
05

Special issue: Theoretical computer science and discrete mathematics

Progress in Informatics, No. 9, pp.25–30, (2012) 25

Research Paper

Implementation issues of clique enumeration
algorithm

Takeaki UNO1

1National Institute of Informatics

ABSTRACT
A clique is a subgraph in which any two vertices are connected. Clique represents a densely
connected structure in the graph, thus used to capture the local related elements such as clus-
tering, frequent patterns, community mining, and so on. In these applications, enumeration
of cliques rather than optimization is frequently used. Recent applications have large scale
very sparse graphs, thus efficient implementations for clique enumeration is necessary. In
this paper, we describe the algorithm techniques (not coding techniques) for obtaining effi-
cient clique enumeration implementations.

KEYWORDS
maximal clique, enumeration, community mining, cluster mining, polynomial time, reverse search

1 Introduction
A graph is an object, composed of vertices, and edges

such that each edge connects two vertices. The fol-
lowing is an example of a graph, composed of vertices
0, 1, 2, 3, 4, 5 and edges connecting 0 and 1, 1 and 2, 0
and 3, 1 and 3, 1 and 4, 3 and 4.

0 1 2

3 4

�
�

�

For a graph G = (V, E) of vertex set V and edge set
E, a clique is a subset of V such that any two its ver-
tices are connected by an edge of E. For example, the
vertices 0, 1, and 3 compose a clique. A vertex itself is
a clique, and two vertices connected by an edge is also
a clique. A clique is called maximal if it is included in
no other clique. For example, vertices 0 and 1 compose
a clique, but it is not maximal clique. vertices 0, 1, and
3 compose a clique, and it is also a maximal clique.

Received October 10, 2011; Revised December 6, 2011; Accepted December
6, 2011.
1) uno@nii.ac.jp

A maximum clique is hard to find in the sense of time
complexity, since the problem is NP-hard. Finding a
maximal clique is easy, and can be done in O(Δ2) time
where Δ is the maximum degree of the graph. Cliques
can be considered as representatives of dense substruc-
tures of the graphs to be analyzed, the clique enumera-
tion has many applications in real-world problems, such
as cluster enumeration, community mining, classifica-
tion, and so on. Real-world graph data often has huge
sizes but they are usually sparse. The clique sizes are
usually bigger than the expected size in the random
graphs of the same sizes. It means that the graphs usu-
ally have locally dense structures. On the other hand,
the number of cliques is usually not so huge, and is
often tractable even for huge size graphs. Applica-
tions having graphs of big sizes but sparse structures
are listed below.

Finding web communities

Consider a web network graph, in which vertices are
web sites, and two vertices are connected by an edge
if the corresponding sites are linked. Then, a clique of
this web network graph can be considered to compose a
community, since they have link in any pair of its mem-
bers. Finding web communities by hand is not an easy
task. By enumerating the cliques in the web network
graph, we can automatically find candidates and seeds

DOI: 10.2201/NiiPi.2012.9.5

c©2012 National Institute of Informatics

05

26 Progress in Informatics, No. 9, pp.25–30, (2012)

of communities.

Application; finding clusters
Suppose that we have data of collection of objects,

and we want to find groups which we can consider that
the members of the group are similar, or have common
features. Such a group is called a cluster. Consider a re-
lation graph such that two objects similar to each other
is connected. Then, any pair of members of a clique
are similar, thus a clique should be totally included in
a cluster. Therefore, cliques are used as seeds of clus-
ters. By joining cliques, or appending a clique itera-
tively, clusters can be found. For the purpose maximal
cliques are good to append, and maximal clique enu-
meration does a big help.

Existing algorithms
Clique enumeration is actually easy, since the fam-

ily of cliques satisfies the monotone property. It ad-
mits a simple hill climbing algorithm. The iterations
can be fastened by updating the candidates to be added
to the currently operating clique, as described below.
Conversely, maximal clique enumeration is not easy;
maximal cliques can not be traversed by small changes,
such as constant number of addition/deletion of ver-
tices. There are mainly two algorithms for enumerating
maximal cliques; one is Makino-Uno algorithm [2] and
the other is Tomita algorithm [3]. The Makino-Uno al-
gorithm is based on reverse search, and is a polynomial
time delay algorithm. The Tomita algorithm is not poly-
nomial time, and uses an efficient pruning methods. By
computational experiments, Tomita algorithm is faster
for relatively dense graphs, and Makino-Uno algorithm
is faster for relatively sparse graphs. Makino-Uno algo-
rithm is based on the algorithm proposed by Tsukiyama
et al. [1].

Contribution
In this paper, we describe the details of the

implementation issues of Makino-Uno algorithm.
The implementation is named MACE (MAximal
Clique Enumerator), and is available on the au-
thor’s Web site (http://research.nii.ac.jp/
˜uno/codes.htm). On the Web site, an implemen-
tation of the Tomita algorithm is also available. The
program parts are common, thus we can fairly compare
the performance.

A subgraph is called bipartite clique if it is a com-
plete bipartite graph, i.e., the vertex set of the subgraph
can be partitioned into two groups such that no edge
connect two vertices from the same group, and there is
always an edge connecting two vertices from one group
and the other group. The bipartite clique enumeration
problem can also be solved by clique enumeration, by

adding edges for all pairs of vertices in the same ver-
tex set. If the bipartite graph is sparse, the obtained
graph becomes dense, thus for the practical efficiency,
we should use an implementation designed for bipar-
tite cliques. An implementation named LCM, avail-
able on the author’s Web site, is designed for enumerat-
ing closed itemsets in a transaction database. A closed
itemset is a maximal bipartite clique in the graph rep-
resenting inclusion relation between items and transac-
tions in the database, thus we can use LCM for enu-
merating bipartite maximal cliques. The performance
is significantly better than MACE in the case.

The organization of this paper is as follows. In the
next section, we describe Makino-Uno algorithm, and
the implementation issues and techniques for fast com-
putation. We describe the usage of the implementation
in Section 3, and conclude the paper in Section 4.

2 Algorithm and implementation issue
Let G = (V, E) be a graph with vertex set V =

{1, . . . , n} and edge set defined on V . Let tail(K) be
the largest vertex in K. Since the graph would be large
scale and very sparse, we load the graph to the mem-
ory by using adjacency list. Adjacency list is a data
structure for storing graph structure in memory, that
uses small amount of memory for sparse graphs. For
each vertex, we assign an array of integer, and store the
vertices adjacent to the vertex in the array. The size
of array is thus equal to the degree of the vertex. The
memory usage is one pointer for each vertex, and two
integers for each edge.

Enumeration of cliques is actually easy. Since any
subset of a clique is also a clique, we can find any clique
by iteratively adding vertices to the emptyset. This
yields a depth-first backtracking algorithm; In each it-
eration, for each vertex v not in the current clique K,
if K ∪ {v} is a clique then recursively call the iteration
to enumerate the cliques including K ∪ {v}. To avoid
duplications, we add only vertices larger than tail(K).

Squeeze the candidates to be added
To execute the above operations quickly, we main-

tain the vertex set CAND(K) which is the set of vertices
adjacent to all the vertices in K. K ∪ {v} is a clique if
and only if v is in CAND(K), so we have to generate
recursive calls for the vertices in CAND(K). When K
is the emptyset, then CAND(K) is V , it means K ∪ {v}
is a clique for any vertex v. Denote by N(v) the set of
vertices adjacent to v. Then CAND(K∪{v}) is the inter-
section of CAND(K) and N(v). By having CAND(K)
and N(v) in sorted order in the memory, we can take the
intersection in linear time in the sizes of them. More-
over, in each iteration, we need only vertices larger than
tail(K), thus in the bottom of the recursion, the vertices

05

Implementation issues of clique enumeration algorithm 27

to be maintained are so few. The bottom of the recur-
sion dominates the total computation time in usual enu-
meration algorithms, thus clique enumeration is usually
done very quickly.

Maximal clique enumeration by reverse search

If we use the above algorithm to enumerate maximal
cliques, by outputting only the maximal cliques among
all cliques, we need very long time compared to the
number of maximal cliques. Thus, we use another al-
gorithm, search method. For a clique K, let C(K) be the
lexicographically minimum one among the maximal
cliques including K. A set A = {a1, . . . , an} is said to be
lexicographically smaller than a set B = {b1, . . . , bm} if
and only if a1 = b1, . . . , ak = bk, and ak+1 < bk+1 holds
for some k, or B ⊆ A. We note that k can be 0. We
denote by K(i) the set of vertices in K less than i. For a
maximal clique K, we define the core index corei(K) of
K by the minimum vertex satisfying C(K) = C(K(i)).
Using these terms we define the parent of K, not equal
to C(∅), by the maximal clique C(K(corei(i))). The par-
ent is uniquely defined, and lexicographically smaller
than K. Thus, the binary relation “parent-child” in-
duces a directed tree, rooted at the the lexicographically
minimum maximal clique. Thus, starting from the lex-
icographically minimum maximal clique, and perform
a depth first search on the tree, we can enumerate all
maximal cliques. The depth first search needs an algo-
rithm for finding all children of a given maximal clique,
and it is enough, since what we have to do is recursively
find children of maximal cliques.

We can prove that K is obtained from the parent P(K)
of K by adding corei(K) to P(K), remove vertices not
adjacent to corei(K), i.e., K = (C(P(K)∩N(corei(K)))∪
corei(K)). Conversely, for a maximal clique K′, K is a
child of K′ only if K = C(K′ ∩ N(v) ∪ {v}). To check
whether K is a child of K′ or not, we compute the parent
of K, and if its parent is K′, then K is a child of K′.

Characterization of children

For a maximal clique K = C(K′∩N(v)∪{v}) obtained
from K′, the condition that K is a child of K′ can be
characterized in the following way so that we can check
it efficiently.

(a) K(v) = K′(v) ∩ N(v)
(b) for any u in K(u), there is no vertex w < u not in

K′(v) such that
u is adjacent to all vertices in K(v) ∪ K′(u).

We can see that if either condition is violated, the
parent of K is not K′.

Sweep pointer method
To check this conditions, we use sweep pointer

method. (i) is violated when there is a vertex u < v
adjacent to all vertices in K′(v) ∩ N(v) ∪ {v}. We trance
N(v) in the increasing order of vertices, and when we
meet a vertex u not in K′(v), check whether u is adja-
cent to all vertices in K′(v) ∩ N(v) or not. This can be
done by tracing N(w) for each vertex w in K′(v)∩N(v).
Notice that to check the next vertex in N(v), we can
start the trance of the N(w)’s from the positions which
we terminated the trace for checking it for u. This trac-
ing method, called sweep pointer does not increase the
computation time much since the time complexities are
the same, and usually we check only few items and con-
clude that the maximal clique is not a child. Thus, we
can check it very quickly. The second condition can
be checked in the same way, but notice that we have to
check the vertices one-by-one, such that the next ver-
tex is adjacent to all of them. The two checks can be
done simultaneously so that we do not have to scan the
N(w)’s twice.

Moreover, when the size of clique is small, we can
use bit operations (AND and OR) so that we can op-
erate 32 or 64 bits at once. Suppose that the size of
the current maximal clique K is less than 32. We give
ID’s 0, 1, 2, 4, . . .232 to each vertex. Let the bit-mark
b(S) of a subset S of K be the sum of ID’s of the ver-
tices in S . For each vertex u adjacent to at least one
vertex in K, we compute b(N(u) ∩ K). Then, a vertex
u is adjacent to all vertices in K ∩ N(v), if and only if
b(N(u)) ∩ b(N(v)) = b(N(v)). Here ∩ means the and
operation for bit string, and two numbers are regarded
as bit-strings. This operation can be done in very few
steps, thus we can accelerate the computation for the
checking of the two conditions. When we go to a child
of K and check the conditions for finding the children of
the child, we re-use the bit-mark by replacing the ID’s
of removed vertices and newly added vertices, and up-
dates the bit-marks. In practice it accelerates the speed
of the algorithm 2 or 3 times when the data set is sparse
and the maximal clique sizes are small on average, say
10.

2.1 Performance
This algorithm is polynomial delay, taking at most

O(|V |) time for each clique in the case of clique enu-
meration, and O(|V ||E|) time for each maximal clique
in the case of maximal clique enumeration, where |V |
and |E| are the number of vertices, and the number of
edges in the input graph. Practical computation time
is constant for each clique/maximal clique, and finds
about 1,000,000 cliques per second in the case of clique
enumeration, and fine about 100,000 maximal cliques
per second in the case of maximal clique enumeration,

05

28 Progress in Informatics, No. 9, pp.25–30, (2012)

if the graph is sparse. As increase the density of the
graph, the computation time increases almost linearly.

3 Usage of the implementation
The program is written in C code (gcc). It uses only

the basic library, so you can compile it in any environ-
ment. To compile the program, first put all the source
files in a directly, and just execute

% make

Then, you can execute “mace”. The format of the input
parameter is,

% mace [commands] [options] input-filename
[output-filename]

[options] and [output-filename] can be abbreviated.
MACE is executed with at least two parameters. The
first parameter is composed of commands, given by a
combination of letters. The meaning of the letters are:

: do not output the reports of the execution, such
as size of input graph, to the standard output

% : show progress, by outputting “——” for each
10,000 cliques

+ : if the output file exists, append the solutions to
the output file

C : enumerate cliques of the give graph
M : enumerate maximal cliques of the given graph
s : terminate after finding 1,000,000 cliques

The second parameter is the name of the input file,
and the third parameter is the name of output file. You
can omit the output file name. In this case, the program
only counts the numbers of cliques to be output, classi-
fied by their sizes. Note that the name of the input file
can not start with “-”. If the output file name is “-”, the
solutions will be output to the standard output.

Between the first parameter and the second parame-
ter, you can give some options as follows.

-# [num] : stop after outputting [num] solutions
-, [char] : give the separator of the numbers in

the output the numbers in the output
file are separated by the given charac-
ter [char].

-Q [filename] : replace the output numbers accord-
ing to the permutation table written
in the file of [filename], replace the
numbers in the output. The numbers
in the file can be separated by any
non-numeric character such as new-
line character.

-l [num] : output cliques with size at least [num]
-u [num] : output cliques with size at most

[num]

For example, by executing

mace C -l 5 -u 7 g100.grh clq.out

the program outputs all cliques of sizes from 5 to 7 (in-
cluding both size 5 and size 7) in the “g100.grh” to the
file “clq.out”.

Example of the execution
mace M% g15.grh clq.out

(output maximal cliques in “g15.grh” to “clq.out”.
Show the progress during the execution)

mace Cq -# 1000000 -l 5 g15.grh clq.out
(output cliques in “g15.grh” of at least size 5 to
“clq.out”. Stop if over 1,000,000 cliques are found.)

3.1 Output file format
The input graph, with n vertices, is considered to be

composed of vertices from 0 to n−1. The cliques found
are output to the output file specified by user, repre-
sented by a sequence of numbers corresponding to the
vertices of the clique. One line of the output file is
for one clique. The numbers in each line is separated
by “ ”, and by giving “-,” option we can change the
separator. At the termination of the program, it out-
puts the number of cliques found, and the number of
cliques classified by their sizes. For example, if there
are cliques {0,1}, {2}, {0,1,3}, {1,2}, the output to the
standard output will be

#vertices=3 #edges 5⇐ numbers of vertices and
edges

4 ⇐ total number
0 ⇐ number of cliques of

size 0
1 ⇐ number of cliques of

size 1
2 ⇐ number of cliques of

size 2
1 ⇐ number of cliques of

size 3

and the output file will be

0,1
2
0,1,3
1,2

If q is given in the parameter, then “#vertices, #edges”

05

Implementation issues of clique enumeration algorithm 29

is not printed. If output file name is not given, then no
output file is generated.

The output cliques are not sorted. If you want to sort
it, use the script “sortout.pl”. The usage is just,

% sortout.pl 〈 input-file 〉 output-file

“input-file” is the name of file to which mace output,
and the sorted output will be written in the file of the
name “output-file”. The vertices of each clique will
be sorted in the increasing order of indices, and all the
cliques (lines) will be also sorted, by the lexicograph-
ical order (considered as a string). (Actually, you can
specify separator like sortout.pl “,”).

3.2 Input file format
Each following i-th line is the list of vertices adjacent

to vertex i − 1, so each line is: (vertex), (vertex),
Any non-numeric letter (except for newline and end-
of-file) is allowed to be used for the separator. Each
vertex has to be ranged from 0 to (#vertices−1).

For an edge connecting vertices u and v, we do not
need to write both in the output file “v in the (u-1)th
line” and “u in the (v-1)th line”. We need just one, “v
in the (u − 1)th line” or “u in the (v − 1)th line.” If you
write both, an edge will be counted doubly, and mace
does not work correctly.

Example) a graph with edges (1,0), (2,0), (1,3),
(2,3), (3,4), (0,4):

1,2
3

2 4
0

3.3 Transforming other graph file format
For the use of other formats for input graph files, we

have several scripts. We explain the functions of the
Perl scripts in the following.

– compgrh.pl [b] [separator] 〈 input-file 〉 output-file

Write to output-file the complement graph of the
graph read from the input-file. If you specify “b” op-
tion, then the input-file is regarded as a bipartite graph.

Ex.) % compgrh.pl b “,” 〈 test15.grh 〉 test2.grh

– transnum.pl table-file [separator] 〈 input-file 〉
output-file

Read file from standard input, and give a unique
number to each name written by general strings (such
as ABC, ttt), and transform every string name to a num-

ber, and output it to standard output. The mapping from
string names to numbers is output to table-file. The de-
fault character for the separator of the string names is “
”(space). It can be changed by giving a character for the
option [separator]. For example, A, B is a string name,
if the separator is space, but if we set the separator to
“,”, it is regarded as two names A and B. This is exe-
cuted by “transnum.pl table-file ”,“〈 input-file 〉”.

– untransnum.pl table-file 〈 input-file 〉 output-file

According to the table-file output by transnum.pl, un-
transform numbers to string names. The output of the
program is composed of numbers, thus it is used if we
want to transform to the original string names. It reads
file from standard output, and output to the standard
output.

– transgrh.pl [Bb] [separator] 〈 input-file 〉 output-file

Transform a file in the format of that every line writes
two end vertices of an edge, to the format of this pro-
gram. For example, the file

0,2
0,1
1,4
3,4
1,3

representing the graph with edge (0,2), edge (0,1) and
. . ., is transformed to

1,2
3,4

4

If the name of vertices are written in general strings,
transform them to numbers by transnum.pl before the
execution. When we give parameter D or d, the input
graph is regarded as a directed graph. If we give d, the
first number is the origin of a directed edge, and if we
give D, the second number is the origin. Bipartite graph
can be transformed by giving options b or B. Suppose
that we have a bipartite graph with vertex sets A and
B both indices start from 0. If we transform it by the
above way, vertex i in A and i in B are considered to
be the same vertex. By giving b, the second number in
each row is added by a constant so that no two vertices
have the same index. In the case of B, the first num-
ber is added. When we transform the above graph by
(transgrh.pl b “,” 〈 input 〉 output), we have a graph in
the format,

05

30 Progress in Informatics, No. 9, pp.25–30, (2012)

5,6
7,8

8

– sortgrhid

Transform a graph file format such that each row cor-
responds to a vertex. The first number of each row is the
ID of the vertex, and the following numbers are the ver-
tex ID’s to which the vertex adjacent. The script sorts
the row according to the ID’s, and remove the ID from
the file. For example, the file,

4,2,3
1,2
0,1,3,4
3
2,3

is transformed to

1,3,4
2
3

2,3

If the ID’s are given in general strings, use transnum.pl
before the execution.

Example of the usage
When transform the file test.grh which is edge list

format with general string vertex names with separator
“,”, and enumerate cliques:

transnum.pl table “,” 〈 test.grh 〉 tmp.grh
transgrh.pl 〈 tmp.grh 〉 tmp2.grh
mace M tmp2.grh out
untransnum.pl table 〈 out 〉 out2

4 Conclusion
In this paper, we described the implementation is-

sues of maximal clique enumeration; reverse search,
reducing the candidates for children, and sweep pointer
method for fast parent-child relation check. We also
described the usage of the implementation in detail.

The implementation is available on the author’s Web
site

http://research.nii.ac.jp/˜uno/index.
html.

Anyone can modify this program, but he/she has to
write down the change of the modification on the top

of the source code. Neither contact nor appointment to
Takeaki Uno is needed. If one wants to re-distribute
this code, do not forget to refer the newest code, and
show the link to homepage of Takeaki Uno, to notify
the news about codes for the users. For the commercial
use, please make a contact to Takeaki Uno.

Acknowledgments
We gratefully thank to Kazuhisa Makino of Tokyo

University, the co-author of the paper of mace. We also
thank to Zhiao Shi for bug reports. We also thank to
Dr. Krister Swenson of University of Ottawa for giving
an advice to improve the document.

References
[1] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa, “A

new algorithm for generating all the maximal indepen-
dent sets,” SIAM Journal of Computing, vol.6, pp.505–
517, 1977.

[2] K. Makino and T. Uno, “New algorithms for enumerating
all maximal cliques,” In Proc. of the 9th Scandinavian
Workshop on Algorithm Theory (SWAT 2004), pp.260–
272, Springer-Verlag, 2004.

[3] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case
time complexity for generating all maximal cliques and
computational experiments,” Theor. Comp. Sci., vol.363,
pp.28–42, 2006.

Takeaki UNO
Takeaki UNO received the PhD de-
gree (Doctor of Science) from De-
partment of Systems Science, Tokyo
Institute of Technology Japan, 1998.
He was an assistant professor in De-
partment of Industrial and Manage-

ment Science in Tokyo Institute of Technology from
1998 to 2001, and have been an associate professor of
National Institute of Informatics Japan, from 2001. His
research topic is discrete algorithms, especially enu-
meration algorithms, algorithms on graph classes, and
data mining algorithms. In data mining area, his main
research is on pattern mining algorithms. He got Young
Scientists’Prize, of The Commendation for Science and
Technology in Japan, in 2010.

