
02

Special issue: Theoretical computer science and discrete mathematics

Progress in Informatics, No. 9, pp.3–7, (2012) 3

Research Paper

An almost optimal algorithm for Winkler’s sorting
pairs in bins

Hiro ITO1, Junichi TERUYAMA2, and Yuichi YOSHIDA3

1,2School of Informatics, Kyoto University, Japan
3School of Informatics, Kyoto University, and Preferred Infrastructure, Inc., Japan

ABSTRACT
We investigate the following sorting problem: We are given n bins with two balls in each bin.
Balls in the ith bin are numbered n + 1 − i. We can swap two balls from adjacent bins. How
many number of swaps are needed in order to sort balls, i.e., move every ball to the bin with
the same number. For this problem the best known solution requires almost 4

5 n2 swaps. In

this paper, we show an algorithm which solves this problem using less than 2n2

3 swaps. Since

it is known that the lower bound of the number of swaps is
⌈(

2n
2

)
/3
⌉
=
⌈

2n2

3 − n
3

⌉
, our result is

almost tight. Furthermore, we show that for n = 2m + 1 (m ≥ 0) the algorithm is optimal.

KEYWORDS
Bubble sort, mathematical puzzle, recursion, sorting, swap

1 Introduction
Sorting is a fundamental operation in computer sci-

ence, and many types of sorting problems have been
developed. A well-studied model of sorting, e.g., bub-
ble sort, merge sort, quick sort, and so on, is based on
a comparison sort. These sort algorithms are based on
comparing two numbers and swapping them. Some ver-
sions of sorting problem have been studied [3]–[5].

In this paper, we investigate the following sorting
problem, which we call SORTING k-SETS IN BINS.
This problem was posed by Peter Winkler [12].

Standing in a row are n bins, the ith bin contain-
ing k balls numbered n + 1 − i. At any time, we
can swap two balls from adjacent bins. How many
swaps are necessary to get every ball into the bin
carrying its number?

If k = 1, this problem is a well-known standard swap-
sort problem, and it is easy to see that

(
n
2

)
swaps are

necessary and sufficient. In this paper, we consider the

Received October 30, 2011; Revised December 20, 2011; Accepted December
22, 2011.
1) itohiro@kuis.kyoto-u.ac.jp, 2) teruyama@kuis.kyoto-u.ac.jp,
3) yyoshida@kuis.kyoto-u.ac.jp

case of k = 2.
We see an example for the case of n = 3, we are given

three bins with two balls respectively as Fig. 1, our task
is replacing balls to target state as Fig. 2 by swapping
two balls from adjacent bins. From the result of k = 1,
you may think 2 ·

(
3
2

)
= 6 swaps are necessary. However,

five swaps are sufficient (see in Fig. 3)! In fact we can
easily check that less than 2 ·

(
n
2

)
swaps are sufficient for

small n by using computer search.
Winkler showed that

⌈(
2n
2

)/
3
⌉
=

⌈
n(2n−1)

3

⌉
is a lower

bound [12]. This bound looks nice since it is tight for
n ≤ 5. However for n = 6, we need 23 > 22 =

⌈(
2·6
2

)/
3
⌉

swaps, and hence the bound is not tight generally. Find-
ing a tight bound and finding an algorithm giving the
bound is an attractive open problem, and we don’t have
any non trivial upper bound so far. (However, in the
website [13], it is described that an upper bound of 4

5 n2

is obtained by recursively using the fact the sorting can
be done in 15 moves for n = 5).

�

�

�

�

�

�

Fig. 1 Initial state.

�

�

�

�

�

�

Fig. 2 Target state.

DOI: 10.2201/NiiPi.2012.9.2

c©2012 National Institute of Informatics



02

4 Progress in Informatics, No. 9, pp.3–7, (2012)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 3 5 swaps to sort 3 bins.

Our contribution. Let T (n) be the minimum num-
ber of swaps for SORTING PAIRS IN BINS with n bins.
We show that T (n) is less than 2

3 n2. Since it is known

that the lower bound of the number of swaps is
⌈(

2n
2

)/
3
⌉

=
⌈

2n2

3 − n
3

⌉
[12], our result is almost tight. In particu-

lar, we show that T (n) =
(

2n
2

)/
3 for n = 2m + 1 (m =

0, 1, 2, . . .), which matches the lower bound [12]. Main
approach of our algorithm is recursivity to solve SORT-
ING PAIRS IN BINS. We can find a recursive structure
of this problem to reach our upper bound. Finding this
structure gives the effect for n = 2m + 1 bins, and one
can solve in optimal swaps.

That is, we show the following result.

Theorem 1. There is an algorithm that solves SORT-
ING PAIRS IN BINS less than 2

3 n2 swaps for n ≥ 2 bins.
In particular, if n = 2m + 1 (m = 0, 1, 2, . . .), it sorts in(
2n
2

)/
3 swaps and this is optimal.

Püttman independently reported a similar result in
[11]. However, we have informally reported the present
work in [8], [9] earlier. Also, we cannot confirm the de-
tail of her paper since the manuscript is written in Ger-
man.

Related work. Consider the case of k = 1, that is,
each bin has one ball. Any permutation can be sorted in
at most

(
n
2

)
exchanges. A well-known method is bubble

sort [10]. There is no better bound, because when the
balls start in reverse order each ball must be exchanged
with every other to complete the sorting.

Some versions of sorting problem have been stud-
ied besides a comparison sort. For example, a permu-
tation is modeled as pancakes [3], [6], [7] (sorting op-
eration is flipping the prefix of permutation). Others
of sorting operation are cut-and-paste or block transpo-
sition [1], [2], [4] (sorting strings of consecutive entries
of a permutation). And one may sort by placement and

121

121

L

L

−
−

nn

nn

Fig. 4 Simple representation of the state of balls and bins.

nnnn

nnn

2321

112321

L

L

−−
−−−

Fig. 5 The state after moving a ball n to the nth bin from
the initial state.

nnnnn

nnn

1322

121431

−−−
−−−

L

L

Fig. 6 The state after moving the rightmost ball n−1 to the
(n − 1)th bin from the state as Fig. 5.

shift as hand-sorting files [5].

2 Algorithm
2.1 Outline of our algorithm

Before explaining our algorithm, we give some nota-
tions. An initial state for n bins is the state that any ith
bin has two balls labeled n+1−i as Fig. 1. A target state
for n bins is the state that any ith bin has two balls la-
beled its number i as Fig. 2. We define that to solve for
n bins is to sort balls from the initial state to the target
state for n bins. If we say move the ball u to the vth bin,
one continues to swap u and the lower number ball in
u’s right bin until the ball u goes into the vth bin. In this
paper, we represent the state of balls and bins simply as
Fig. 4 instead of Fig. 1.

First, we explain the outline of our algorithm with
the case that n (the number of bins) is even as follows.
First, we move one ball n from the 1st bin to the nth bin
by using n − 1 swaps, and the state becomes as Fig. 5.
Next, we move the rightmost ball n − 1 from the 2nd
bin to the (n − 1)th bin by n − 3 swaps, and the state
becomes as Fig. 6. Similarly we move the rightmost
ball n − i from the (i + 1)th bin to the (n − i)th bin for
i = 0 to n/2 − 1. Now, the resulting state is as Fig. 7.

Here, looking the n/2 bins of the left half, we relabel
balls i by

⌈
i
2

⌉
for i ∈ {1, . . . , n}. The state of n′ = n

2
bins in the left half is regarded as the initial state of n′
bins. Thus we can use this recursive structure, and we
solve for n′ bins, and the resulting state of n′ bins in the
left half becomes the target state of n′ bins. Returning



02

An almost optimal algorithm for Winkler’s sorting pairs in bins 5

nnnnn

nn

n

n

121242

1231331

2

2

−−+−

−−

LL

LL

Fig. 7 The left half bins is a recursive structure: the state
of after Step 1 of algorithm PB(n) when n is even.

nnnnn

nn

n

n

1211331

123242

2

2

−−+−−

−

LL

LL

Fig. 8 The state after sorting for a recursive structure: the
state of after Step 2 of PB(n) when n is even.

nnnn

nnn

nn

n

121331

1211242

22

2

−−+−

−−−

LL

LL

Fig. 9 The state after moving the left most ball n to the nth
bin from the state as Fig. 8.

nnnn

nnn

nn

nn

121331

1121242

22

22

−−+−

−−−−

LL

LL

Fig. 10 The state after moving the left most ball n − 1 to
the (n − 1)th bin from the state as Fig. 9.

balls in n′ bins in the left half to the original number,
the state of n′ bins in the left half is that the 1st bin has
balls 1 and 2, the 2nd bin has balls 3 and 4, and so on.
Thus the resulting state is as Fig. 8.

As the last step, for i = 0 to n − 2, we move the left-
most ball n−i to the (n−i)th bins as follows. First, when
we move the leftmost ball n from the n

2 th bin to the nth
bin, the rightmost ball n/2 is shifted to the (n/2)th bin,
and each rightmost ball n/2 − 1, . . . , 1 is shifted to left
bin. The resulting state is as in Fig. 9. Next, moving a
leftmost ball n− 1 from the n

2 th bin to the (n− 1)th bin,
each rightmost ball n/2 − 1, . . . , 1 is shifted to left bin.
The state is shown in Fig. 10. Similarly we move balls
n− 2, n− 3, . . . , 2 to the target state bins respectively in
this order, the resulting state becomes the target state of
n bins.

For odd n, this strategy can be applied by introducing
a fine adjustment. The details are shown in the next
subsection.

nnnnn

nn

nn

n

1232

1231231

2

3

2

1
2

1

−−−

−−

++

−

LL

LL

Fig. 11 The state of after Step 1 of PB(n) when n is odd.

nnnn

nn

nn

n

12231

123142

2

3

2

1
2

1

−−−

−

++

−

LL

LL

Fig. 12 The state of after Step 2 of PB(n) when n is odd.

2.2 Algorithm
We present an algorithm PB(n) that solves for n bins

as follows.

Algorithm PB(n).

• when n is even
1. For i = 0 to n/2 − 1, move the rightmost ball

with labeled n− i to the (n− i)th bin. After this
operation, the resulting state is as Fig. 7.

2. If n = 2 do nothing. Otherwise looking the
n/2 bins in the left half, relabel balls i by

⌈
i
2

⌉
for i ∈ {1, . . . , n}. Its state is the same as the
initial state of n′ = n/2 bins problem. Solve
for n′ bins in the left half by PB(n′). For balls
in n′ bins in the left half, we replace these la-
bels back to the original. After that, the state
is shown in Fig. 8.

3. For i = 0 to n − 2, move the leftmost ball n − i
to the (n − i)th bin.

• when n is odd
1. For i = 0 to (n − 3)/2, move the rightmost ball

n − i to the bin n − i. After this operation, the
resulting state is as Fig. 11.

2. Looking the (n + 1)/2 bins in the left half,
relabel i by

⌈
i
2

⌉
for i ∈ {1, . . . , n} except the

rightmost ball (n + 1)/2. Now the state of
n′′ = (n + 1)/2 bins in the left is as Fig. 5 for
n′′ bins. In fact, this state is on the way of Step
1 in PB(n′′) for n′′ bins. Therefore, one can
sort balls from this state to the target state of
n′′ bins by simulating PB(n′′) from the state.
For balls in n′′ bins in the left half, we replace
these labels back to the original. After that, the
resulting state is shown in Fig. 12.

3. For i = 0 to n − 2, move the leftmost ball n − i
to the (n − i)th bin.



02

6 Progress in Informatics, No. 9, pp.3–7, (2012)

Lemma 1. The algorithm PB(n) solves for n bins.

Proof. Clear from the induction. �

3 Number of swaps
To prove Theorem 1, it remains to show algorithm

PB(n) uses less than 2
3 n2 swaps.

Lemma 2. The number of swaps performed by PB(n)
is less than 2n2

3 .

Proof. Let S (n) be the number of swaps performed by
PB(n). We use induction. When n = 2, S (2) = 2 < 2·22

3
clearly holds.

Suppose that S (l) < 2l2

3 holds for any l < n. There
are two cases to consider.

• When n is even:
We count the number of swaps performed by
PB(n). In Step 1, n2

4 swaps are needed. Step 2

needs S
(

n
2

)
< 2

3

(
n
2

)2
swaps. Finally, Step 3 needs

n2

4 swaps. Thus, in total, less than n2

4 +
2
3

(
n
2

)2
+ n2

4 =

2n2

3 swaps are required.

• When n is odd:
We count the number of swaps performed by
PB(n). In Step 1, n2−1

4 swaps are needed. Step 2

needs S
(

n+1
2

)
− n−1

2 < 2
3

(
n+1

2

)2 − n−1
2 = n2−n+4

6

swaps. And Step 3 needs n2−1
4 swaps. Thus, in to-

tal, less than n2−1
4 +

n2−n+4
6 + n2−1

4 = 2n2

3 − n−1
6 <

2n2

3
swaps are required.

Therefore we complete the proof. �

Lemma 3. When n = 2m + 1, the number of swaps
performed by PB(n) is exactly

(
2n
2

)/
3.

Proof. We use induction on m. When m = 0, we can
clearly sort in

(
2(20+1)

2

)/
3 = 2 swaps.

Let n = 2m + 1 and suppose that PB(n) performs(
2n
2

)/
3 swaps. Let n′ = 2m+1 + 1. From the argument

on PB in the proof of Lemma 2, the number of swaps
performed by PB(n′) is

n′2 − 1
4
+ S (

n′ + 1
2

) − n′ − 1
2
+

n′2 − 1
4

=
n′2 − 1

4
+

(
2n
2

)/
3 − n′ − 1

2
+

n′2 − 1
4

=

(
2n′

2

)/
3.

�

Proof of Theorem 1. Directly follows from Lemmas 1,
2, and 3. �

4 Conclusions
We showed that there is an algorithm for solving

the problem of SORTING PAIRS IN BINS less than
2
3 n2 swaps and especially, it achieves the optimal for
n = 2m + 1. Note that this problem considers only re-
verse (double) sequence for the input. However it is
not difficult to show that this case gives the worst case
among the problem considering all permutations for in-
put.

We conjecture that for any n but 6 it is possible
to solve by

⌈
n(2n−1)

3

⌉
swaps, which matches the lower

bound. That is because our computer search found a
sequence of swaps in steps equal to lower bound for
n ≤ 20 except 6. Therefore, one of our future works
is to find an algorithm performing the lower bound for
every n but 6.

In addition we have an open question that if each bin
contains more than two balls, i.e., SORTING k-SETS IN

BINS, how many times one needs to swap balls. We
can calculate the lower bound of the number of swaps
by using Winkler’s “point system” as well as the case
that each bin has two balls. If each bin has k balls, the
lower bound of the number of swaps is

⌈(
kn
2

)/
(2k − 1)

⌉
if n is even, and

⌈((
kn
2

)
−

(
k−1

2

)) /
(2k − 1)

⌉
if n is odd.

References
[1] M. Bóna and R. Flynn, “Sorting a permutation with

block moves,” arXiv:0806.2787v1.

[2] D. Cranston, I. H. Sudborough, and D. B. West, “Short
proofs for cut-and-paste sorting of permutations,” Dis-
crete Math., vol.307, pp.2866–2870, 2007.

[3] H. Dweighter, “Elementary Problems,” American Math-
ematical Monthly, vol.82, p.1010, 1975.

[4] H. Eriksson, K. Eriksson, J. Karlander, L. Svensson, and
J. Wástlund, “Sorting a bridge hand,” Discrete Math.,
vol.241, pp.289–300, 2001.

[5] S. Elizalde and P. Winkler, “Sorting by Placement and
Shift,” Proc. ACM/SIAM Symp. on Discrete Algorithms
(SODA), pp.68–75, 2009.

[6] W. H. Gates and C. H. Papadimitriou, “Bounds for sort-
ing by prefix reversal,” Discrete Math., vol.27, pp.47–
57, 1979.

[7] M. H. Heydari and I. H. Sudborough, “On the diameter
of pancake network,” J. Algorithms, vol.25, pp.67–94,
1997.

[8] H. Ito, J. Teruyama, and Y. Yoshida, “An Almost Op-
timal Algorithm for Winkler’s Sorting Pairs in Bins”,
IEICE Computation, IEICE Technical Report, vol.109,
no.391, COMP2009-45, pp.45–49, 2010.

[9] H. Ito, J. Teruyama, and Y. Yoshida, “An Almost Op-
timal Algorithm for Winkler’s Sorting Pairs in Bins”,
Proc. of the 3rd Asian Association for Algorithms and
Computation (AAAC 2010), p.11, 2010.



02

An almost optimal algorithm for Winkler’s sorting pairs in bins 7

[10] D. E. Knuth, Sorting and Searching, volume 3 of The
Art of Computer Programming, Addison-Wesley, 1973,
Second edition, 1998.

[11] A. Püttmann, “KRAWATTENPROBLEM”, http://www.
springer.com/cda/content/document/cda downloaddocu-
ment/SAV Krawattenraetsel
Loesung Puettmann

[12] P. Winkler, Mathematical puzzles: A Connoisseur’s col-
lection. A K Peters, vol.143, pp.149–151, 2004.

[13] D. B. West: http://www.math.uiuc.edu/˜west/regs/sort-
pair.html, 2008.

Hiro ITO
Hiro ITO received the B.E., M.E.,
and Dr. of Engineering degrees in the
Department of Applied Mathematics
and Physics from the Faculty of En-
gineering, Kyoto University in 1985,
1987, and 1995, respectively. From

1987 to 1996 and from 1996 to 2001 he was a mem-
ber of NTT Laboratories and Toyohashi University of
Technology, respectively. Since 2001, he has been an
associate professor in the Department of Communica-
tions and Computer Engineering, Graduate School of
Informatics at Kyoto University. He has been engaged
in research on discrete algorithms mainly on graphs and
networks, discrete mathematics, and recreational math-
ematics. Dr. Ito is a member of IEICE, the Operations
Research Society of Japan, the Information Process-
ing Society of Japan, and the European Association for
Theoretical Computer Science.

Junichi TERUYAMA
Junichi TERUYAMA is a student of
Graduate School of Informatics, Ky-
oto University. He received B.Eng.
and M.Info. degrees from Kyoto Uni-
versity in 2008 and 2010, respec-
tively. His main research interests in-

clude quantum computing.

Yuichi YOSHIDA
Yuichi YOSHIDA is a student of
Graduate School of Informatics, Ky-
oto University. He cofounded Pre-
ferred Infrastructure Inc. in 2006. He
received B.Eng. and M.Info. degrees
from Kyoto University in 2007 and

2009, respectively. His main research interests include
approximation algorithms, randomized algorithms and
property testing.


