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ABSTRACT
By reformulating a learning process of a set system L as a game between Teacher (presenter
of data) and Learner (updater of abstract independent set), we define the order type dimL
ofL to be the order type of the game tree. The theory of this new order type and continuous,
monotone function between set systems corresponds to the theory of well quasi-orderings
(WQOs). As Nash-Williams developed the theory of WQOs to the theory of better quasi-
orderings (BQOs), we introduce a set system that has order type and corresponds to a BQO.
We prove that the class of set systems corresponding to BQOs is closed by any monotone
function. In (Shinohara and Arimura. “Inductive inference of unbounded unions of pattern
languages from positive data.” Theoretical Computer Science, pp. 191–209, 2000), for any set
system L, they considered the class of arbitrary (finite) unions of members of L. From view-
point of WQOs and BQOs, we characterize the set systems L such that the class of arbitrary
(finite) unions of members of L has order type. The characterization shows that the order
structure of the set system L with respect to the set inclusion is not important for the result-
ing set system having order type. We point out continuous, monotone function of set systems
is similar to positive reduction to Jockusch-Owings’ weakly semirecursive sets.
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1 Introduction
A set system L over a set T , a subfamily of the pow-

erset P(T ), is a topic of (extremal) combinatorics [5],
[21], as well as a target of an algorithm to learn in com-
putational learning theory [26].

A well quasi-ordering [16] (WQO for short) is, by
definition, a quasi-ordering (X, �) which has nei-
ther an infinite antichain nor an infinite descending
chain. WQOs are employed in algebra [16], combina-
torics [23], [35], formal language theory [6], [7], [14],
[32], and so on.

WQOs and related theorems such as Higman’s the-
orem [16], König’s lemma and Ramsey’s theorem [5]
are sometimes employed in computational learning the-
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ory. In [22], [29], [39], sufficient conditions for set sys-
tems being learnable is studied with König’s lemma
and Ramsey’s theorem, In [38], for a set system L,
Shinohara-Arimura considered the unbounded unions
ofL, that is, the class L<ω of nonempty finite unions of
members ofL, and then they used Higman’s theorem to
study a sufficient condition for it being learnable. In [9],
de Brecht employed WQOs to calibrate mind change
complexity of unbounded unions of restricted pattern
languages. Motivated by [22], [29], [39], a somehow
systematic study on the relation between WQOs and a
class of learnable set systems is done in [3], as follows:

(i) By reformulating a learning process of a set sys-
tem L as a game between Teacher (presenter of data)
and Learner (updater of abstract independent set), we
define the order type dimL of L to be the order type
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of the game tree, if the tree is well-founded. According
to computational learning theory, if an indexed family
L of recursive languages has well-defined dimL then
L is learnable by an algorithm from positive data. If
a set system has the well-defined order type, then we
call it a finitely elastic set system (FESS for short). See
Definition 12.

(ii) For each quasi-orderingX = (X, �), we consider
the set system ss (X) consisting of upper-closed subsets
of X. The set system has the order type equal to the
maximal order type [12] of X. Furthermore, the con-
struction ss (•) has a left-inverse qo (·). Here for a set
system L, qo (L) is a quasi-ordering (

⋃L, �L) such
that

x �L y ⇐⇒ ∀L ∈ L, (x ∈ L =⇒ y ∈ L) .

The maximal order type otp(X) of X is defined if and
only if X is a WQO. For any quasi-orderingX, if one of
otp(X) and dim ss (X) is defined then the other side is
defined with the same ordinal number. So FESSs corre-
spond to WQOs.

(iii) For every nonempty set U, the product topologi-
cal space {0, 1}U of the discrete topology {0, 1} is called
a Cantor space. A subspace of a Cantor space is repre-
sented by L,M, . . .. We say a function fromM to L is
continuous, if it is continuous with respect to the sub-
spacesM,L of the Cantor spaces. We identify {0, 1}U
with the powerset P(U), and a function from {0, 1}U to
{0, 1}U with a function from P(U) to P(U). We say
O : M → L is a deformation, if it is monotone (i.e.
M ⊆ M′ implies O(M) ⊆ O(M′).) If a deformation is
continuous, then it has following finiteness condition:

Lemma 1 Let O : {0, 1}⋃M → L.
1. O is a deformation, if and only if there is a binary

relation R ⊆ (
⋃L) × P (

⋃M) such that

∀M ∈ M∀x ∈
⋃
L(

O(M) 
 x ⇔ ∃v ⊆ M. R(x, v)
)
. (1)

2. O is a continuous deformation, if and only if there
exists R ⊆ (

⋃L)×P (
⋃M) such that (1) holds, but

v is a finite set whenever R(x, v) holds, and there are
only finitely many such v’s for each x. ( [3])

For each binary relation R ⊆ (
⋃L) × P(

⋃M), the
function O satisfying (1) is unique. So we write it by
OR. Conversely, every deformation O : {0, 1}⋃M → L
is written as OR by a binary relation

R :=
{
(x, v) ∈

(⋃
L
)
× P
(⋃
M
)

; O(v)(x) = 1
}
.

The class of WQOs is closed under finitary operations
such as Higman embedding [16] and topological minor
relation [13 Sect. 1.7] between finite trees [13 Ch. 12],
[23]. The class of finite graphs is a WQO under the mi-
nor relation. Robertson-Seymour’s proof of it is given
in the numbers IV-VII, IX-XII and XIV-XX of their se-
ries of over 20 papers under the common title of Graph
Minors, which has been appearing in the Journal of
Combinatorial Theory, Series B, since 1983. For a
shorter proof, see recent papers by Kawarabayashi and
his coauthors.

The class of FESSs enjoys a useful closure condition:

Proposition 1 ( [3]) For any set systems L andM and
any continuous deformation O : {0, 1}⋃M → L, ifM
is an FESS, so is the image O [M] ofM by O.

By it, we prove that for various (nondeterminis-
tic) language operators (e.g. Kleene-closure, shuffle-
product [34], [37], shuffle-closure [17], (iterated) literal
shuffle [4], union, product, intersection), the element-
wise application of such operator to (an) FESS(s) in-
duces an FESS.

Roughly speaking, a deformation transforms any
quasi-ordering � to the powerset ordering [28] �∀∃.
It is through our correspondence (ss (•) , qo (·)) be-
tween quasi-orderings to set systems (Section 3). Al-
though the powerset ordering of Rado’s WQO [33] is
not a WQO [28 Corollary 12], the class of better quasi-
orderings [31] (BQOs for short) is closed with respect
to the powerset ordering. There are infinitary opera-
tions under which the class of WQOs is not closed but
the class of BQOs is. So we introduce a better elastic
set system (BESS for short), as a set system correspond-
ing to a BQO. We show that the class of BESSs is closed
under the image of any deformation (Section 3), where
any deformations are infinitary in a sense of Lemma 1.
By this and (i), we can develop the computational learn-
ing theory of ω-languages [36].

The notion of BESS is useful in investigating a fol-
lowing set system

L<ω := {
⋃
M ; ∅ �M ⊆ L, #M < ∞}. (2)

It is studied for the learnability of language classes such
as a class of regular pattern languages [38]. We charac-
terize the set systems L such that L<ω are again FESSs,
and then we prove that for every BESS L, L<ω is an
FESS.

We remark that another importance of set system
L<ω. We conjecture that the order type of an FESS is the
supremum, actually the maximum, of the order types of
the “linearizations” of the FESS. This conjecture corre-
sponds to a proposition useful in investigating WQOs:
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Proposition 2 ( [12]) The order type of a WQO is the
maximum order type of the linearizations of the WQO.

A “linearization” of an FESS L seems to be a subfamily
of L<ω.

We hope that our study on FESSs and BESSs are use-
ful in solving problems (e.g. decision problem of timed
Petri-nets [1], [2], the multiplicative exponential linear
logic [11]) which are related to WQOs and BQOs but
hard to solve with conventional arguments for WQOs
and BQOs.

The rest of paper is organized as follows: In the next
section, we recall the powerset ordering and Marcone’s
characterization [28] of WQOs such that the powerset
orderings are again WQOs. We also review the combi-
natorial definition of a BQO. Then we recall that the
class of BQOs is closed with respect to the powerset or-
dering. In Section 3, for the set system ss (�) of upper-
closed sets of a fixed quasi-ordering �, the image by
a deformation is essentially the set system of upper-
closed sets of the powerset ordering of �. Then we in-
troduce a BESS as an FESS that corresponds to a BQO.
Then we prove that the image of a BESS by any defor-
mation is an FESS. In Section 4, we characterize the
class of set systems L such that L<ω is an FESS, from
viewpoint of BQO theory. We contrast our characteriza-
tion with Shinohara-Arimura’s sufficient condition [38]
for a set system L to have an FESS L<ω.

In appendix, we propose to extend Ramsey numbers
to estimate the ordinal order type of set systems, and
then present miscellaneous results for computable ana-
logue of (iii). Finally, we review the order type of a set
system from [3].

2 Better quasi-orderings and powerset
ordering

A better quasi-ordering (BQO for short), a stronger
concept than a WQO, has pleasing closure properties
with respect to

• embedding for transfinite sequences [31];

• topological minor relation for infinite trees

[24], [30]; and

• a powerset ordering �∀∃ (see Definition 4) ( [28
Corollary 10]).

2.1 Combinatorial definition of BQOs
We first recall the definition of BQOs by barriers [28]

and then the closure of BQOs with respect to the pow-
erset ordering �∀∃. Please be advised to refer [27], [28]
for the detail.

Hereafter the first infinite ordinal ω is identified with
the set of nonnegative integers. The class of subsets X

of U such that the cardinality of X is less than α (equal
to α, resp.) is denoted by [U]<α ([U]α, resp.). A set X ⊆
ω is often identified with the sequence enumerating it
in a strictly increasing order.

Definition 1 1. We say B ⊆ [ω]<ω a barrier, if (1) a set⋃
B is infinite; (2) for all σ ∈ [

⋃
B]ω there exists

s ∈ B such that s is a prefix of σ; and (3) for all
s, t ∈ B, s � t.

2. For s, t ∈ [ω]<ω, we write s � t, if, the sequence s is
a prefix of the sequence u = s ∪ t and the sequence
t is a prefix of u \ {min u}.

3. Let o.t.(B) the maximal order type of B with respect
to the lexicographical ordering.

Observe that

Singl := { {n} ; n ∈ ω} (3)

is a barrier. Any barrier B of o.t.(B) being ω consists
only of singletons, according to [28 p. 342].

We recall an α-WQO and a BQO [28 Definition 3].

Definition 2 Let α be a countable ordinal and � a
quasi-ordering on Q. We say a function f : B → Q
is good with respect to �, if there are some s, t ∈ B such
that s� t and f (s) � f (t). Otherwise we say f is bad. We
say � an α-WQO, if for every barrier with o.t.(B) ≤ α
every function f : B → Q is good with respect to �. If
� is an α-WQO for each countable ordinal α, we call �
a BQO.

Because Singl is a barrier, every BQO is a WQO.
When we define an α-WQO for a countable ordinal α,
we have only to consider only smooth barriers among
the barriers, as [28] explains:

Definition 3 By a smooth barrier, we mean a barrier B
such that for all s, t ∈ B with #s < #t there exists i ≤ #s
such that the i-th smallest element of s is less than that
of t.

By an indecomposable ordinal, we mean ωβ such
that β is any ordinal. Recall [27 Corollary 3.5].

Proposition 3 If B is a smooth barrier, then the ordinal
o.t.(B) is indecomposable.

Then we have [28 Theorem 4].

Proposition 4 Let α be a countable ordinal and � a
quasi-ordering on Q. � is an α-WQO if and only if for
every smooth barrier B with o.t.(B) ≤ α, every map
f : B→ Q is good with respect to �.

Corollary 1 � is a BQO if and only if it is an α-WQO

for each countable infinite indecomposable ordinal α.
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We use properties of a barrier from [28 Lemma 6].

Proposition 5 For a barrier B, let B2 ⊆ [ω]<ω be

B2 := {s ∪ t ; s, t ∈ B, s � t}.
Then
1. for each t ∈ B2 there exist unique π0(t), π1(t) ∈ B

such that π0(t) � π1(t) and t = π0(t) ∪ π1(t);
2. if t, t′ ∈ B2 and t � t′ then π1(t) = π0(t′);
3. B2 is a barrier; and
4. if o.t.(B) is indecomposable then o.t.(B2) = o.t.(B) ·
ω.

2.2 Powerset ordering
Definition 4 For a quasi-ordering (X, �), we define a
quasi-ordering on the powerset P(X) by

v �∀∃ v′ :⇐⇒ ∀x′ ∈ v′∃x ∈ v. x � x′.

It is studied for the reachability analysis of Petri
nets (verification of infinite-state systems [1], Timed
Petri net [1], [2],. . ..)

Proposition 6 ( [18], [28 Theorem 9]) If α is a count-
able infinite indecomposable ordinal and (Q,�) is an
(α · ω)-WQO, then the powerset P(Q) ordered by �∀∃ is
an α-WQO.

Lemma 2 For a quasi-ordering X = (Q,�), the fol-
lowing are equivalent:
1. (a) X is a WQO; and (b) let F be any function from

[ω]2 to Q. Then if F({i, j}) ≺ F({i, j + 1}) for any
i < j < ω, then there are i < j < k < ω such that
F({i, j}) ≺ F({ j, k}).

2. X is an ω2-WQO.
3.
(
[Q]<ω , �∀∃

)
is a WQO.

4.
(
P (Q) , �∀∃

)
is a WQO.

Proof. The proof is similar to that of [28 Corollary 12],
but we use Rado’s characterization [33 Theorem 3] of
WQOs (Q,�) such that the set of sequences of elements
of Q with the length ω is again a WQO. For any WQO

X = (Q,�) and any countable ordinal α, let Xα (X<α
resp.) be the set of sequences of elements of Q of
length α (less than α, resp.) quasi-ordered by naturally
generalized Higman’s embedding. The condition (1) is
equivalent to Xω being a WQO, by [33 Theorem 3]. By
Higman’s theorem, it is equivalent to (Xω)<ω = X<ω2

being a WQO. By [27], it is equivalent to (2). The equiv-
alence to the other conditions follows from [28 Corol-
lary 12]. Q.E.D.

3 Better elasticity — deformation as
powerset ordering

Given a deformationO and a WQO X, we try to con-
struct explicitly from X a suitable WQO Y such that
O[ss (X)] ⊆ ss (Y).

Definition 5 Let L and M be set systems. Suppose
R ⊆ (

⋃L) × P (
⋃M) and X := (

⋃M, �) is a
quasi-ordering. Then define a quasi-ordering QR(X)
by (
⋃L, �) as follows: For any x, x′ ∈ ⋃L, we write

x � x′, if whenever R(x, v) holds, there exists v′ such
that R(x′, v′) and v �∀∃ v′.

Lemma 3 Let L andM be set systems. Suppose R ⊆
(
⋃L) × P (

⋃M). If X is a quasi-ordering on
⋃M,

then QR(X) is indeed a quasi-ordering on
⋃L.

Proof. Let QR(X) be (
⋃L,�). It is easy to see that

x � x. From x � x′ and x′ � x′′, we derive x � x′′. Let
R(x, v). By x � x′, there exists v′ such that R(x′, v′) and
v �∀∃ v′. By x′ � x′′, there exists v′′ such that R(x′′, v′′)
and v′ �∀∃ v′′. Because �∀∃ is a quasi-ordering, we have
v �∀∃ v′′. Q.E.D.

It seems difficult to replace a “quasi-ordering” with
a “partial ordering” in Lemma 3. For a following the-
orem, see (ii) in the first section for a left-inverse qo (·)
of ss (•), and Lemma 1 for the definition of OR.

Theorem 1 For any R ⊆ (
⋃L) × P (

⋃M) , we have
OR [M] ⊆ ss

(
QR(qo (M))

)
.

Proof. Let (
⋃M, �) = qo (M) and (

⋃L, �) =
QR(qo (M)).

We verify if A ∈ M and OR(A) 
 x � x′, then
OR(A) 
 x′.

By OR(A) 
 x, there exists v such that R(x, v) and
v ⊆ A. Since x � x′, there exists v′ such that R(x′, v′)
and every x′ ∈ v′ has x ∈ v with x � x′. Because x ∈ A
and A ∈ M is upper-closed with respect to �, x′ ∈ A.
So v′ ⊆ A. This meansOR(A) 
 x′. Q.E.D.

We are not sure whether QR(qo (ss (X))) is a WQO

for each WQO X, because, according to Lemma 2, the
quasi-ordering �∀∃ is not always a WQO.

Instead, we introduce a stronger set system than an
FESS.

Definition 6 (BESSs) We say a set system L ⊆ P(T )
is a better elastic set system (BESS for short) or L has
better elasticity, provided qo (L) is a BQO.

Example 1 For every WQO X which is not a BQO, a set
system ss (X) is an FESS but not a BESS, since qo (·) is
a left-inverse of ss (•).
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Lemma 4 1. A quasi-ordering (X, �) is a BQO, if and
only if ss ((X, �)) is a BESS.

2. Every BESS is an FESS.

Proof. (1) By (ii) in the first section. (2) If a set sys-
tem L has an infinite bad learning sequence (see Defi-
nition 12) 〈〈t0, L1〉, 〈t1, L2〉, . . .〉, then we have a barrier
Singl and a function f ; {i} ∈ Singl �→ ti such that
ti ∈ L j � t j hence ti �L t j (i < j). This contradicts that
qo (L) is a BQO. Q.E.D.

As the class of BQOs is closed under infinitary oper-
ations than the class of WQOs is, we prove that the class
of BESSs is closed under infinitary operations (i.e., de-
formations) than the class of FESSs is. See Lemma 1
for the characterization of deformations.

Theorem 2 Assume L andM are set systems and O :
M → L is a deformation. Then ifM is a BESS, so is
O [M].

To prove Theorem 2, we have only to verify a fol-
lowing lemma, in view of Corollary 1:

Lemma 5 Let O be a deformation from a set system
M to a set system L. If α is a countable infinite inde-
composable ordinal, and qo (M) is an α ·ω2-WQO, then
qo (O[M]) is an α-WQO.

Proof. WriteO asOR for some relation R ⊆ (
⋃L)×

P (
⋃M). Let the quasi-ordering qo (M) be (

⋃M, �)
and QR(qo (M)) be (

⋃L, �), as in Definition 5. As-
sume qo (O[M]) is not an α-WQO. By Theorem 1 and
(ii) in the first section,

qo (O [M]) ⊇ qo
(
ss
(
QR(qo (M))

))
= QR(qo (M)).

Since qo (O[M]) is not an α-WQO, the quasi-ordering
QR(qo (M)) = (

⋃L, �) is neither. By Proposition 4,
there are smooth barrier B of o.t.(B) ≤ α and a function
f : B→ ⋃O[M] such that for all u, v ∈ B, u�v implies
f (u) � f (v). By Proposition 5 (1), for all t ∈ B2, we
have π0(t), π1(t) ∈ B and π0(t) � π1(t). So f (π0(t)) �
f ((π1(t))) for all t ∈ B2. By Definition 5, for some
v with R ( f (π0(t)) , v) and for all v′, if R ( f (π1(t)) , v′)
then v ��∀∃ v′. For each t, let g(t) be one of such v. Then
g is a function from B2 to P(

⋃M).
Then for all t, t′ ∈ B2, we have g(t) ��∀∃ g(t′) whenever

t � t′. In other words, the function g is bad with respect
to the powerset ordering �∀∃. To verify it, first recall
π1(t) = π0(t′) by Proposition 5 (2). By the definition of
g, we have g(t) ��∀∃ v′ whenever R ( f (π1(t)) , v′). More-
over R ( f (π0(t′)), g(t′)). Because Proposition 5 (2) im-
plies π1(t) = π0(t′), we have R ( f (π1(t)) , g(t′)). There-
fore, g(t) ��∀∃ g(t′).

By Proposition 3 and Proposition 5 (4), o.t.(B2) =
o.t.(B) · ω ≤ α · ω. Because B2 is a barrier by Proposi-
tion 5 (3), (P(

⋃L), �∀∃) is not an (α · ω)-WQO, which
contradicts Proposition 6. Q.E.D.

A following immediate corollary of Theorem 2 may
be useful in developing computational learning theory
of ω-languages [36]: Let Σ∞ be a set of possibly in-
finite sequences of elements in an alphabet Σ, and L
be a set system over Σ∞. The concatenation operation
of two sequences is defined similarly as that of two fi-
nite sequences except that for an infinite sequence u and
sequence v, the concatenation uv is defined as u. For
L ⊆ Σ∞, the ω-closure [36] Lω of L is the set of in-
finitely iterated concatenation u1u2u3 · · · of sequences
u1, u2, . . . ∈ L.

Corollary 2 (Closure of ω-languages) If L is a BESS,
so are following classes:

1. {Lω ; L ∈ L}.
2. {Lsh ; L ∈ L}. Here Lsh is the shuffle-closure {ε} ∪

L∪ (L � L)∪ ((L � L) � L)∪ · · · , and L � L′ is the set
of u1v1u2v2 · · · such that u1u2 · · · ∈ L, v1v2 · · · ∈ L′
and ui, vi ∈ Σ∗ (i ≥ 1).

4 Linearizations of set systems and
powerset orderings

Many studies on WQOs use de Jongh-Parikh’s theo-
rem [12]: “The order type otp(X) of a WQO X is the
maximum of order types of the linearizations of X.”

We wish to require that if a linear order Y is a lin-
earization of a quasi-ordering of X, then ss (Y) is a
‘linearization’ of a ss (X). Then a ‘linearization’ of a set
systemL ⊆ P(T ) should be a set systemM ⊆ P(T ) lin-
early ordered by set inclusion andM consists of unions
of members of L such that for any L ∈ L there exists a
subfamily L′ ⊆ L such that L ∈ L′ and

⋃L′ ∈ M.

Lemma 6 For any FESS L, if qo (L) is a WQO then the
class L̂ := { ⋃M ; ∅ �M ⊆ L } containing L closed
under arbitrary unions is an FESS.

Proof. Since each member
⋃M ∈ L̂ is upper-

closed with respect to the WQO qo (L), any learning
sequences (see Definition 12) of the set system L̂ are
those of the set system ss

(
qo (L)

)
. Since qo (L) is a

WQO, ss
(
qo (L)

)
is an FESS. Therefore any bad learn-

ing sequence should be finite. Hence L̂ is an FESS.
Q.E.D.

Conjecture 1 Define a suitable linearization of a set
system. Do we have

dimX = max {dimY ; Y is a linearization of X}
for any set system X ?
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We characterize the set systems L such that the set
system of arbitrary (finite) unions of members of L is
an FESS, from viewpoint of WQOs, BQOs, and the pow-
erset ordering �∀∃.
Theorem 3 For any set system L, the following are
equivalent:
1. the quasi-ordering qo (L) = (

⋃L, ≤) satisfies the
condition (1) of Lemma 2. Namely,
(a) qo (L) is a WQO; and
(b) Let F be any function from [ω]2 to

⋃L. Then if
F({i, j}) < F({i, j + 1}) for any i < j < ω, then
there are i < j < k < ω such that F({i, j}) <
F({ j, k}).

2. L<ω is an FESS.
3. L̂ is an FESS.

Proof. Write qo (L) = (
⋃L,�). Assume the

condition (3) is false. Then there are an infinite se-
quenceMn ⊆ L (n = 1, 2, . . .) and an infinite sequence
xn ∈ ⋃L (n = 1, 2, . . .) such that

vn := {x1, . . . , xn−1} ⊆
⋃
Mn � xn. (4)

If there are n < m such that vn �∀∃ vm, then xi � xm−1

for some i < n. However, (4) implies xi ∈ ⋃Mm−1 �
xm−1. By the definition of �, xi � xm−1 implies xi ∈⋃Mm−1 
 xm−1. A contradiction. Thus the powerset
ordering (P(

⋃L),�∀∃) is not a WQO. By Lemma 2, the
condition (1) is false.

Assume the condition (1) is false. Since Lemma 2
implies that the condition (1) is equivalent to the well-
quasi-orderedness of the powerset ordering�∀∃, we have
an infinite sequence (vi)i such that for all i < j, vi ��∀∃ v j

but vi ⊆ ⋃L. Then there is y j ∈ v j such that for all
yi ∈ vi we have yi � y j. By the definition of �, there is a
sequence (Li, j)i< j such that yi ∈ Li, j � y j. Hence the se-
quence

(⋃
i< j Li, j

)
j

is an infinite bad learning sequence

in L<ω. So L<ω is not an FESS. Thus the condition (2)
is false.

Obviously the condition (3) implies the condition (1).
The equivalence between the condition (1) and the con-
dition (2) can be similarly proved. Q.E.D.

Example 2 By [29], [39], we have an FESS

L1 := {{i} ∪ {k ; k ≥ j} ; i, j ∈ ω} ,
because it is the memberwise union of an FESS { {k ∈
ω ; k ≥ j} ; j ∈ ω } and an FESS Singl . But (L1 )<ω

is not an FESS according to [9 Proposition 2.1.27]. The
last assertion is an easy corollary of Theorem 3, be-
cause qo (L1) = (ω,=) and is not a WQO.

Corollary 3 If L is a BESS, then both of L<ω and L̂
are FESSs.

Proof. As L is a BESS, the quasi-ordering qo (L) is a
BQO by the definition, and hence is an ω2-WQO, by the
definition of BQO. By Lemma 2, we have the condi-
tion (1) of Theorem 3 and thus the desired conclusions.
Q.E.D.

As the class of BQOs enjoys the closure properties
with respect to possibly infinitary constructions, we
conjecture a following:

Conjecture 2 If L is a BESS, then both of L<ω and L̂
are BESSs.

We contrast our characterization of set systems L
having an FESS L<ω, with Shinohara-Arimura’s suffi-
cient condition [38] for a set system L to have an FESS

L<ω.

Definition 7 Let L be a set system over X.
L is said to have a finite thickness (FT), provided

that for any x ∈ X #{L ∈ L ; x ∈ L} < ∞. L is said
to have no-infinite-antichain property (NIA), provided
that L has no infinite antichain with respect to the set-
inclusion ⊆.

The set system Singl has an FT but not NIA. If a set
system has an FT, then it is an FESS [38].

Proposition 7 ( [38]) IfL has an FT and NIA, thenL<ω
is an FESS.

However the conjunction of FT and NIA is not preserved
by the operation (·)<ω.

Lemma 7 1. A set system L2 = { [i, ∞) ∩ Z ; i ≥
1} ∪ {{0}} has an FT and NIA but L3 := (L2 )<ω is
an FESS without an FT ( [8]).

2. The converse of Proposition 7 is false. Actually,
(L3 )<ω is an FESS but L3 does not have an FT.

Lemma 8 1. For any FESS L, L has NIA if and only
if (L,⊇) is a WQO.

2. If L<ω is an FESS, then L<ω has NIA.

Proof. (1) The if-part is immediate from the defini-

tion of WQOs. Assume there is an infinite descend-
ing chain (Li)i ⊆ L with respect to ⊇. Hence, L1 �

L2 � L3 � · · · . By putting xi ∈ Li+1 \ Li, we have
〈〈x1, L2〉, 〈x2, L3〉, · · · 〉 is an infinite bad learning se-
quence. This contradicts that L is an FESS.

(2) Suppose (
⋃Mn)n (Mn ⊆ L ; n = 1, 2, . . .) is

an infinite antichain in L<ω. Then
(⋃

n<m
⋃Mn

)
m is
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a strictly ascending chain in L<ω, which is an FESS.
Q.E.D.

Following relation holds among (continuous) defor-
mations, NIA and FT:

Lemma 9 1. If a set system L has NIA, so does O[L]
of L for any deformation O.

2. For any nonempty set X and for any x ∈ X, a func-
tion O : P(X) → P(X) ; A �→ A ∪ {x} is a contin-
uous deformation. Thus even if L has an FT, O[L]
does not.

Proof. (1) If the image {O(Li)}i of {Li}i ⊆ P(T )
by a deformation O is an infinite antichain, then, for
any distinct i, j ∈ ω there exists ni, j ∈ O(Li) \ O(L j).
Let O be as in the equation (1). Then we have ∃vi, j ∈
P(Li). R(ni, j, vi, j) and ∀v ∈ P(L j). ¬R(ni, j, v). There-
fore vi, j is not a subset of L j. Thus, there exists ai, j ∈
vi, j \ L j ⊆ Li \ L j. Hence, {Li}i is also an infinite
antichain. (2) It is immediate. Q.E.D.

Finally, we remark that a condition for a set system
L to satisfy L<ω being an FESS does not depend on the
structure of L with respect to the set-inclusion, in view
of the assertion (2) and the assertion (5) of following
Lemma 10.

We recall that a quasi-orderingX = (X, �) is a WQO,
if and only if any upper-closed subset of X is a finite
union of principal filters [16].

Definition 8 For a quasi-ordering X = (X, �), define
|PF (X)| to be the set of principal filters ofX. Let PF (X)
be |PF (X)| ordered by the reverse set-inclusion.

Fact 1 Let X be a quasi-ordering.
1. ss (X) = |PF (X)|<ω if and only if X is a WQO.
2. X = qo ( |PF (X)| ).
3. X is order-isomorphic to PF (X) for any partial or-

dering X.
4. dim |PF (X)| ≤ dim ss (X) = otp(X).
5. For the partial order

X = ({b} ∪ {ai ; i ∈ ω}, {(b, ai) ; i ∈ ω}) ,
we have dim PF (X) = 1 but dimX = ∞.

Lemma 10 1. L1 has NIA.
2. A quasi-ordering (L1, ⊇) is order-isomorphic to

PF ( (L1, ⊇) ). They are WQOs.
3. None of (L1, ⊇) and PF ( (L1, ⊇) ) is a BQO.
4. None of L1 and |PF ( (L1, ⊇) )| is a BESS.
5. (L1 )<ω is not an FESS, but |PF ( (L1, ⊇) )|<ω is.

Proof. (1) By [10 Proposition 3.3]).

(2) By Lemma 8 (1) and the assertion (1) of this
Lemma, the partial ordering (L1,⊇) is a WQO.

(3) It is because a following function F does not sat-
isfy Lemma 2 (1) (b):

F({i, j}) := {i} ∪ {k ; k � j}. (i < j)

(4) Let (ω,�) be qo (L1). Then n � m (n < m) because

n ∈ F({n,m + 1}) � m, while n � m (n > m) because
n ∈ F({n, n + 1}) � m. Therefore qo (L1) is not a WQO,
hence is not a BQO. So L1 does not satisfy the condi-
tion 1 of Theorem 3. Hence (L1 )<ω is not an FESS.

By Fact 1 (2) and the assertion (2) of this Lemma,
qo (|PF ( (L1, ⊇) )|) is (L1, ⊇) which is not a BQO by
the assertion (3) of this Lemma.

(5) Since qo (L1) is not a WQO by the proof of the
assertion (4) of this lemma, (L1 )<ω is not an FESS be-
cause of Theorem 3. By Fact 1 (1), the set system
|PF ((L1,⊇))|<ω is ss ((L1,⊇)), which is an FESS by the
assertion (2) of this Lemma. Q.E.D.

Although |PF ((L1,⊇))| is not a BESS, it satisfies the
condition (1) of Theorem 3, according to the assertion
(5) of Lemma 10.
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Appendix

5 Ramsey’s numbers for well-founded
trees and order type of set systems

Let Xi be a quasi-ordering with the maximal order
type otp(Xi) < ω and Li be a set system with the order
type dimLi < ω (i = 1, 2). Let Ra(n,m) be the Ramsey
number [15] of n and m. Then we have
1. [3 Lemma 6] For the memberwise union L1 ∪̃
L2 = {L1 ∪ L2 ; L1 ∈ L1, L2 ∈ L2},
dim(L1 ∪̃ L2) + 1 < Ra(dimL1 + 2, dimL2 + 2).

2. [3 Theorem 8] otp (X1 ∩ X2) < Ra(otp(X1) +
1, otp(X2) + 1).

We wish to generalize these two for the case dimLi

(i = 1, 2) being general ordinal numbers. To directly
generalize the proof argument of the two, we pose a
following question. By a tree, we mean a prefix-closed
set of possibly infinite sequences. A well-founded tree
is, by definition, a tree with all the elements being finite
sequences.

Conjecture 3 Is there a reasonably simple, ordinal bi-
nary (partial) function F on ordinal numbers such that
“for all ordinal numbers β and γ there exists an ordi-
nal number α ≤ F(β, γ) with a following property: for
any coloring of any well-founded tree T0 of order type
α with red and black, either there is a well-founded tree
T1 of order type β such that T1 is homeomorphically
embedded into the red nodes of T0, or there is a well-
founded tree T2 of order type γ such that T2 is homeo-
morphically embedded into the black nodes of T0.”

6 Initial segments of quasi-ordering :
computability theoretic view

For every nonnegative integer z, a set {z1, . . . , zm} of
nonnegative integers z1, . . . , zm with z = 2z1 + · · · + 2zm

is denoted by Ez.

Definition 9 A set A ⊆ ω is called positively reducible
via a recursive function f : ω → ω to B ⊆ ω (A ≤p B
via f , in symbol), provided that for all x, x ∈ A if and
only if there exists y ∈ E f (x) such that Ey ⊆ B. Intu-
itively, a finite set Ey means a conjunction of Boolean
variables, and a finite set E f (x) means a disjunction of
such conjunctions Ey over y ∈ E f (x). We write A ≤p B
if there exists a recursive function f : ω→ ω such that
A ≤p B via f .

We observe that for any recursive relation R ⊆ ω ×
[ω]<ω and for any class L ⊆ P(ω), the image OR[L] is

the class of sets positively reducible [19] to some sets in
L “uniformly” via a single recursive function

fR(x) =
∑

R(x,v)

2
∑

i∈v 2i
.

According to [19], the class of semirecursive sets is
closed by the positive reduction (equivalent to an effec-
tive continuous deformation, in spirit), and a semirecur-
sive set is exactly an initial segment of some recursive
linear ordering on ω.

Definition 10 A set M ⊆ ω is called semirecur-
sive [19] if there is a recursive function ψ of two vari-
ables such that

(x ∈ M ∧ y � M) ∨ (x � M ∧ y ∈ M)

=⇒ ψ(x, y) ∈ {x, y} ∩ M. (5)

In [20], Jockusch and Owings introduced a following
generalization of a semirecursive set: M ⊆ ω is semi-
r.e. if and only if there exists a partial recursive function
ψ of two variables such that for all x, y ∈ ω(

x ∈ M ∨ y ∈ M =⇒ ψ(x, y) ∈ {x, y} ∩ M
)
.

Furthermore, they introduced a following generaliza-
tion of a semi-r.e. set: M is weakly semirecursive if and
only if there exists a partial recursive function ψ of two
variables such that the condition (5) holds.

The (partial) function ψ is called a selector function
of the semirecurisve (semi-r.e., weakly semirecursive)
set M.

We adapt the notion of the initial segments of partial
orderings [25 p. 136], as follows:

Definition 11 For any quasi-ordering � on ω, we say
M ⊆ ω is an initial segment of �, if and only if any of
M is strictly smaller with respect to � than any of the
complement M.

Every initial segment of a quasi-ordering is trivial, if
and only if the undirected graph induced by the quasi-
ordering is not connected. A non-trivial initial segment
may have downward branching.

We characterize a weakly semirecursive sets and
semi-r.e. sets by initial segments of quasi-orderings.

Theorem 4 A set M is weakly semirecursive if and
only if M is an initial segment of an r.e. quasi-ordering.

Proof. (⇒) By [25 Theorem 4.1]. (⇐) Let the witness-
ing quasi-ordering be ≤. Put

ψ(x, y) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x, (x ≤ y and x � y);
y, (y ≤ x and x � y);
↑, otherwise.

(6)
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Then ψ is clearly a partial recursive function. Assume
x ∈ M � y. Because M is an initial segment of ≤ in a
sense of Definition 11, we have x ≤ y and x � y. By the
definition of ψ, we have ψ(x, y) = x. On the other hand,
assume x � M 
 y. Then y ≤ x and x � y. To sum up,
ψ(x, y) ∈ {x, y} ∩ M. Thus M is a weakly semirecursive
set with ψ being a selector function. Q.E.D.

We can prove a similar result for semi-r.e. sets.

Theorem 5 A set M is semi-r.e. if and only if M is a lin-
early ordered initial segment of an r.e. quasi-ordering.

Proof. Only if-part is by [25 Theorem 5.1]. To prove
the converse, assume x ∈ M without loss of generality.
When y ∈ M, we have x ≤ y or y ≤ x because M is
linearly ordered. By (6), we have ψ(x, y) ∈ {x, y} ∩ M.
When y � M, x ≤ y and x � y because M is an initial
segment of ≤. By (6), we have ψ(x, y) = x. Q.E.D.

A lemma similar to “If A ≤p B and B is semirecur-
sive, then A is semirecursive” [19 Theorem 4.2] holds
for semi-r.e. sets and weakly semirecursive sets.

Lemma 11 If A ≤p M and M is semi-r.e. (weakly
semirecursive, resp.), then so is A.

Proof. Let ψ be a selector function of M. Because
A ≤p M, the set A is many-one reducible to M, by [19
Theorem 4.2 (ii)]. So there exists a recursive function g
such that

x ∈ A ⇐⇒ g(x) ∈ M. (7)

Define a partial recursive function ψ′ by

ψ′(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x, (ψ(g(x), g(y)) = g(x));
y, (ψ(g(x), g(y)) = g(y));
↑, (otherwise).

(8)

(i) Assume M is weakly semirecursive. Suppose x ∈
A � y without loss of generality. By (7), g(x) ∈
M � g(y). Thus ψ(g(x), g(y)) ∈ {g(x), g(y)} ∩ M. By
g(y) � M, we have ψ(g(x), g(y)) = g(x) ∈ M. Hence
ψ′(x, y) = x ∈ {x, y}∩A. Therefore A is weakly semire-
cursive with a selector function ψ′.

(ii) Assume M is semi-r.e. Suppose x ∈ A or y ∈ A.
Then g(x) ∈ M or g(y) ∈ M. So ψ(g(x), g(y)) ∈
{g(x), g(y)} ∩M. When ψ(g(x), g(y)) = g(x), by a simi-
lar argument of (i), we have ψ′(x, y) ∈ {x, y} ∩ A. When
ψ(g(x), g(y)) = g(y), ψ′(x, y) = y ∈ {x, y} ∩ A. Thus A
is semi-r.e. with a selector function ψ′. Q.E.D.

Corollary 4 Let R ⊆ ω× [ω]<ω be a recursive relation.
Then if A is semirecursive (semi-r.e., weakly semirecur-
sive resp.), then so is B ⊆ ω where B = OR(A).

7 A new order type of a set system
Definition 12 A learning sequence of a set system L ⊆
P(T ) is, by definition, a possibly infinite sequence
〈
〈t0, A1〉, 〈t1, A2〉, . . .

(
, 〈tn, An+1〉

)〉

such that for each i < n {t0, . . . , ti} ⊆ Ai+1 ∈ L. In
particular, we call the sequence bad if Ai+1 � ti+1 for
each i.

We say a set system L ⊆ P(T ) has infinite elasticity,
provided that there are infinite bad learning sequences.
Otherwise, we say L has an FE, and call L an FESS.

Let T be a well-founded tree. For each node σ of T ,
let the ordinal number |σ| be the supremum of |σ′| + 1
such that σ′ ∈ T is an immediate extension of σ. Then
the order type |T | of the well-founded tree T is defined
by the ordinal number |〈 〉| assigned to the root 〈 〉 of T .
For a tree T which is not well-founded, let |T | be∞.

The order type of L, denoted by dimL, is, by def-
inition, the order type of the tree of bad learning se-
quences of L.

In the premise of Proposition 1, we cannot replace
the domain of the continuous function O : {0, 1}⋃M →
L with a set systemM. We have following counterex-
ample: M = { {i} ; i ∈ ω} is a discrete subspace of the
product topology {0, 1}ω and hence any function from
the relative topologyM to a set system L is continuous
even if L is not an FESS.
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