n〉 = L〈n〉 (random deletion noise) , (12.90)

(S/N)2 =
G2L2〈n〉2

G2L〈n〉+ G(G− 1)(L〈n〉+ 1)
' L

2
〈n〉 (3 dB noise figure) . (12.91)
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Figure 12.13: Signal-to-noise ratio S/N versus number of linear amplifier re-
peaters. Here, λ = 1.5µm, B0 = 100 Mbits/s, linear amplifier input optical
power is -35 dBm, G = 25 dB, η = 0.6, λd = 6.3 × 109 s−1,

√〈i2a〉 = 10 pA,
and

√〈e2
a〉 = 0.5 nV.

Equation (12.90) accounts for the random deletion noise due to fiber loss (Verguess vari-
ance theorem), which was derived in Chapter 2. The second equality in Eqs. (12.89)
and (12.90) stems from the assumption that the signal does not have excess noise (i.e.,
〈∆n2〉 = 〈n〉). The S/N ratio is degraded by the fiber loss L and further degraded by 3 dB
by the amplifier noise. The S/N ratio at the k-th amplifier output is calculated similarly:

(S/N)2k =
L

2k
〈n〉 . (12.92)

In order to achieve the bit error rate of Pe = 10−9, the S/N ratio must be larger than
20 dB. If one assumes 〈n〉 = 108 and L = 1

G = 10−3 (30 dB loss/gain), the number of
amplifier repeaters which can be put in the system is k ' 500. If the total input/output
coupling loss of the amplifier and the isolator is 5 dB per section, the net gain is 25 dB,
which corresponds to a total fiber loss of 12,500 dB or a total fiber length of 62,500 Km
if the fiber loss is assumed to be 0.2

(
dB
Km

)
. The transmitter and optical amplifier output

photon number of 108 per pulse corresponds to the optical power of 10 mW (10 dBm) if
the bit rate is 1 Gbit/s (T = 10−9 s) and the wavelength is 1.5 µm. If the same output
power of 10 mW is employed in a 10-Gbit/s system (T = 10−10 s), the average photon
number output per pulse is 〈n〉 = 107. In this case, the maximum number of amplifier
repeaters is k ' 50 and the total fiber length is 6250 Km.
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If the optical amplifier repeater is not used and only the optical preamplifier is used, the
total fiber loss and fiber length necessary to achieve Pe = 10−9 are only 60 dB and 300 Km
for a 1-Gbit/s system and 50 dB and 250 Km for a 10-Gbit/s system. Without the optical
preamplifier, the total fiber loss and fiber length are, respectively, 40 dB and 200 Km for
a 1 Gbit/s system and 30 dB and 150 Km for a 10 Gbit/s system. Therefore, one can see
that the linear optical amplifier repeater can enormously expand the electronic terminal
repeater spacing and thus is very useful for intercontinental under-sea communication
systems.

12.4 Fundamental Limits of Communication Systems

12.4.1 Channel Capacity

Quantum and thermal noise place fundamental limits on communication systems. Shan-
non’s channel capacity is one way to elucidate such fundamental limits. The channel
capacity formulates how many bits of information can be transmitted over a given channel
bandwidth B and S/N ratio:

C = B log2(1 + S/N) (bits/s) . (12.93)

Figure 12.14: A channel bandwidth and displaced Nyquist functions.

The basis of the Shannon formula is the counting of degrees of freedom (DOF ) which
arrive at the receiver through the channel with a bandwidth B. This calculation was
performed earlier by Nyquist. Consider the filtered spectral density with a bandwidth
∆ω = 2πB centered at an angular frequency ω0, as shown in Fig. 12.14. The Fourier
transform of this rectangular spectrum results in a Nyquist function, as shown in Fig. 12.14.
A sequence of Nyquist functions,

FN

(
t− k

B

)
=

sin
[
πB

(
t− k

B

)]

πB
(
t− k

B

) (k = 0,±1,±2, · · ·) , (12.94)

are orthogonal to each other and fully reproduce all bandwidth-limited functions. Each
Nyquist function carries independent information and thus the arrival rate of the DOF in
a communication channel with a bandwidth B is equal to B.
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In the intensity modulation scheme, one can assign a different number of photons n
for each Nyquist function (DOF ) to transmit information. The (information theoretic)
entropy of the signal is described by the probability p(n) of having n photons:

H = −
∑
n

p(n) ln p(n) . (12.95)

One can maximize Eq. (12.105) under the constraints
∑
n

p(n) = 1 (12.96)

and ∑
n

np(n) = 〈n〉 , (12.97)

Equation (12.97) indicates that the average photon number is fixed in the entropy maxi-
mization procedure and the result is given by

Hmax = 〈n〉 ln
(

1 +
1
〈n〉

)
+ ln(1 + 〈n〉) , (12.98)

where p(n) satisfies the so-called geometrical (thermal) distribution:

p(n) =
〈n〉n

(1 + 〈n〉)n+1
. (12.99)

The channel capacity is simply the product of the arrival rate B of the DOF and the
maximum entropy Hmax per DOF :

C = B

[
〈n〉 ln

(
1 +

1
〈n〉

)
+ ln(1 + 〈n〉)

]
. (12.100)

The channel capacity in Eq. (12.100) is expressed in terms of natural digits (nats) per sec-
ond and, in order to translate it into ordinary bits per second, one can divide Eq. (12.100)
by `n 2. The first term on the RHS is the product of the arrival rate of photon B〈n〉
(photons/s) and the information carried by the number of DOFs per photon, 1

〈n〉 , i.e.,

H = log
(
1 + 1

〈n〉
)
; this term is called “photon entropy” or “particle entropy”. The second

term on the RHS is the product of the arrival rate of DOF , B (DOF/s), and the infor-
mation carried by the number of photons per DOF 〈n〉, i.e., H = log(1 + 〈n〉); this term
is called “wave entropy.” As shown in Fig. 12.15, the channel capacity C is dominated by
the particle entropy when 〈n〉 ¿ 1 and is dominated by the wave entropy when 〈n〉 À 1.

The implicit assumption for the channel capacity Eq. (12.110) is that each pulse has
a definite number of photons without fluctuation and the statistics of the photon number
over many pulses obey the geometric distribution Eq. (12.109). It is also assumed that
the photon counter is free from any noise and thus the photon number of each pulse is
determined without error. The channel capacity provides the ultimate upper bound for
such an ideal communication system.
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Figure 12.15: A quantum channel capacity normalized by a channel bandwidth
vs. average photon number.

12.4.2 Quantum Limit of Communication Systems

The minimum energy cost to transmit one bit of information is calculated by

∆E ≡ h̄ω0B〈n〉(
C

ln 2

) =
h̄ω0 ln 2

1
〈n〉 ln(1 + 〈n〉) + ln

(
1 + 1

〈n〉
) . (12.101)

The second term in the denominator goes to infinity when 〈n〉 goes to zero, which means
that the minimum energy cost to transmit one bit of information is reduced to zero in
the limit of 〈n〉 → 0. In other words, in principle, “one photon can transmit infinite bits
of information.” The information is carried by the particle entropy of a photon in such a
case.

Figure 12.16: A pulse-position-modulation (PPM) signal.

Consider a pulse position modulation (PPM), as illustrated in Fig. 12.16. Each word
with a time duration T is divided into M slots with a time interval τ = T/M . A single
photon arbitrarily occupies one slot out of M slots in each word; thus the information per
word (i.e., per photon) is given by log2 M (bits). When M becomes much larger than one,
the average photon number per DOF, which corresponds to each slot, 〈n〉 = 1

M , becomes
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much smaller than unity and the full particle entropy is approached by the PPM signal:

CPPM =
1
T

ln M ' B〈n〉 ln
(

1 +
1
〈n〉

)
. (12.102)

Obviously, CPPM/B〈n〉 (nats/photon) goes to infinity in the limit of M →∞ (〈n〉 → 0).

Figure 12.17: A multiple-frequency-shift-keying (MFSK) signal.

Another example of a modulation scheme for achieving more than one bit of informa-
tion per photon is multiple-frequency shift keying (MFSK), as shown in Fig. 12.17. Each
word with a time duration T is occupied by a photon of a different color. If the total
channel bandwidth is ∆ω ' 2πB, there are M = 2πB

( 2π
T ) = BT independent colors that

can be accommodated in this channel. A single-color photon occupies one word out of
M different colors, so that the information per word (i.e., per photon) is again given by
log2 M (bits). The channel capacity is the same as the PPM case:

CMFSK =
1
T

lnM ' B〈n〉 ln
(

1 +
1
〈n〉

)
. (12.103)

The above examples illustrate that there is no fundamental quantum limit as far as
the minimum energy cost per bit is concerned and a finite photon energy h̄ω0 does not
impose a minimum energy cost per bit of information.

Next, consider the minimum time-energy product necessary to transmit one bit of
information. The time duration required to transmit one bit of information is given by
the inverse of the bit rate:

∆T ≡ ln 2
C

=
ln 2

B
[
〈n〉 ln

(
1 + 1

〈n〉
)

+ ln(1 + 〈n〉)
] . (12.104)

Since the maximum available bandwidth B is on the order of the carrier frequency f0 =
ω0/2π, the time-energy product is written as

∆E∆T ' 2π(ln 2)2h̄

〈n〉
[
ln

(
1 + 1

〈n〉
)

+ 1
〈n〉 ln(1 + 〈n〉)

]2 . (12.105)
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As shown in Fig. 12.18, the time-energy product takes the minimum value ∆E∆T ∼ h̄
2

when 〈n〉 is equal to one. This relation is often referred to as the Bohr’s time-energy
uncertainty product; that is, when one tries to minimize the product of the energy cost
and time duration per one bit of information, the quantum limit emerges and places a
fundamental limit on communication systems equal to the Planck constant.

Figure 12.18: The time-energy product versus the average photon number.

12.4.3 Thermal Limit of Communication Systems

The above argument holds when the temperature of the communication system is absolute
zero. When the temperature is finite, there are finite (thermal) noise photons nth in each
DOF as well as signal photons ns. Suppose the total photon number n = ns + nth obeys
the thermal distribution Eq. (12.99). In this case, the maximum entropy is also equal to
Eq. (12.98), but this maximum entropy cannot be fully extracted as useful information
due to the presence of (thermal) noise photons. If the photon counter reports a photon
number n0, the signal photon number is not necessarily equal to n0. The probability
density for ns has the following distribution:

Pmeas(ns) =





0 : ns > n0

〈nth〉n0−ns

(1 + 〈nth〉)n0−ns+1
: ns < n0

. (12.106)

This means that, even after the detection of the received photon number n0, there is still
uncertainty with respect to the signal photon number ns. This residual (noise) entropy is
given by

Hnoise =
∑
ns

Pmeas(ns) lnPmeas(ns)

= 〈nth〉 ln
(

1 +
1

〈nth〉
)

+ ln(1 + 〈nth〉) . (12.107)
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The useful information that can be extracted under thermal background photons is
thus given by

I ≡ Hmax −Hnoise = (〈ns〉+ 〈nth〉) ln
(

1 +
1

〈ns〉+ 〈nth〉
)

+ ln(1 + 〈ns〉+ 〈nth〉)

−〈nth〉 ln
(

1 +
1

〈nth〉
)
− ln(1 + 〈nth〉) . (12.108)

One can now calculate the minimum energy cost necessary to transmit one bit of infor-
mation:

∆E =
h̄ω0B〈ns〉(

C
ln 2

) −→
〈ns〉 ¿ 1

kBT ln 2 . (12.109)

This is a thermal limit on the minimum energy cost per bit; for instance, at T = 300◦ K
and λ = 1.5 µm, a single photon can transmit

h̄ω0

kBT ln 2
= 46 bits , (12.110)

or one bit of information costs ∼ 0.022 photon.
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