
Chapter 1

Mathematical Methods

In this chapter we will study basic mathematical methods for characterizing noise pro-
cesses. The two important analytical methods, probability distribution functions and
Fourier analysis, are introduced here. These two methods will be used frequently through-
out this text not only for classical systems but also for quantum systems. We try to present
the two mathematical methods in a compact and succinct way as much as possible. The
readers may find more detailed discussions in excellent texts [1]-[6]. In particular, most
of the discussions in this chapter follow the texts by M.J. Buckingham [1] and by A.W.
Drake [2].

1.1 Time Average vs. Ensemble Average

Noise is a stochastic process consisting of a randomly varying function of time and space,
and thus is only statistically characterized. One cannot argue a single event at a certain
time or position; one can only discuss the averaged quantity of a single system over a
certain time (or space) interval or the averaged quantity of many identical systems at a
certain time instance (or spatial position). The former is called time (or space) average and
the latter ensemble average. Let us consider N systems which produce noisy waveforms
x(i)(t), as shown in Fig. 1.1.
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Figure 1.1: Ensemble average vs. time average.

One can define the following time-averaged quantities for the i-th member of the en-
semble:

x(i)(t) = lim
T→∞

1
T

∫ T
2

−T
2

x(i)(t)dt ,

(mean = first-order time average) (1.1)

x(i)(t)2 = lim
T→∞

1
T

∫ T
2

−T
2

[
x(i)(t)

]2
dt ,

(mean square = second-order time average) (1.2)

φ(i)
x (τ) ≡ x(i)(t)x(i)(t + τ) = lim

T→∞
1
T

∫ T
2

−T
2

x(i)(t)x(i)(t + τ)dt .

(autocorrelation function) (1.3)

One can also define the following ensemble-averaged quantities for all members of the
ensemble at a certain time:

〈x(t1)〉 = lim
N→∞

1
N

N∑

i=1

x(i)(t1) =
∫ ∞

−∞
x1p1(x1, t1)dx1 ,

(mean = first-order ensemble average) (1.4)

〈x(t1)2〉 = lim
N→∞

1
N

N∑

i=1

[
x(i)(t1)

]2
=

∫ ∞

−∞
x2

1p1(x1, t1)dx1 ,

(mean square = second-order ensemble average) (1.5)
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〈x(t1)x(t2)〉 = lim
N→∞

1
N

N∑

i=1

x(i)(t1)x(i)(t2) (1.6)

=
∫ ∞

−∞
x1x2p2(x1, x2; t1, t2)dx1dx2 .

(covariance )

Here, x1 = x(t1), x2 = x(t2), p1(x1, t1) is the first-order probability density function
(PDF), and p2(x1, x2; t1, t2) is the second-order joint probability density function.
p1(x1, t1)dx1 is the probability that x is found in the range between x1 and x1 + dx1

at a time t1 and p2(x1, x2; t1, t2)dx1dx2 is the probability that x is found in the range
between x1 and x1 + dx1 at a time t1 and also in the range between x2 and x2 + dx2 at a
different time t2.

An ensemble average is a convenient theoretical concept since it is directly related
to the probability density functions, which can be generally obtained by the theoretical
analysis of a given physical system. On the other hand, a time average is more directly
related to real experiments. One cannot prepare an infinite number of identical systems
in a real situation. Theoretical predictions based on ensemble averaging are equivalent to
experimental measurement results corresponding to time averaging when, and only when,
the system is a so-called “ergodic ensemble.” It is often said that ensemble averaging and
time averaging are identical for a statistically-stationary system, but are different for a
statistically-nonstationary system. We will see those concepts next and show there is a
subtle difference between ergodicity and statistical stationarity.

1.2 Statistically Stationary vs. Nonstationary Processes

If 〈x(t1)〉 and 〈x(t1)2〉 are independent of the time t1 and if 〈x(t1)x(t2)〉 is independent of
absolute times t1 and t2 but dependent only on the time difference τ = t2−t1, such a noise
process is called a “statistically-stationary” process. For a “statistically-nonstationary”
process, the above is not true. In such a case, the concept of ensemble averaging is still
valid, but the concept of time averaging fails.

The statistics of a stationary process do not change in time. To be more precise, we
make the following definitions. A stochastic process is stationary of order k if the k-th
order joint probability density function satisfies,

P (α1, . . . , αk; t1, . . . , tk) = P (α1, . . . , αk; t1 + ε, . . . , tk + ε) for all ε . (1.7)

Thus, if P1(x; t1) = P1(x; t1 + ε), the process is stationary of order 1. If P2(x1, x2; t1, t2) =
P2(x1, x2; t1 + ε, t2 + ε), the process is stationary of order 2.

Since there are several types of stationarity, some special terminology has arisen. A
process is strictly stationary if it is stationary for any order, k = 1, 2, . . .. A process is called
wide-sense (or weakly) stationary if its mean value is constant and its autocorrelation
function depends only on τ = t2 − t1. Wide-sense stationary processes can be analyzed
by the Wiener-Khinchine theorem of Fourier transform, which we will discuss shortly. If
a process is wide-sense stationary, the autocorrelation function and the power spectral
density function form a Fourier transform pair. Therefore, if we know—or can measure—
the autocorrelation function, we can find the power spectral density function, i.e. which
frequencies contain how much power in the signal.
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The idea of ergodicity arises if we have only one sample function of a stochastic process,
instead of the entire ensemble. A single sample function will often provide little information
about the statistics of the process. However, if the process is ergodic, that is, time averages
equal ensemble averages, then all statistical information can be derived from just one
sample function.

When a process is ergodic, any one sample function represents the entire process. A
little thought should convince you that the process must necessarily be stationary for this
to occur. Thus ergodicity implies stationarity. There are levels of ergodicity, just as there
are levels (degrees) of stationarity. We will discuss two levels of ergodicity; ergodicity in
the mean and correlation.

Level 1. A process is ergodic in the mean if

x(t) = lim
T→∞

1
T

∫ T
2

−T
2

x(t)dt = 〈x(t)〉 (1.8)

We can compute the left-hand side of Eq. (1.8) by first selecting a particular member
function x(t) and then averaging in time. To compute the right-hand side, we must know
the first-order PDF P1(x; t). The left-hand side of Eq. (1.8) is independent of t. Hence
the mean must be a constant value. Therefore, ergodicity of the mean implies stationarity
of the mean. However, stationarity of the mean does not imply ergodicity of the mean, as
our example below indicates.
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Level 2. A process is ergodic in the autocorrelation if

φx(τ) = x(t)x(t + τ) = lim
T→∞

1
T

∫ T
2

−T
2

x(t)x(t + τ)dt

= 〈x(t)x(t + τ)〉 (1.9)

We can compute the left-hand side of Eq. (1.9) by using a particular function x(t). To
compute the right-hand side, we must know the second-order PDF P2(x1, x2; t1, t2).

EXAMPLE 1. Consider a basket full of batteries. There are some flashlight batteries,
some car batteries, and several other kinds of batteries. Suppose that a battery is selected
at random and its voltage is measured. This battery voltage υ(t) is a member function
selected from a certain sub-group of constant battery voltages. This process is stationary
but not ergodic in the mean or correlation. The time average is equal to the particular bat-
tery voltage selected (say, 1.5V). The statistical average is some other number, depending
on what is in the basket. Thus Eq. (1.8) does not hold.

EXAMPLE 2. Let x(t) = sin(ωt + θ) be a member function from a stochastic process
specified by a transformation of variables. Let θ be a random variable with uniform
distribution over the interval 0 < θ ≤ 2π.

P (θ) =
1
2π

, 0 < θ ≤ 2π . (1.10)

Then each θ determines a time function x(t), which means that the stochastic process is
specified by a transformation of variables. This stochastic process is ergodic in both the
mean and autocorrelation. You can see that the time average of x(t) is 0. The ensemble
average at any one time is over an infinite variety of sinusoids of all phases, and so must
also be 0. Since the time average equals the ensemble average, the process is ergodic in
the mean. It is also true that Eq. (1.9) holds, so the process is ergodic in the correlation.
For any other distribution of θ, the process is not stationary and hence not ergodic.

1.3 Basic Stochastic Processes

A noisy waveform x(t) often consists of a very large number of random and discrete pulses,
and are represented by

x(t) =
K∑

k=1

akf(t− tk) . (1.11)

One assumes the pulse amplitude ak and the time of pulse emission event tk are random
variables, but the pulse-shape function f(t) is a fixed function, as shown in Fig. 1.2. In
a real physical situation, f(t) is often determined by an inherent property of a system,
for example, by the relaxation time of a circuit or the transit time of a charged carrier.
Therefore we assume here that f(t) is a fixed function.

Next let us consider the characteristics of several stochastic processes, which such
random variables ak and tk obey. It is convenient to use the probability density functions
and moment generating functions for this purpose.
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Figure 1.2: A random pulse train.

1.3.1 Probability density (or mass) functions and moment generating
functions

The probability mass function P (x) is defined for a discrete random variable x. Its discrete
transform (or Z-transform) is defined by P T

x (Z) ≡ ∑
x ZxP (x). It is straightforward to

calculate the expectation values of any order moment by

〈x〉 =
d

dZ
P T

x (Z)|Z=1 , (1.12)

〈x2〉 =
d

dZ2
P T

x (Z) +
d

dZ
P T

x (Z)|Z=1 , (1.13)

and so on. Because of the above properties, the Z-transform is often referred to as a
moment generating function.

If a random variable x takes a continuous value, we can define the probability den-
sity function f(x). Its continuous transform (or s-transform) is defined by fT

x (s) ≡∫∞
−∞ dxe−sxf(x). We can obtain the expectation values of any order moment by

〈x〉 = − d

ds
fT

x (s)|s=0 , (1.14)

〈x2〉 = − d2

ds2
fT

x (s)|s=0 , (1.15)

and so on.

1.3.2 The Bernoulli Process

A. Bernoulli distribution

A single Bernoulli trial generates a discrete binary random nonnegative integer x, described
by the probability mass function (PMF),

Px(x0) =





1− P x0 = 0
P x0 = 1
0 otherwise .

(1.16)
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Random variable x, described above, is known as a Bernoulli random variable. We define
the z transform (or discrete transform) of the PMF as,

Px
T (z) ≡

∞∑

x0=0

zx0Px(x0) = z0(1− P ) + zP = 1− P + zP . (1.17)

It is easily understood by the definition of the PMF and Z transform that the mean and
mean-square are given by

〈x〉 =
[

d

dz
P T

x (z)
]

z=1
=

∑
x0

x0Px(x0) , (1.18)

〈x2〉 =

[
d2

dz2
P T

x (z) +
d

dz
P T

x (z)

]

z=1

=
∑
x0

x2
0Px(x0) . (1.19)

By use of these relations and (1.17), we find the mean, mean-square and variance of the
Bernoulli process:

〈x〉 = p, 〈x2〉 = p, σx
2 ≡ 〈x2〉 − 〈x〉2 = p(1− p) . (1.20)

We refer to the outcome of a Bernoulli trial as a pulse emission when the experimental
value of x is unity and as no emission when the experimental value of x is zero.

B. Binomial distribution

A Binomial distribution is obtained by a series of independent Bernoulli trials, each with
the same probability of success. Suppose that n independent Bernoulli trials are to be
performed, and define discrete random veriable k to be the number of successes in the
n trials. Note that random variable k is the sum of n independent Bernoulli random
variables, i.e. k = x1 +x2 · · ·+xn, so the z transform of the PMF for the Bernoulli process
is

P T
k (z)

∑
x1···xn

Zx1···xnPx(x1) · · ·Px(xn) = [P T
x (z)]n = (1− p + zp)n (1.21)

= P T
x1

(Z) · · ·P T
x1

(Z)

There are several ways to determine Pk(k0), the probability of exactly k0 successes out
of n independent Bernoulli trials. One way would be to apply the binomial theorem,

(a + b)n =
n∑

l=0

(
n
l

)
albn−l , (1.22)

to expand P T
k (z) in a power series,

P T
k (z) =

n∑

l=0

(
n
l

)
(zP )l(1− P )n−l ,

and then compare the coefficients of zk0 in the expansion for the definition of the z trans-
form (1.17),

P T
k (z) =

n∑

k0=0

zk0Pk(k0) = Pk(0) + zPk(1) + z2Pk(2) + · · · .
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This leads to the result known as the binomial PMF,

Pk(k0) =

(
n
k0

)
pk0(1− p)n−k0 , k0 = 0, 1, 2, . . . ,n , (1.23)

where (
n
k0

)
=

n!
(n− k0)!k0!

,

as commonly used.
We can determine the expected value and variance of the binomial random variable k

by any of the following three techniques. To evaluate 〈k〉 and σk
2 we may

1. perform the expected value summations directly,

2. use the moment-generating properties (1.18) and (1.19) of the z transform, or

3. recall that the expected value of a sum of random variables is always equal to the
sum of their expected values and that the variance of a sum of linearly independent
random variables is equal to the sum of their individual variances.

Since we know that a binomial random variable k is the sum of n independent Bernoulli
random variables, the last of the above methods is the easiest and we obtain

〈k〉 = n〈x〉 = np , σk
2 = nσx

2 = np(1− p) . (1.24)

C. Geometric distribution

It is often convenient to refer to the successes in a Bernoulli process as pulse emission. Let
a discrete random variable l1 be the number of Bernoulli trials after any pulse emission
and before the next pulse emission, including this pulse emission. The random variable l1
is known as the first-order interarrival time of pulses, and it can take on the experimental
values 1, 2, . . .. We begin by determining the PMF Pl1(l).

We shall determine Pl1(l) from a sequential sample space for the experiment of per-
forming independent Bernoulli trials until we obtain our first success. Using the notation
of the last section, we have

Pl1(l) = p(1− p)l−1 l = 1, 2, . . . , (1.25)

and since its successive terms decrease in a geometric progression, this PMF for the first-
order interarrival times is known as the geometric PMF. The z transform for the geometric
PMF is

Pl1
T (z) =

∞∑

l=1

Pl1(l)z
l =

∞∑

l=1

p(1− p)l−1zl =
zp

1− z(1− p)
. (1.26)

Since direct calculation of 〈l1〉 and σl1
2 in an l1 event space involves difficult summa-

tions, we shall use the moment-generating property of the z transform to evaluate these
quantities.

〈l1〉 =
[

d

dz
Pl1

T (z)
]

z=1
=

1
p

, (1.27)

σl1
2 =

{
d2

dz2
Pl1

T (z) +
d

dz
Pl1

T (z)−
[

d

dz
Pl1

T (z)
]2

}

z=1

=
1− p

p2
. (1.28)
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1.3.3 The Poisson Process

A. Poisson distribution

We defined the Bernoulli process by a particular probabilistic description of the “arrivals”
of successes in a series of independent identical discrete trials. A Poisson process will be
defined by a probabilistic description of the behavior of arrivals of successes at points on
a continuous line.

For convenience, we shall generally refer to this line as a time (t) axis. By definition
of the process, we shall see that a Poisson process may be considered to be in the limit
of ∆t → 0 of a series of identical independent Bernoulli trials at intervals of ∆t, with the
probability of a success, p = λ∆t.

For our study of the Poisson process we shall adopt the probability that there are
exactly k arrivals during any interval of duration t, ℘(k, t). This notation is compact and
particularly convenient for the types of equations to follow. We observe that ℘(k, t) is a
PMF for a random variable k for any fixed value of parameter t. In any interval of length
t, with t ≥ 0, we must have exactly zero, or exactly one, or exactly two, etc., arrivals of
successes. Thus we have ∞∑

k=0

℘(k, t) = 1 . (1.29)

We also note that ℘(k, t) is not a probability density function (PDF) for t. Since ℘(k, t1)
and ℘(k, t2) are not mutually exclusive events, we can state only that

0 ≤
∫ ∞

0
℘(k, t) dt < ∞ . (1.30)

The use of a random variable k to count arrivals is consistent with our notation for counting
successes in a Bernoulli process.

There are several equivalent ways to define a Poisson process. We shall define it directly
in terms of those properties which are most useful for the analysis of problems based on
physical situations.

1. Any events defined on nonoverlapping time intervals are mutually independent.
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2. The following statements are correct in the limit of ∆t → 0:

℘(k, ∆t) =





1− λ∆t k = 0
λ∆t k = 1
0 k > 1

. (1.31)

The first of the above two defining properties establishes the no-memory attribute of
the Poisson process. The second defining property of the Poisson process states that, for
small intervals, the probability of having exactly one arrival within one such interval is
proportional to the duration of the interval and that, to the first order, the probability of
more than one arrival within one such interval is zero. This simply means that ℘(k, ∆t)
can be expanded in a Taylor series about ∆t = 0, and when we neglect terms of order
(∆t)2 or higher, we obtain the given expressions for ℘(k, ∆t).

We wish to determine the expression for ℘(k, t) for t ≥ 0 and for k=0, 1, 2, . . .. Before
doing mathematical derivation, let us reason out how we would expect the result to behave.
By definition of the Poisson process and our interpretation of it as a series of Bernoulli
trials in incremental intervals, we expect that

1. ℘(0, t) as a function of t will be unity at t=0 and decrease monotonically toward zero
as t increases. (The event of exactly zero arrivals in an interval of length t requires
more and more successive failures in incremental intervals as t increases.)

2. ℘(k, t) as a function of t, for k > 0, should start out at zero for t=0, increase for a
while, and then decrease toward zero as t gets very large. [The probability of having
exactly k arrivals (with k > 0) should be very small for intervals which are too long
or too short.]

For a Poisson process, if ∆t is small enough, we need to consider only the possibility
of zero or one arrivals between t and t + ∆t. Taking advantage also of the independence
of events in nonoverlapping time intervals, we may write

℘(k, t + ∆t) = ℘(k, t)℘(0, ∆t) + ℘(k − 1, t)℘(1,∆t) . (1.32)

The two terms summed on the right-hand side are the probabilities of the only two (mu-
tually exclusive) histories of the process which may lead to having exactly k arrivals in an
interval of duration t + ∆t. Our definition of (1.31) for the process specified ℘(0,∆t) and
℘(1, ∆t) for a small ∆t. We substitute for these quantities to obtain,

℘(k, t + ∆t) = ℘(k, t)(1− λ∆t) + ℘(k − 1, t)λ∆t . (1.33)

Collecting terms, dividing through by ∆t, and taking the limit of ∆t → 0, we find

d

dt
℘(k, t) + λ℘(k, t) = λ℘(k − 1, t) . (1.34)

This may be solved iteratively for k = 0 and then for k = 1, and so on, with the initial
conditions,

℘(k, 0) =

{
1 k = 0
0 k 6= 0

. (1.35)
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The solution for ℘(k, t), which may be verified by direct substitution, is

℘(k, t) =
(λt)ke−λt

k!
t ≥ 0, k = 1, 2, . . . . (1.36)

We find that ℘(k, t) does have the properties we anticipated earlier, as shown in Fig. 1.3.

Figure 1.3: P(k, t) in a Poisson process.

Letting µ = λt, we may write this result in the more proper notation for a PMF as

Pk(k0) =
µk0e−µ

k0!
µ = λt, k0 = 0, 1, 2, . . . . (1.37)

This is known as the Poisson PMF. Although we derived the Poisson PMF by considering
the number of arrivals in an interval of length t for a certain process, this PMF arises
frequently in many other situations.

To obtain the mean value and variance of the Poisson PMF, we will use the z transform,

Pk
T (z) =

∞∑

k0=0

Pk(k0)zk0 = e−µ
∞∑

k0=0

(µz)k0

k0!
= eµ(z−1) , (1.38)

〈k〉 =
[

d

dz
Pk

T (z)
]

z=1
= µ , (1.39)

σk
2 =

{
d2

dz2
Pk

T (z) +
d

dz
Pk

T (z)−
[

d

dz
Pk

T (z)
]2

}

z=1

= µ . (1.40)

Thus the mean value and variance of Poisson random variable k are both equal to µ.
We may also note that, since 〈k〉 = λt, we have an interpretation of the constant λ

used in

℘(k, ∆t) =





1− λ∆t k = 0
λ∆t k = 1
0 k = 2, 3, . . .

. (1.41)

as part of the definition of the Poisson process. The relation 〈k〉 = λt indicates that λ
is the expected number of arrivals per unit time in a Poisson process. The constant λ is
referred to as the average arrival rate for the process.
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B. Erlang distribution

Let lr be a continuous random variable defined to be an interval of time between any
arrivals in a Poisson process and the r-th arrival after that. The continuous random
variable lr, the r-th order interarrival time, has the same interpretation here as the discrete
random variable lr had for the Bernoulli process.

We wish to determine the PDF’s

flr(l) l ≥ 0; r = 1, 2, 3, . . .

For a small ∆l we may write

Prob(l < lr ≤ l + ∆l) = flr(l)∆l , (1.42)

flr(l)∆l = ℘(r − 1, l)︸ ︷︷ ︸
A

λ∆l︸︷︷︸
B

=
(λl)r−1e−λl

(r − 1)!
λ∆l l ≥ 0; r = 1, 2, . . . , (1.43)

where

A = probability that there are exactly r − 1 arrivals in an interval of duration l

B = conditional probability that rth arrival occurs in next ∆l, given exactly r−1 arrivals
in previous interval of duration l

Thus we have obtained the PDF for the rth-order interarrival time

flr(l) =
λrlr−1e−λl

(r − 1)!
l ≥ 0; r = 1, 2, . . . , (1.44)

which is known as the Erlang family of PDF’s. Random variable lr is said to be an Erlang
random variable of order r.

The first-order interarrival time, described by random variable l1, has the PDF

fl1(l) = λe−λl (1.45)

which is the exponential PDF. We may obtain its mean and variance by use of the s
transform:

fl1
T (s) =

∫ ∞

−∞
e−slfl1(l)dl =

λ

s + λ
, (1.46)

〈l1〉 = −
[

d

ds
fl1

T (s)
]

s=0
=

1
λ

, (1.47)

σl1
2 =

{
d2

ds2
fl1

T (s)−
[

d

ds
fl1

T (s)
]2

}

s=0

=
1
λ2

. (1.48)

The random variable lr is the sum of r independent experimental values of random
variable l1. Therefore we have

flr
T (s) =

∫
dl1 · · ·

∫
dlre

−s(l1+···+lr)fl1(l) · · · flr(l)

= fT
l1 (s) · · · fT

lr (s)

=
[
fl1

T (s)
]r

=
(

λ

s + λ

)r

,

〈lr〉 = r〈l1〉 =
r

λ
, σlr

2 = rσl1
2 =

r

λ2
.
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Figure 1.4 shows a sketch of some members of Erlang family of PDF’s.

Figure 1.4: flr(l) in a Poisson process.

C. Addition and random deletion of Poisson processes

Consider discrete random variable ω, the sum of two independent Poisson random variables
x and y, with expected values 〈x〉 and 〈y〉. There are at least three ways to establish that
Pω(ω0) is also a Poisson PMF. One method involves direct summation in the x0, y0 event
space. Or we may use z transforms as follows,

Px
T (z) = e〈x〉(z−1) Py

T (z) = e〈y〉(z−1)

ω = x + y x, y independent (1.49)
Pω

T (z) = Px
T (z)Py

T (z) = e(〈x〉+〈y〉)(z−1) ,

which we recognize to be the z transform of the Poisson PMF

Pω(ω0) =
(〈x〉+ 〈y〉)ω0e−(〈x〉+〈y〉)

ω0!
ω0 = 0, 1, . . . , (1.50)

A third way would be to note that ω = x + y could represent the total number of arrivals
for two independent Poisson processes within a certain interval. A new process which
contains the arrivals due to both of the original processes would still satisfy our definition
of the Poisson process with λ = λ1+λ2 and would generate experimental values of random
variable ω for the total number of arrivals within the given interval.

We have learned that the arrival process representing all the arrivals in several inde-
pendent Poisson processes is also Poisson.

Furthermore, suppose that a new arrival process is formed by performing an indepen-
dent Bernoulli trial for each arrival in a Poisson process. With probability p, any arrival
in the Poisson process is also considered an arrival at the same time in the new process.
With probability 1−p, any particular arrival in the original process does not appear in the
new process. The new process formed in this manner (by “independent random erasures”)
still satisfies the definition of a Poisson process and has an average arrival rate equal to
λp and the expected value of the first-order interarrival time is equal to (λp)−1.
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If the erasures are not independent, then the derived process has memory. For instance,
if we erase alternate arrivals in a Poisson process, the remaining arrivals do not form a
Poisson process. It is clear that the resulting process violates the definition of the Poisson
process, since, given that an arrival in the new process just occurred, the probability of
another arrival in the new process in the next ∆t is zero (this would require two arrivals in
∆t in the underlying Poisson process). This particular derived process is called an Erlang
process since the first-order interarrival times are independent and have (second-order)
Erland PDF’s. This derived process is one example of how we can use the memoryless
Poisson process to model more complicated situations with memory.

1.3.4 The Gaussian Process

A. Gaussian PDF

When the total number of trials n is very large and both the success and failure probabili-
ties p and 1−p are not very close to zero, the binomial distribution (1.23) tends to exhibit
a pronounced maximum at some value k0 = k̃0, and to decrease rapidly as one goes away
from k̃0. If n is large and we consider regions near the maximum of Pk(k0) where k0 is
also large, the fractional change in Pk(k0) when k0 changes by unity is relatively small,
i.e.

|Pk(k0 + 1)− Pk(k0)| ¿ Pk(k0) . (1.51)

Thus Pk(k0) can, to good approximation, be considered as a continuous function of the
variable k0, although only integral values of k0 are of physical relevance. The location
k0 = k̃0 of the maximum of Pk is then approximately determined by the condition

dPk

dk0
= 0 or

d lnPk

dk0
= 0 , (1.52)

where the derivatives are evaluated at k0 = k̃0. To evaluate the behavior of Pk(k0) near
its maximum, we shall put

k0 = k̃0 + η , (1.53)

and expand lnPk(k0) in a Taylor’s series about k̃0. The reason for expanding lnPk, rather
than Pk itself, is that lnPk is a much more slowly varying function of k0 than Pk. Thus
the power series expansion for lnPk should converge much more rapidly than the one for
Pk.

Expanding lnPk in Taylor’s series, we obtain

ln Pk(k0) = lnPk(k̃0) + B1η +
1
2
B2η

2 +
1
6
B3η

3 + · · · , (1.54)

where

Bl =
dl ln Pk

dk0
l

, (1.55)

is the l-th derivative of lnPk evaluated at k̃0. Since we are expanding about a maximum,
B1 = 0 by (1.52). Since Pk is a maximum, the term 1

2B2η
2 must be negative. Let us write

B2 = −|B2|, and we obtain

Pk(k0) = P̃ke
− 1

2
|B2|η2

e
1
6
B3η3 · · · . (1.56)
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In the region where η is sufficiently small, higher-order terms in the expansion can be
neglected, i.e. B3 = · · · · · · = 0. By the binomial distribution (1.23), we obtain

lnPk(k0) = lnn!− ln k0!− ln(n− k0)! + k0 ln p + (n− k0) ln(1− p) . (1.57)

If n is any large integer so that n À 1, then ln n! can be considered an almost continuous
function of n, since ln n! changes only by a small fraction of itself if n is changed by a
small integer. Here

d

dn
ln n! ' ln (n + 1)!− ln n!

(n + 1)− n
= ln (n + 1)

' ln n . (1.58)

Thus Eq. (1.57) yields

d

dk0
ln Pk = − ln k0 + ln (n− k0) + ln p− ln(1− p) . (1.59)

By equating this first derivative to zero, we find an expected result

k̃0 = np . (1.60)

Further differentiation of (1.59) yields

d2

dk0
2 lnPk = − 1

k0
− 1

n− k0
. (1.61)

Evaluating this for the value k0 = k̃0 given in (1.61), we get

B2 = − 1
np(1− p)

. (1.62)

The value of the constant P̃k in (1.56) can be determined from the normalization
condition

∑∞
k0=1 Pk(k0) = 1. Since Pk and k0 can be considered as continuous variables,

the sum over all integral values of k0 can be approximately replaced by an integral. Thus
the normalization condition can be written

∫ ∞

−∞
Pk(k0)dk0 = P̃k

∫ ∞

−∞
e−

1
2
|B2|η2

dη = P̃k

√
2π

|B2| = 1 . (1.63)

The final expression for Pk(k0) is thus given by

Pk(k0) =
1√

2πσ2
k0

exp

[
−(k0 − k̃0)2

2σ2
k0

]
, (1.64)

where
σ2

k0
= np(1− p) . (1.65)

This is the so-called Gaussian distribution. The Gaussian distribution is very general in
nature and occur very frequently in statistical mechanics whenever we are dealing with
large numbers of particles.
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B. Gaussian s-transform

The s-transform of the Gaussian PDF (1.64) is written as

fT
k0

(s) =
∫ ∞

−∞
dk0e

−sk0pk(k0) (1.66)

= e
−sk̃0+ 1

2
s2σ2

k0 .

Using the moment generating properties (1.18) and (1.19), we find the mean and variance
are identical to k̃0 and σ2

k0
as expected.

1.4 Burgess Variance Theorem

In the discussion of the Bernoulli process, we start with a fixed (constant) number of trials
n and introduce random deletion with the probability 1− p. The variance of the output
event (1.24) is a rather general result for such a stochastic process and the fluctuation
associated with such random deletion is referred to as “partition noise.” In some cases,
the total number of trials n itself fluctuates. In such a case, the probability of obtaining
k0 successes is given by

P (k0) =
∞∑

n=k0

W (n)Pk(k0) , (1.67)

where W (n) is the distribution (PMF) of the total number of trials and Pk(k0) is the
binomial distribution of obtaining k0 successes out of n trials. The mean and mean-square
of k0 can be evaluated by using (1.24) and (1.67),

〈k0〉 ≡
∞∑

k0=0

k0P (k0) =
∞∑

n=0

n∑

k0=0

k0Pk(k0)W (n)

=
∞∑

n=0

pnW (n)

= p〈n〉 , (1.68)

〈k0
2〉 ≡

∞∑

k0=0

k0
2P (k0) =

∞∑

n=0

n∑

k0=0

k0
2Pk(k0)W (n)

=
∞∑

n=0

[
(pn)2 + p(1− p)n

]
W (n)

= p2〈n2〉+ p(1− p)〈n〉 . (1.69)

The variance of the number of successful events is given by

σ2
k0

= 〈k2
0〉 − 〈k0〉2 = σ2

np2 + 〈n〉p(1− p) , (1.70)

where σ2
n = 〈n2〉 − 〈n〉2. The above relation is known as the “Burgess variance theorem”.

The first term on the right-hand side of (1.70) indicates that the fluctuation of the initial
number of trials is suppressed by a “loss” probability p2. The second term, on the other

16



hand, indicates the new noise term introduced by a random deletion process, which is
called a partition noise.

Figure 1.5 shows the change of the variance due to random deletion process. If the
initial distribution W (n) is a Poisson distribution, the distribution P (k0) stays as a Poisson
distribution with arbitrary deletion, as stated already. The variance is always equal to
the mean value, i.e. σ2

k0
= 〈k0〉. However, if the initial distribution W (n) has a larger or

smaller variance than a Poisson distribution, the Poisson limit (σ2
k0

= 〈k0〉) is obtained
only at a very large deletion limit, as shown in Fig. 1.5.
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Figure 1.5: The change of the variance for a Poisson (σ2
N = N), super-Poisson

(σ2
N = 2N) and sub-Poisson (σ2

N = 1
2N) distributions due to a partition pro-

cess.
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1.5 Fourier Analysis

When x(t) is absolutely integrable, i.e.,
∫ ∞

−∞
|x(t)|dt < ∞ , (1.71)

the Fourier transform of x(t) exists and is defined by

X(iω) =
∫ ∞

−∞
x(t)e−iωtdt . (1.72)

The inverse transform is given by

x(t) =
1
2π

∫ ∞

−∞
X(iω)eiωtdω . (1.73)

This inverse relation is proven by substituting for X(iω) from (1.72), and interchanging
the order of integration to obtain

1
2π

∫ ∞

−∞
X(iω)eiωtdω =

1
2π

∫ ∞

−∞
dωeiωt

∫ ∞

−∞
x(t′)e−iωt′dt′

=
∫ ∞

−∞
x(t

′
)δ(t

′ − t)dt
′

= x(t) , (1.74)

where we use
1
2π

∫ ∞

−∞
dωeiω(t−t′) = δ(t′ − t) .

When x(t) is a real function of time, as it always is the case for an “observable” waveform,
the real part of X(iω) is an even function of ω and the imaginary part is an odd function
of ω [i.e., X(iω) = X∗(−iω)].

When x(t) is a statistically-stationary process, condition (1.71) is not satisfied and
thus the Fourier transform cannot be defined. The total energy of the noisy waveform
x(t) is infinite, but in any practical noise measurement, a measurement time interval T is
finite and the energy of such a gated function xT (t), defined by

xT (t) =





x(t) |t| ≤ T
2

0 |t| > T
2

, (1.75)

is also finite. The Fourier transform of such a gated function “does” exist.

1.5.1 Parseval theorem

If x1(t) and x2(t) have Fourier transforms X1(iω) and X2(iω), one obtains
∫ ∞

−∞
x1(t)x∗2(t)dt =

∫ ∞

−∞
dtx1(t)

1
2π

∫ ∞

−∞
dωX2(iω)∗e−iωt

=
1
2π

∫ ∞

−∞
dωX2(iω)∗

∫ ∞

−∞
dtx1(t)e−iωt

=
1
2π

∫ ∞

−∞
X1(iω)X∗

2 (iω)dω . (1.76)
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This relation is known as the Parseval theorem. If one uses x1(t) = xT (t + τ) and x2(t) =
xT (t) in (1.76), one obtains

∫ ∞

−∞
xT (t + τ)xT (t)dt =

1
2π

∫ ∞

−∞
|XT (iω)|2eiωτdω , (1.77)

where
∫∞
−∞ xT (t + τ)e−iωtdt = XT (iω)eiωτ is used. When τ = 0, (1.77) is reduced to

∫ ∞

−∞
[xT (t)]2dt =

1
2π

∫ ∞

−∞
|XT (iω)|2dω . (1.78)

The physical interpretation of XT (iω) and |XT (iω)|2 is now clear from the above relations.
XT (iω) is the (complex) amplitude of the harmonic (eiωt) component in a gated function
xT (t) and |XT (iω)|2 is the energy density of this harmonic component with units of energy
per Hz. Equation (1.78) is the total energy of xT (t) and increases linearly with T for a
statistically-stationary process.

1.5.2 Power spectral density and Wiener-Khintchine theorem

The average power of xT (t), defined by

lim
T→∞

1
T

∫ ∞

−∞
[xT (t)]2dt = lim

T→∞
1
2π

∫ ∞

0

2|XT (iω)|2
T

dω , (1.79)

is independent of T and a constant universal quantity, if x(t) is a statistically stationary
process. However, if x(t) is a statistically nonstationary process, the average power is
dependent of T and we are not allowed to take the limit of T →∞. If ensemble averaging
is taken first for many identical gated functions xT (t) in (1.79), the order of limT→∞ and∫∞
0 dω can be interchanged. In this way, the power spectral density is defined as

Sx(ω) = lim
T→∞

2〈|XT (iω)|2〉
T

.

(unilateral power spectral density) (1.80)

Note that the power spectral density is an ensemble averaged quantity and has the different
form for a stationary and nonstationary process.

When τ 6= 0 in (1.77), one can also divide both sides of (1.77) by T , take an ensemble
average, and take a limit of T →∞ to obtain,

lim
T→∞

1
T

∫ ∞

−∞
〈xT (t + τ)xT (t)〉dt = lim

T→∞
1
2π

∫ ∞

0

2〈|X(iω)|2〉
T

cos ωτ dω . (1.81)

The left-hand side of this expression is the ensemble averaged autocorrelation function
φx(τ). Using (1.80) in the right-hand side of this expression, one obtains

φx(τ) =
1
2π

∫ ∞

0
Sx(ω) cos ωτ dω . (1.82)

The inverse relation of this expression is

4
∫ ∞

0
φx(τ) cos ωτ dτ =

2
π

∫ ∞

0
dω′Sx(ω′)

∫ ∞

0
dτcos(ωτ)cos(ω′τ)

=
∫ ∞

0
dω′Sx(ω′)[δ(ω + ω′) + δ(ω − ω′)]

= Sx(ω) . (1.83)
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Here we use the relation,
∫ ∞

0
dτcos(ωτ)cos(ω′τ) =

π

2
[δ(ω + ω′) + δ(ω − ω′)] . (1.84)

Equations (1.82) and (1.83) constitute the Wiener-Khintchine theorem and indicate that
2φx(τ) and Sx(ω) are the Fourier transform pairs.

If a noisy waveform x(t) is a nonstationary process, we cannot take a limit as T →∞
in (1.81). The Wiener-Khintchine theorem for such a case is given by

φx(τ, T ) =
1
2π

∫ ∞

0
Sx(ω, T )cos(ωτ)dω , (1.85)

Sx(ω, T ) = 4
∫ T

0
φx(τ, T )cos(ωτ)dτ . (1.86)

1.5.3 Examples

Let us consider a few examples for demonstrating how to use the Wiener-Khintchine
theorem.

EXAMPLE 1. Suppose a noisy waveform x(t) is a statistically-stationary process, as
shown in Fig. 1.6, with an exponentially decaying autocorrelation function

φx(τ) = φx(0) exp
(
−|τ |

τ1

)
, (1.87)

where φx(0) = 〈x2〉 by definition and τ1 is a relaxation time constant which is a system’s
memory time. Substituting (1.87) into (1.83), one obtains the unilateral power spectral
density

Sx(ω) =
4φx(0)τ1

1 + ω2τ2
1

. (1.88)

The spectrum is Lorentzian with a cut-off frequency of ωc = 1/τ1 and the low-frequency
spectral density is Sx(ω = 0) = 4φx(0)τ1. The autocorrelation function and the unilateral
power spectrum are shown in Fig. 1.7.

EXAMPLE 2. A time-integrated function y(t) =
∫ t
0 x(t′) dt′ of a statistically-stationary

process x(t′) goes through a random walk diffusion, as shown in Fig. 1.6. If x(t) has an
infinitesimally short correlation time, τ1 → 0, its time-integrated waveform y(t) is called a
Wiener-Levy process and is a classic example of a statistically-nonstationary process. Let
us define a gated function by

y(t) =

{ ∫ t
0 x(t′) dt′ (0 ≤ t ≤ T )

0 (otherwise)
. (1.89)

If x(t) is a stationary noisy waveform with a finite memory time, we first have to
evaluate the covariance function,

〈y(t)y(t + τ)〉 =
∫ t

0

∫ t+τ

0
〈x(t′)x(t′′)〉dt′dt′′ , (1.90)
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Figure 1.6: Stationary vs. nonstationary noisy waveforms.

Figure 1.7: The autocorrelation function and unilateral power spectrum of a
stationary noisy waveform.

to obtain the power spectrum of y(t) =
∫ t
0 x(t′)dt′. If x(t) is ergodic, the covariance

〈x(t′)x(t′′)〉 can be replaced by the autocorrelation φx(τ) = limT→∞ 1
T

∫ T
2

−T
2

x(t + τ)x(t)dt.

Using the Wiener-Khintchine theorem (1.85) in (1.90), we have

〈y(t)y(t + τ)〉 =
∫ t

0

∫ t+τ

0
dt′dt′′

1
2π

∫ ∞

0
Sx(ω) cos(ωτ)dω

=
1
2π

∫ ∞

0
Sx(ω)

∫ t

0

∫ t+τ

0
cosω(t′ − t′′)dt′dt′′

=
1
2π

∫ ∞

0
Sx(ω)

1
ω2

[1 + cos(ωτ)− cos(ωt)− cos (ω(t + τ))] dω .

(1.91)
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Sy

Figure 1.8: The autocorrelation function and unilateral power spectrum of a
nonstationary noisy waveform y(t).

The mean-square of y(t) is now evaluated as

〈y(t)2〉 =
1
π

∫ ∞

0
Sx(ω)

1
ω2

[1− cos(ωt)] dω . (1.92)

The relations given by (1.91) and (1.92) are called MacDonald’s functions.
When the memory time of x(t) becomes infinitesimally short, Sx(ω) is independent of

ω, i.e. white noise. Then the mean-square of y(t) is reduced to

〈y(t)2〉 =
Sx(ω = 0)

π

∫ ∞

0

1
ω2

[1− cos(ωt)] dω

=
Sx(ω = 0)

2
t . (1.93)

Here the mathematical identity, lima→0
∫∞
0

1−cos(ωt)
ω2+a2 dω = π

2 t is used. The diffusion con-
stant Dy of the Wiener-Levy process appeared in (1.95) is thus related to the power
spectral density of x(t) at ω = 0,

Dy =
Sx(ω = 0)

4
. (1.94)

The corresponding autocorrelation function for y is calculated as

φy(τ, T ) =
1
T

∫ T−|τ |

0
〈y(t + τ)y(t)〉dt

= T

(
1− |τ |

T

)2

Dy . (1.95)

In order to derive the second line of (1.95), the fact was used that y(t) is a cumulative
process of a memoryless noisy waveform and thus 〈y(t + τ)y(t)〉 = 〈[y(t) + ∆y(τ)]y(t)〉 =
〈y(t)2〉 = 2Dyt, where Dy is a diffusion constant. It is assumed that 〈y(t)∆y(τ)〉 = 0
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because of the assumed zero correlation time for x(t). The unilateral power spectral
density is given by

Sy(ω, T ) = 4
∫ T

0
φy(τ, T ) cos(ωτ) dτ

=
8Dy

ω2

[
1− sin(ωT )

ωT

]
. (1.96)

The correlation time is now proportional to the measurement time interval T as shown
in Fig. 1.8. A finite measurement time T prevents the divergence of the power spectral
density at ω = 0, as shown in Fig. 1.8.

1.5.4 Cross-correlation

If we are interested in the correlation between two noisy waveforms x(t) and y(t), we can
evaluate such cross-correlation by the following formula. The cross-correlation function
and cross-spectral density are defined by

φxy(τ) = lim
T→∞

1
T

∫ T
2

−T
2

〈x(t + τ)y(t)〉dt , (1.97)

Sxy(ω) = lim
T→∞

2〈X(iω)Y (iω)∗〉
T

= Syx(ω)∗ . (1.98)

Substituting x1(t) = x(t + τ), x2(t) = y(t), X1(iω) = X(iω)eiωτ and X∗
2 (iω) = Y ∗(iω) in

the Parseval theorem (1.76), we obtain

φxy(τ) =
1
4π

∫ ∞

−∞
Sxy(ω)eiωτdω , (1.99)

Sxy(ω) = 2
∫ ∞

−∞
φxy(τ)e−iωτdt . (1.100)

Equations (1.99) and (1.100) are often called generalized Wiener-Khintchine theorem.
The degree of cross-correlation between x(t) and y(t) is often evaluated by the coherence
function defined by

Γxy(ω) =
Sxy(ω)

[Sxx(ω) Syy(ω)]
1
2

, (1.101)

where Sxx(ω) and Syy(ω) are the power spectral density of x(t) and y(t), respectively.
Note that Γxy(ω) is a c-number, so that it includes both correlation amplitude and relative
phase.

1.6 Random pulse train

1.6.1 Carson’s Theorem

The Fourier transform of a random pulse train (1.11) is now calculated as

X(iω) = F (iω)
K∑

k=1

ak e−iωtk . (1.102)

24



The unilateral power spectral density for such a random pulse train is given by

Sx(ω) = lim
T→∞

2〈|X(iω)|2〉
T

= lim
T→∞

2|F (iω)|2
T

K∑

k,m=1

〈akam exp [−iω(tk − tm)]〉 . (1.103)

The summation in (1.103) over k and m can be split into the summation for k = m and
for k 6= m,

Sx(ω) = lim
T→∞

2|F (iω)|2
T





K∑

k=1

〈
a2

k

〉
+

∑

k 6=m

〈akam exp [−iω(tk − tm)]〉


 . (1.104)

Suppose ν = limT→∞ K
T is the average rate of pulse emission and 〈a2〉 = limT→∞ 1

K

∑K
k=1〈a2

k〉
is the mean-square of the pulse amplitude. Then the first term of the right-hand side of
(1.104) is expressed by 2ν〈a2〉|F (iω)|2. If we assume that different pulse emission events
are completely independent, the second term of the right-hand side of (1.104) can be
evaluated

lim
T→∞

2|F (iω)|2
T

∑

k 6=m

〈ak〉 〈am〉 〈e−iωtk〉 〈eiωtm〉 = lim
T→∞

2|F (iω)|2
T

∑

k 6=m

〈a〉2
4 sin2

(
ωT
2

)

ω2T 2

= 4π x(t)
2
δ(ω) . (1.105)

Here the mean of the noisy waveform x(t) is

x(t) = ν〈a〉
∫ ∞

−∞
f(t)dt , (1.106)

and 〈a〉 = limT→∞ 1
K

∑K
k=1 ak is the mean of the pulse amplitude. The second equality in

(1.105) is obtained by identifying F (ω = 0) with
∫∞
−∞ f(t)dt, and replacing limT→∞

2 sin2(ωT/2)
ω2T

with πδ(ω). For a symmetric distribution of ak about zero, (1.105) is zero because 〈a〉 is
zero. However, when ak are not symmetrically distributed about zero, the dc term appears
in the power spectral density. Final result is

Sx(ω) = 2ν〈a2〉|F (iω)|2 + 4πx(t)
2
δ(ω)

(Carson’s theorem) . (1.107)

This is the Carson theorem.

1.6.2 Campbell’s theorem

From the Wiener-Khintchine theorem, the autocorrelation function

Φx(τ) =
1
2π

∫ ∞

0
Sx(ω)cos(ωτ)dw

=
ν〈a2〉

π

∫ ∞

0
|F (iω)|2cosωτ dω + 2x(t)

2
∫ ∞

0
δ(ω)cosωτ dω

= ν〈a2〉
∫ ∞

−∞
f(t)f(t + τ)dt + x(t)

2
, (1.108)
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where the Parseval theorem (1.76) and
∫∞
0 δ(ω)cos(ωτ)dω = 1

2 are used to derive the third
line. Since φx(τ = 0) = x(t)2, one obtains

x(t)2 − x(t)
2

= ν〈a2〉
∫ ∞

−∞
[f(t)]2dt

=
ν〈a2〉

π

∫ ∞

0
|F (iω)|2dω , (1.109)

where the energy theorem (1.78) is used to derive the second line. This is the Campbell’s
theorem of mean square. On the other hand, the mean value is calculated by

x(t) = ν〈a〉
∫ ∞

−∞
f(t)dt = ν〈a〉F (ω = 0) . (1.110)

This is the Campbell’s theorem of mean.

1.7 Shot noise in a vacuum diode

As an application of the Carson theorem, the current noise of a vacuum diode is calculated
in this section.

1.7.1 Ramo theorem

Suppose an electron is emitted from the cathode and is in transit to the anode in a
vacuum diode shown in Fig. 1.9 Assume the source resistance, Rs, is zero. We show that
the external short-circuit current due to this moving charge carrier is given by

i (t) =
qv

d
, (1.111)

where q is the electron charge, v is the electron drift velocity, and d is the distance between
the two electrodes.

Figure 1.9: A vacuum diode.

In the short-circuit limit (RS = 0), as the electron moves from time t′ = 0 to t, the
energy the electron gains is given by:

U ′ =
∫ t

0
dt′ ~F · ~v = −q

∫ t

0
dt′(−Ev) = q

∫ t

0
dt′Ev, (1.112)
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where F = qE is an external force acting on the electron and the electric field ~E is anti-
parallel to ~v. If the current in the external circuit is i(t), the total energy supplied by the
external voltage source is

U ′′ =
∫ t

0
dt′V (t′)i(t′) =

∫ t

0
dt′V i(t′), (1.113)

where V (t) = V is constant. Since E = V/d in the tube, from U ′ = U” we obtain:
∫ t

0
dt′qEv =

∫ t

0
dt′Edi(t′). (1.114)

Therefore we have Eq.(1.111). This is called the Ramo theorem.

1.7.2 External Circuit Current

We consider the case that the external circuit has a finite source resistance,Rs 6= 0, and
the circuit relaxation time, τc = RsC, is much longer than the electron transit time, τt,
where C is the capacitance of the vacuum diode.

For τt = d/v ¿ τCR = RsC, the voltage developing due to the electron transit event
occurs ”instantly,” whereas the relaxation through the external circuit is very slow. Im-
mediately following the electron transit, the voltage across the vacuum diode is V − q/C,
i.e., the voltage at anode is VA(t) = V − q/C at t = 0. Using Kirchoff’s law, and noting
that a current from battery to anode must be equal to a change in the surface charge, we
have

V − VA(t)
Rs

=
d

dt
(CVA(t)). (1.115)

We rewrite (6) as
d

dt
VA(t) = −VA(t)

RsC
+

V

RsC
, (1.116)

and obtain the solution with the initial condition at t = 0 as

VA(t) = V − q

C
e−t/RsC . (1.117)

The current in the external circuit is then

i(t) =
V − VA

Rs
=

q

RsC
e−t/RsC . (1.118)

1.7.3 Surface Charge

We now calculate the surface charges of the cathode and the anode as a function of time
for a single-electron traversal process in the following three cases:

(I) The electron drift velocity is assumed to be constant over the electron’s transit from
the cathode to the anode, and τc ¿ τt.

(II) The electron drift velocity is initially zero at the cathode and is accelerated by the
constant applied electric field, and τc ¿ τt.
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(III) τc À τt. In this case, we assume the electron transit to be an impulsive event.

(I)τc ¿ τt(Rs = 0) limit, constant v
Since there is a voltage of V across the vacuum diode, there is a surface charge of CV

on the anode and −CV on the cathode. When an electron with charge −q is emitted from
the cathode, it induces a net charge of +q on the cathode. Over the time, d/V , this charge
is compensated by the current supplied from the external circuit. The surface charge on
the cathode is:

Qc(t) = −CV + q −
∫ t

0
dt′i(t′). (1.119)

We perform the integration and obtain,

Qc(t) =

{
−CV + q(1− v

d t) 0 < t < d
v .

−CV otherwise
(1.120)

The surface charge on the anode starts increasing by +q over the time d/v, due to the
external current, from its t = 0 value of CV . Then, it is compensated for by the electron
from the cathode. The surface charge on the anode is,

QA(t) = CV +
∫ t

0
dt′i(t′) =

{
CV + q v

d t 0 < t < d
v .

CV otherwise
(1.121)

Since the external voltage source supplies an external current (without delay) to keep up
with the change inside the diode, the voltage across the diode is kept constant.

(II)τc ¿ τt(R = 0) limit, accelerated ν
Now we allow the electron to be accelerated by the electric field. The electron acquires

a velocity,

ν(t) =
1
m

p(t)
1
m

∫ t

0
dt′F (t′) =

qE

m
t. (1.122)

The transit time across the vacuum diode is,

dr

dt
= v(t). (1.123)

This leads to,
∫ d

0
dr =

∫ Ttr

0
dt′v(t′), Ttr =

√
2md2

qV
. (1.124)

The current can then be calculated from the current density.

J(t) =
q

Ad
v(t), i(t) = J(t) ·A =

q

d
v(t) =

q2V

md2
t. (1.125)

The surface charge on the cathode is,

Qc(t) = −CV + q −
∫ t

0
dt′i(t′) (1.126)

=

{
−CV + q

(
1− qV

2md2 t2
)

= −CV + q
(
1− v(t)

2d t
)

0 < t < Ttr.

−CV otherwise
(1.127)
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The surface charge on the anode starts increasing by +q over the time Ttr, due to the
external current, from its t = 0 value of CV . Then, it is compensated by the electron
from the cathode. The surface charge on the cathode is:

QA(t) = CV +
∫ t

0
dt′i(t′) (1.128)

=

{
CV + q2V

2md2 t2 = CV + qv(t)
2d t 0 < t < Ttr.

CV otherwise
(1.129)

Since the external voltage source supplies an external current (without delay) to keep up
with the change inside the diode, the voltage across the diode is still kept constant.

(III) τt ¿ τC limit, impulsive electron transit
The charge on the anode is given by

QA(t) = CVA(t) =

{
CV − qe−t/RsC t > 0
CV t < 0.

(1.130)

and that on the cathode is,

QC(t) = −CVA(t) = −QA(t) =

{
−CV + qe−t/RsC t > 0
−CV t < 0.

(1.131)

Here, the voltage across the diode has an RsC relaxation form.

1.7.4 Independent Emission of Electrons: a Poisson Point Process

For the case where the electron emission event and the transport process are mutually
independent, i.e. the electron emission obeys a Poisson point process. We calculate the
external current noise spectra for the above three cases.

(I) τC ¿ τt(Rs = 0) limit, constant v
The Carson theorem states that for a random pulse train i(t) =

∑K
k=1 akf(t− tk) with

an identical pulse shape f(t), the unilateral power spectrum is given by,

S(ω) = 2ν〈a2
k〉|F (iω)|2 + 4π

[
νak

∫ ∞

−∞
dtf(t)

]2

δ(ω), (1.132)

where ν is the average rate of arrival and F (iω) is the Fourier transform of f(t). In this
case, each current pulse is given by

f(t) =

{
q v

d 0 < t < d
v ,

0 otherwise
(1.133)

and the Fourier transform is

F (iω) =
∫ ∞

−∞
dtf(t)e−iωt =

∫ d/v

0
dt

qv

d
e−iωt (1.134)

=
qv(1− e−iωd/v)

iωd
= qe−iωd/2v sin(ωd/2v)

(ωd/2v)
. (1.135)
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Using (1.132), we obtain

Si(ω) = 2νq2 sin2(ωd/2ν)
(ωd/2v)2

+ 4πv2q2δ(ω). (1.136)

Since the average rate is ν, the current is given by I = qν. Therefore (1.136) can be
written as

Si(ω) = 2qI [sinc(ωd/2v)]2 + 4πI2δ(ω). (1.137)

In the low-frequency limit, 0 < ω ¿ v/d, since limx→0
sin x

x = 1, we have

Si(ω ¿ 2v/d) = 2qI, (1.138)

which is a full shot noise.

(II) τC ¿ τt(Rs = 0) limit, accelerated v
In this case, each current pulse is given by

a =
q2V

d2m
and f(t) =

{
t 0 < t < Ttr

0 otherwise.
(1.139)

It follows that:

I = i(t) = a
1

Ttr

∫ Ttr

0
dt′f(t′) =

aνT 2
tr

2
= qν, (1.140)

〈a2〉 = a2, (1.141)

F (iω) =
∫ ∞

−∞
dtf(t)e−iωt =

∫ Ttr

0
dtte−iωt = iTtr

e−iωTtr

ω
− 1− e−iωTtr

ω2
, (1.142)

where an integration by parts is used in the last line. The magnitude squared is,

|F (iω)|2 =
2 + ω2T 2

tr − 2ωTtr sin(ωTtr)− 2 cos(ωTtr)
ω4

. (1.143)

Plugging into the unilateral power spectral density as per the Carson theorem, we have

Si(ω) = 2ν

(
q2V

d2m

)2 [
2 + ω2T 2

tr − 2ωTtr sin(ωTtr)− 2 cos(ωTtr)
ω4

]
+ 4πν2q2δ(ω). (1.144)

We use

sin(ωTtr) = ωTtr − 1
3!

(ωTtr)3 + O(ω5), (1.145)

cos(ωTtr) = 1 +
1
2!

(ωTtr)2 +
1
4!

(ωTtr)4 + O(ω6), (1.146)

in the small frequency limit, to write the power spectral density as

Si(ω) = 2ν

(
q2V

d2m

)2 (
2
3!

T 4
tr −

2
4!

T 4
tr + O(ω5)

)
+ 4πν2q2δ(ω). (1.147)
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In the low-frequency limit, we ignore O(ω5), and we have

Si(ω) = 2qI + 4πI2δ(ω). (1.148)

In the low-frequency limit, 0 < ω ¿ 1/Ttr, the power spectral density is,

Si(ω ¿ 1
Ttr

) = 2qI, (1.149)

which is again a full shot noise.

(III) τt ¿ τC limit, impulsive electron transit
In this case, each current pulse is given by

f(t) =

{
q

CRs
e−t/RsC t > 0

0 t < 0,
(1.150)

and the Fourier transform is

F (iω) =
∫ ∞

−∞
dtfiii(t)e−iωt =

q

1 + iωRsC
. (1.151)

The power spectral density is then,

Si(ω) = 2ν
q2

1 + ω2R2
sC

2
+ 4πν2q2δ(ω) = 2qI

1
1 + ω2R2

sC
2

+ 4πI2δ(ω). (1.152)

In the low-frequency limit, 0 < ω ¿ 1/RsC,

Si(ω ¿ 1/RsC) = 2qI, (1.153)

which is again a full shot noise.

1.7.5 Noise Suppression in Vacuum Diodes

For statistically independent emission of an electron to occur, the condition for electron
emission has to be identical for each emission event. For the case in which τt À τC with
constant electron velocity, the relevant time scale is the electron transit time τt = d/v. To
ensure statistical independence, we would require that no electron be emitted while one
is currently in transit through the vacuum. Incidentally, this is over the time scale for
which the voltage across the vacuum diode is recovered to its initial value. Therefore, in
this case, we would require the electron emission rate to be

ν ¿ 1
τt

(1.154)

for statistically independent emission of electrons. In the other limit,τC À τt, we realize
that the above condition is not satisfied. This is because the voltage across the vacuum
diode is not recovered within time τt after the electron emission event. The rate of electron
emission would be a function of the voltage across the diode, and is only fully recovered
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after a time τC has elapsed. Only then is the emission condition identical to ensure
statistically independent emission. Thus, we require the emission rate to be,

ν ¿ 1
τC

(1.155)

If these conditions are not met, then there is a statistical dependence between the electron
emission events. In this system, this dependence manifests itself as a negative feedback
process in which subsequent electron emissions are suppressed following an electron emis-
sion. This is due to:

1. a space-charge effect in the τt À τC limit, in which the existence of an electron in the
vacuum creates a repulsive potential such that the rate of the subsequent electron
emissions is suppressed.

2. a memory effect in the external circuit in the τC À τt limit, in which the slow
recovery of the voltage across the diode suppresses the rate of the subsequent electron
emissions.

In both cases, the tendency is to regulate the emission events. This regulation leads to a
quieter stream of electrons, and the noise is suppressed below the full shot noise value.
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