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ABSTRACT
Lot-sizing problem has been extensively researched in many aspects. In this manuscript, we
give a dynamic programming algorithm scheme for lot-sizing problems with outsourcing.
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1 Introduction and definitions
For lot-sizing mixing integer problems, tight descrip-

tion of their polyhedra has been achieved for many vari-
ations by cutting plans, extended formulations, totally
unimodular matrices and other properties crossing wide
fields, see [4]. Dynamic programming (DP) algorithms
are still powerful for general lot-sizing problems be-
cause their structures ( [2], [3]).

Now we give notations and formulate the general lot-
sizing problem as follows. Let n be the length of the
planning time horizon. For each period t ∈ {1, 2, · · · , n}
the following data are given:

p′t unit production cost in t,
g′t unit outsourcing cost in t,
h′t unit holding cost in t (defined also for t = 0),
qt set-up cost in t,
dt demand in t,
Ct production capacity in t.

We suppose all data is nonnegative rational. For easy
of presentation, we also denote dkl =

∑t=l
t=k dt.

And variables are defined as follows:
xt production in t,
zt outsourcing in t,
st stock at the end of t (defined also for t = 0),
yt set-up binary variables,
Now we can formulate lot-sizing model (LS − O):

min
n∑

t=1

(p′t xt + g′t zt + h′t st + qtyt) + h′0s0 (1.1)

st−1 + xt + zt = dt + st for 1 ≤ t ≤ n (1.2)
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xt ≤ Ctyt for 1 ≤ t ≤ n (1.3)

xt, zt, st ∈ R+, yt ∈ {0, 1} for 1 ≤ t ≤ n.

(1.4)

Throughout the manuscript we suppose s0 = 0 for sim-
plicity.

2 Structure of optimal solutions
First, note that if the capacities production are pe-

riod varying, the problem is NP-hard, without special
mention, we suppose the capacities are constant, i.e.,
equations (1.3) are rewritten as

xt ≤ Cyt for 1 ≤ t ≤ n. (2.1)

By the definition of problem, it is reasonable to as-
sume that

g′t ≥ p′t for 1 ≤ t ≤ n. (2.2)

Hence, there is an optimal solution that we have zt > 0
only if xt = C or xt = 0 by the assumption of non-
negative of set-up production cost and (2.2).

Suppose that set-up variables y ∈ {0, 1}n are known,
the variables in the flow conservation of constraints
(1.2) together with set-up conditions (1.3) (or (2.1)) can
be represented as flows in a network. And then lot-
sizing problem (LS − O) is a minimum cost network
flow problem. In Fig. 1., such a network with n = 5
is shown as an instance. By (xi(yi), zi), we means that
there are two flows on the arc, instead of this, we can
draw two arcs, one with flow xi(yi), the other with flow
zi.
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Fig. 1 An example of the fixed charge netowrk flow variables
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Fig. 2 An example of structure of extreme optimal solution

For a minimum cost network flow problem, a well-
known and fundamental property of minimum cost net-
work flow problem tells:
Observation 2.1: For a basic feasible solution of a
minimum cost network flow problem, the arcs corre-
sponding to variables with flows strictly between their
lower and upper bounds form an acyclic graph.

Before giving the structure of optimal solutions, we
need a concept defined as following.
Definition 2.1: Planning time period n are partitioned
into intervals [t1, t2 − 1], [t2, t3 − 1], · · · , [tr−1, tr], where
no stock entering or leaving each interval, are called
regeneration intervals.

Now we have the property about the structure of op-
timal solutions to LS − O, which is critical for the dy-
namic programming algorithm described in next sec-
tion.

Proposition 2.1 There exists an extreme optimal solu-
tion to LS − O, with each regeneration interval, there
exists at most one production with partial capacity or
outsourcing.

Note Proposition 2.1 is also applied to the case when
production capacities are periods varying. An instance
with n = 9 is shown in Fig. 2.

3 Dynamic programming algorithm
Using the flow balance equalities (1.2), we can omit

stock valuables from object function.
Observation 2.1: The objective function (1.1) of LS-O
can be written as

n∑
t=1

pt xt +

n∑
t=1

gtzt +

n∑
t=1

qtyt + K, (3.1)

where pt = p′t +
∑n

j=t h′j and gt = g′t +
∑n

j=t h′j for t =
1, · · · , n, K = −∑n

t=1 h′td1t.
Proof. By (1.2), we obtain st =

∑t
u=1 xu +

∑t
u=1 zu − d1t,

substitute it to objective function

n∑
t=1

p′t xt +

n∑
t=1

g′t zt +

n∑
t=1

h′t st

=

n∑
t=1

p′t xt +

n∑
t=1

g′t zt +

n∑
t=1

h′t
t∑

u=1

xu

+

n∑
t=1

h′t
t∑

u=1

zu −
n∑

t=1

h′td1t

=

n∑
t=1

(p′t + h′t + · · · + h′n)xt
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+

n∑
t=1

(g′t + h′t + · · · + h′n)zt −
n∑

t=1

h′td1t. �

Note by same arguments, we can also omits produc-
tion variables or outsourcing variables from objective
function.

Now we go on to DP for the problem of finding an
optimal solution on a given regeneration interval [k, l].
Let ρkl = dkl − � dkl

C �C with 0 ≤ ρkl < C. Define also
dm

kt = min{i |i ∗ C + ρkl > dkt} for i ∈ Z, k ≤ t < l, and
dm

kl = � dkl
C �. Let dmτ

kt = max{0, dm
kt − τ} for k ≤ t ≤ l and

0 ≤ τ ≤ � dkl
C �.

Gk(t, τ, 0, 0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞ if τC ≤ dkt or τ > t − k + 1

min

{
Gk(t − 1, τ, 0, 0),
Gk(t − 1, τ − 1, 0, 0) + qt + ptC

}
otherwise

(3.2)

for t = k, · · · , l, τ = 0, · · · ,
⌊
dkl

C

⌋

Gk(t, τ, 1, 0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∞ if τC + ρkl ≤ dkt or τ > t − k

min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Gk(t − 1, τ, 1, 0),
Gk(t − 1, τ − 1, 1, 0) + qt + ptC,
Gk(t − 1, τ, 0, 0) + qt + ptρkl

⎫⎪⎪⎪⎬⎪⎪⎪⎭ otherwise
(3.3)

for t = k, · · · , l, τ = 0, · · · ,
⌊
dkl

C

⌋

Gk(t, τ, 0, 1)(∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ if τ > t − k + 1

min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gk(t − 1, τ, 0, 1) if zv + τC > dkt,
Gk(t − 1, τ, 0, 1) + gv(dmτ

kt − � zv
C �)C if zv + τC ≤ dkt,

Gk(t − 1, τ − 1, 0, 1) + qt + ptC ifzv + τC > dkt,
Gk(t − 1, τ, 0, 0) + gt(dmτ

kt C + ρkl),
Gk(t − 1, τ − 1, 0, 0) + qt + ptC + gt(dmτ

kt C + ρkl)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
otherwise

(3.4)

for t = k, · · · , l, τ = 0, · · · ,
⌊
dkl

C

⌋
,

(∗) put v = t if Gk(t, τ, 0, 1) = Gk(t − 1, τ, 0, 0) + gt(dmτ
kt C + ρkl)

or Gk(t, τ, 0, 1) = Gk(t − 1, τ − 1, 0, 0)+ qt + ptC + gt(dmτ
kt C + ρkl).

Let Gk(t, τ, θ, χv(t)) be the value of a minimum cost
solution for periods k up to t during which production
occurs τ times at full capacity, θ ∈ {0, 1} times at level
ρkl, and outsourcing occurs χv(t) ∈ {0, 1} times at level
(dkt − τ)C + ρkl, where v is the period with χv(v) = 1.
Dynamic programming recursion for regeneration
intervals of LS − O

First set Gk(k − 1, τ, θ, χv(t)) = 0 for all (τ, θ, χv(t))
with τ ≤ 0, θ ≤ 0 and χv(t) ≤ 0, and Gk(k −
1, τ, θ, χv(t)) = ∞ otherwise. Also set Gk(t,−1, 0, 1) =
∞ for all k ≤ t ≤ l. A forward recursion to compute
Gk(t, τ, θ, χv(t)) is:

Note, in equations about Gk(t, τ, 0, 0) and
Gk(t, τ, 1, 0), if t = l and τ = � dkl

C � the condition of
∞ will be � dkl

C �C < dkl if ρkl = 0 or � dkl
C �C + ρkl < dkl.

Also in equation about Gk(t, τ, 0, 1), the condition of
zv + τC > dkt will be zv + τC = dkl for t = l.

The optimal value of regeneration interval [k, l] then
can be obtained by

Gk(l, τ∗, θ∗, χv(l)∗)

= min

{
Gk

(
l,

⌊
dkl

C

⌋
, 1, 0

)
,Gk(l, τ, 0, 1) | 0

≤ τ ≤
⌊
dkl

C

⌋}
. (3.5)

Note that if costs on every intervals [k, l] with 1 ≤ k ≤
l ≤ n have been known, the original LS − O can been
solved by shortest path problem.

The dynamic program for each interval is O(n2), and
as there are O(n2) intervals, we have:

Theorem 3.1 There is an algorithm which solves LS-O
whose running time is O(n4).

4 Numerical implementation
In this section we give numerical tests about the algo-

rithm suggested in Section 3. We program in C and the
results are summerized in Table 1. Every (real) running
time is the average of ten examples.
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Table 1 Resuls of numerical implementation.

Length of regeneration intervals 200 400 600 800 1000

Running time (Sec.) 0.0719 0.0937 0.1137 0.1389 0.1702

CPU: Core Duo, 1.20GHz; RAM: 2.00GB; 32bit Windows Vista.

Table 2 An example of regeneration interval of lot-sizing problem with outsourcing.

Demands 4 6 2 2 2 6 6 2 5 2 5 2 4 2 3

Production costs 3 2 3 3 2 2 2 1 1 2 3 2 3 3 3

Set-up costs 17 16 17 18 16 19 16 18 15 17 15 17 15 17 18

Outsourcing costs 6 6 3 4 5 5 5 6 6 4 6 5 3 6 3

Production capacity:10; Optimal value: 177 (Working backwards for optimal solution)

Production 10 10 0 0 0 0 0 0 10 0 0 0 0 0 0

Outsourcing 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0

Note the algorithm is very efficient in practice. One
reason is that there are only plus and multiple oper-
ations. Given all parameters integers, no floats are
needed in programming.

Finally, we give a small example generated in our
prgramming.

Lot-sizing problem with constant capacities can be
solved in O(n3) by some greedy scheme based on qt +

pt ∗ C for all k ≤ t ≤ l and feasibilities ( [1]). With
outsourcing, whether it can also be solved in O(n3) will
be our next works.
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