
07

Special issue: Theoretical computer science and discrete mathematics

Progress in Informatics, No. 9, pp.35–36, (2012) 35

Note

An immersion of a square in 4-edge-connected
graphs

Ken-ichi KAWARABAYASHI1 and Yusuke KOBAYASHI2
1National Institute of Informatics
2University of Tokyo

ABSTRACT
For an undirected graph G and its four distinct vertices v1, v2, v3, v4, an immersion of
(v1, v2, v3, v4) is a subgraph of G that consists of four edge-disjoint paths P1, P2, P3, P4 such
that Pi connects vi and vi+1 for i = 1, 2, 3, 4, where v5 = v1. We show that every 4-edge-
connected graph G = (V, E) has an immersion of (v1, v2, v3, v4) for any v1, v2, v3, v4 ∈ V, and it
can be found in linear time.
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Characterizing an undirected graph G = (V, E) with-
out a cycle through v1, v2, v3, v4 (for four distinct ver-
tices v1, v2, v3, v4 ∈ V) in this order is a very hard prob-
lem. Indeed, in a series of paper [6]–[8], Yu has char-
acterized a graph without a path through v1, v2, v3, v4

in this order, but this weaker form is already a deep
and very hard theorem. At the moment, it is without
reach to find such a characterization for a graph with-
out a cycle through v1, v2, v3, v4 in this order. If we im-
pose some connectivity condition, this may be feasible.
In fact it follows from Thomas and Wollan’s result [5]
(saying that every 10k-connected graph is k-linked) that
such a cycle exists if a given graph is 40-connected. But
on the other hand, the connectivity is far from best pos-
sible.

In this paper, we seek for the edge-disjoint version of
this problem. For an undirected graph G = (V, E) and
for four distinct vertices v1, v2, v3, v4 ∈ V , an immersion
of (v1, v2, v3, v4) is a subgraph of G that consists of four
edge-disjoint paths P1, P2, P3, P4 such that Pi connects
vi and vi+1 for i = 1, 2, 3, 4, where v5 = v1. Note that
if we replace “edge-disjoint” by “vertex-disjoint”, then
the union of the paths P1, P2, P3, P4 gives rise to a cycle
through v1, v2, v3, v4 in this order. Thus we may think
of our problem as a counterpart to the above problem
in view of edge-disjoint paths. Let us observe that the
concept “immersion” is an important concept in graph
theory, which is well-studied in [4].

We show that every 4-edge-connected graph G =
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(V, E) has an immersion of (v1, v2, v3, v4) for any
v1, v2, v3, v4 ∈ V , and it can be found in linear time.

Theorem 1. For any 4-edge-connected graph G =

(V, E) and for any distinct vertices v1, v2, v3, v4 ∈ V,
there exists an immersion of (v1, v2, v3, v4) in G. Fur-
thermore, it can be found in O(|E|) time.

Let us point out that if we use Huck’s result [1] (say-
ing that every (k + 2)-edge-connected graph is weakly
k-linked for any even k), the edge-connectivity in Theo-
rem 1 is at most 6. Thus our edge-connectivity is better
in this sense. Indeed, our edge-connectivity is best pos-
sible in a sense (see later).

Before giving a proof of this theorem, we give
some remarks. When the graph has maximum degree
at most three, “edge-disjoint” and “vertex-disjoint”
clearly mean the same condition. This implies that,
in such graphs, the problem of finding an immersion
of (v1, v2, v3, v4) is equivalent to the problem of find-
ing a cycle through (v1, v2, v3, v4) in this order, which
is known to be a very difficult problem, as mentioned,
even for cubic graphs (as given in [6]–[8], there are
many cubic graphs that do not have a cycle through
(v1, v2, v3, v4) in this order). Therefore, when we re-
move the assumption of 4-edge-connectivity, we know
no polynomial-time algorithm for this problem with-
out using Robertson and Seymour’s algorithm [3] (and
a faster time complexity algorithm in [2]) based on the
graph minor theory. It is natural to ask at this point
why we do not consider the weaker condition that the
minimum degree being at least four, but in fact this
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weaker restriction would not gain us anything. Sup-
pose that we are given an arbitrary graph G = (V, E)
that may have degree three vertices, and four distinct
vertices v1, v2, v3, v4 ∈ V . Then attach by two edges to
each vertex in G a constant-sized graph of high mini-
mum degree. The resulting graph has minimum degree
high, but clearly this modification does not affect the
existence of an immersion of (v1, v2, v3, v4). This exam-
ple shows that 4-edge-connectivity is necessary. Thus
we really need to stick the 4-edge-connectivity in our
proof.

Proof of Theorem 1. Since G is 4-edge-connected,
there exist four edge-disjoint paths Q1,Q2,Q3, and
Q4 such that Q1 and Q2 are v1-v2 paths, and Q3

and Q4 are v1-v4 paths. If v3 is contained in Qi for
some i ∈ {1, 2, 3, 4}, then we obtain an immersion of
(v1, v2, v3, v4) by concatenating Q1,Q2,Q3, and Q4 in
an appropriate order.

Otherwise, we take four edge-disjoint paths
R1,R2,R3,R4 from v3 to Q1 ∪ Q2 ∪ Q3 ∪ Q4 such
that V(R j) ∩ V(Q1 ∪ Q2 ∪ Q3 ∪ Q4) = {u j} for
j = 1, 2, 3, 4 (possibly u j = uk for j � k). If
|{ j | u j ∈ V(Qi)}| ≥ 2 for some i ∈ {1, 2, 3, 4}, then we
obtain an immersion of (v1, v2, v3, v4) in the same way
as the case of v3 ∈ V(Qi). Otherwise, we may assume
that ui ∈ V(Qi) for i = 1, 2, 3, 4. In this case, we
obtain an immersion of (v1, v2, v3, v4) by concatenating
Q1,Q2[v2, u2],R2,R3,Q3[u3, v4],Q4 in this order,
where Q2[v2, u2] denotes the subpath of Q2 between v2

and u2, and Q3[u3, v4] is defined in a similar way.
Obviously, the above procedures can be done in

O(|E|) time by a flow algorithm, which completes the
proof. �
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