
04

Special issue: Theoretical computer science and discrete mathematics

Progress in Informatics, No. 9, pp.19–23, (2012) 19

Research Paper

Entropy estimation with suffix arrays

Kunihiko SADAKANE1

1National Institute of Informatics

ABSTRACT
In this paper we give an algorithm for estimating the entropy of a string using the suffix array.
Our algorithm is based on a new combinatorial property of the longest common prefix array
of a string.

KEYWORDS
Strings, entropy estimation, suffix arrays

1 Introduction
This paper proposes a fast algorithm for entropy es-

timation of a string. There exists an entropy estimation
scheme based on the LZ77 compression algorithm (See
Section 2.2 for details). However, the LZ77 compres-
sion algorithm requires dynamic data structures which
are in practice slow. The algorithm proposed in this
paper uses a static data structure called a suffix array
which can be constructed quickly, and returns the same
estimation value with that using LZ77. Our data struc-
ture can also compute another estimation value of the
entropy (See Section 2.1).

2 Known algorithms for entropy esti-
mation

In this section we review two known algorithms for
entropy estimation for strings. Throughout this paper,
we use the following definitions and notations. For a
string S = S [0]S [1] . . ., let S j denote S [j]S [j + 1] . . .
and it is called a suffix of S . Let lcp(α, β) denote the
length of the longest common prefix of two strings α
and β.

2.1 Using distinguishing prefixes
Definition 1 For a string S , we define distinguishing
prefix of a suffix S j as the shortest prefix of S j that does
not match with prefixes of any other suffixes. We also
define B j as the length of the distinguishing prefix of
the suffix S j.

Received November 1, 2011; Accepted December 22, 2011.
1) sada@nii.ac.jp, http://researchmap.jp/sada/

Example: Let S [0..13] = “tobeornottobe$”. The dis-
tinguishing prefix of a suffix S 8 = “ttobe$” is “tt” and
therefore B8 = 2.

Yokoo [1], [2] proposed an algorithm to incremen-
tally estimate the entropy of a string. He uses the av-
erage value of B j to estimate the entropy. He also pro-
posed an expected linear time algorithm to maintain a
list of prefixes which are in lexicographic order of re-
versed strings. Though it seems to be natural to esti-
mate the entropy by B j, Yokoo showed that the entropy
estimated by the average value of B j is sometimes far
from real compression ratio of many compression algo-
rithms. Therefore we use another entropy estimator.

2.2 Using the LZ77 algorithm
Definition 2 We define Ln(j) as the smallest integer
L(> 0) which satisfies x j+L−1

j � xi+L−1
i , j − n ≤ ∀i < j.

Ln(j) stands for the length of a prefix of a suffix S j

such that the prefix does not match with prefixes of suf-
fixes S j−n to S j−1. For a random string X, let Ln(X)
denote a random variable for Ln(0).

Example: Let S [0..13] = “tobeornottobe$”. Since
S 9 = “to be$” matches with the prefix of S 0 by 4 char-
acters, L9(9) = 5. On the other hand, S 9 matches with
a prefix of suffixes S 1, . . . , S 8 by 1 character, and there-
fore L8(9) = 2.

The difference between B j and Ln(j) is that Ln(j) is
defined as the length of prefix of S j which does not ap-
pear in prefixes of suffixes preceding S j, while B j is
defined as distinguishing length between S j and both

DOI: 10.2201/NiiPi.2012.9.4

c©2012 National Institute of Informatics

04

20 Progress in Informatics, No. 9, pp.19–23, (2012)

preceding and following suffixes. The value Ln(j) cor-
responds to the length of a prefix of S j encoded by
the LZ77 algorithm [3]. The following theorem proves
asymptotical optimality of the LZ77 code.

Theorem 1 (Wyner, Ziv [4]) As n→ ∞,

log n
Ln(X)

→ H, in probability,

where H is the entropy of a stationary ergodic informa-
tion source.

We use the average value of L j(j)

n−1∑

j=0

L j(j)

to estimate the entropy. Note that we use not Ln(j) but
L j(j) because we consider a finite string x0, . . . , xn.

3 A Combinatorial property of longest
common prefix array

In this section we give a new combinatorial property
of the longest common prefix array. First we give def-
initions. Let S = S [0]S [1] . . .S [n] be a string. The
suffix array [5] of S is an integer array I[0..n] such that
I[i] = j if S j = S [j]S [j+1] . . .S [n] is lexicographically
i-th suffix among all suffixes of S . The longest common
prefix array is an array storing lcp(I[i − 1], I[i]) + 1 for
i = 0, . . . , n.

3.1 Main result
The following is the main theorem of this paper,

which connects a combinatorial value defined on the
suffix array with an information theoretic value ap-
peared in the LZ77 compression algorithm.

Theorem 2
n∑

i=1

{lcp(I[i − 1], I[i]) + 1} =
n−1∑

j=0

L j(j)

To prove this theorem, we first show that the sum-
mation of lcp’s in the lemma does not change after re-
arrangement of suffixes in the suffix array according to
a particular order, then show that the equation holds in
the rearranged array I′.

We define an order <LZ for the rearrangement. The
order of suffixes of a string for the rearrangement is de-
fined as follows.

Definition 3 A suffix S s is smaller than a suffix S t in
order of <LZ if the following condition holds. Let l =
lcp(S s, S t) and

js = argmin
0≤ j≤n−1

{ j|lcp(S j, S s) ≥ l + 1}

jt = argmin
0≤ j≤n−1

{ j|lcp(S j, S t) ≥ l + 1},

then

js < jt.

Note that the string has a unique terminator $ and there-
fore any suffix is not contained in other suffixes. Thus
l < min{|S s|, |S t|} and the sets in the definition of js

and jt have at least one element, s and t, respectively.
Therefore js and jt are well-defined.

To sort suffixes according to the order <LZ , we first
divide the suffixes according to their first characters into
several groups and arrange the groups. The order of the
groups is defined by minimum values of indices of the
suffixes in the groups. These values correspond to js

and jt in the definition of <LZ . We assume that suf-
fixes S a and S b are in the same group G1 and suffixes
S a and S c are in different groups G1 and G2. Then
lcp(S a, S b) ≥ 1 and lcp(S a, S c) = 0. Indices ja and jc
in the definition of the order of S a and S c are equal for
all suffixes S a in G1 and S c in G2. The indices ja and jc
become the smallest indices in G1 and G2, respectively.
This justifies the definition of order of groups.

Next we subdivide the suffixes in the groups accord-
ing to their second characters. The order of the groups
is also defined by minimum indices in the groups. We
continue dividing suffixes until all suffixes belong to
different groups.

Fig. 1 and Fig. 2 show an example of I and I′ for the
string ‘to be or not to be $.’ The longest-match suffix
of a suffix S s = S 4 is S t = S 1. In Fig. 2, t = I′[3] and
s = I′[5] and Ls(s) = 2 appears in lcp(I′[5− 1], I′[5])+
1. We see that in Fig. 2, lcp(I[i − 1], I[i]) + 1 = Ls(s)
(s = I′[i]) for all i.

Proposition 1 The order <LZ is transitive, that is, if
S a <LZ S b and S b <LZ S c, then S a <LZ S c for all
suffixes S a, S b, and S c.

Proof: We assume that

l1 = lcp(S a, S b)

ja = argmin
0≤ j≤n−1

{ j|lcp(S j, S a) ≥ l1 + 1}
jb1= argmin

0≤ j≤n−1
{ j|lcp(S j, S b) ≥ l1 + 1}

l2 = lcp(S b, S c)

jb2 = argmin
0≤ j≤n−1

{ j|lcp(S j, S b) ≥ l2 + 1}
jc = argmin

0≤ j≤n−1
{ j|lcp(S j, S c) ≥ l2 + 1}

l3 = lcp(S a, S c)

j′a = argmin
0≤ j≤n−1

{ j|lcp(S j, S a) ≥ l3 + 1}

04

Entropy estimation with suffix arrays 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13
s = I[i] 13 11 2 12 3 6 10 1 4 7 5 9 0 8

$ b b e e n o o o o r t t t
e e $ o b b r t o o t
$ o r e e b b

$ o e e
$ o

lcp(I[i − 1], I[i]) + 1 1 1 3 1 2 1 1 4 2 2 1 1 5 2
Ls(s) 1 3 1 2 1 1 4 1 2 2 1 5 1 2

Bs 1 3 3 2 2 1 4 4 2 2 1 5 5 2

Fig. 1 Alphabetic order.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
s = I′[i] 0 9 8 1 10 4 7 2 11 3 12 5 6 13

t t t o o o o b b e e r n $
o o t b b r t e e o $
b b e e o $
e e o $
o $

lcp(I′[i − 1], I′[i]) + 1 1 5 2 1 4 2 2 1 3 1 2 1 1 1
Ls(s) 1 5 2 1 4 2 2 1 3 1 2 1 1 1

Bs 5 5 2 4 4 2 2 3 3 2 2 1 1 1

Fig. 2 <LZ order.

j′c = argmin
0≤ j≤n−1

{ j|lcp(S j, S c) ≥ l3 + 1}
ja < jb1

jb2 < jc.

We show that j′a < j′c. There are three cases.
Case l1 < l2: lcp(S b, S c) = l2 ≤ l1 + 1 and l3 = l1.

Therefore ja = j′a, and jb1 and j′c become as follows:

jb1 = argmin
j
{ j|lcp(S j, S b) ≥ l1 + 1, 0 ≤ j ≤ n − 1}

j′c = argmin
j
{ j|lcp(S j, S c) ≥ l1 + 1, 0 ≤ j ≤ n − 1}.

Because lcp(S b, S c) ≤ l1 + 1, definitions of jb1 and
j′c coincide and therefore jb1 = j′c. These show that
j′a = ja < jb1 = j′c.

Case l1 > l2: we can show that j′a = jb2 < jc = j′c in
a similar way.

Case l1 = l2: From the definition jb1 = jb2 and l3 ≥
l1. If l3 = l1 = l2, j′a = ja < jb1 = jb2 < jc = j′c. If
l3 > l1 = l2, lcp(S a, S c) ≥ l1 + 1 and definitions of ja
and jc become as follows:

ja = argmin
j
{ j|lcp(S j, S a) ≥ l1 + 1, 0 ≤ j ≤ n − 1}

jc = argmin
j
{ j|lcp(S j, S c) ≥ l1 + 1, 0 ≤ j ≤ n − 1}.

These definitions coincide and therefore ja = jc.
Then jb2 < jc = ja < jb1, which contradicts jb1 = jb2.
It means that the case l3 > l1 = l2 does not occur.

In all cases, the inequality j′a < j′c holds. �	
After this rearrangement, the summation of lcp’s be-

tween adjacent suffixes in I′ is equal to that in the orig-
inal suffix array I.

Lemma 1
n∑

i=1

lcp(I[i − 1], I[i]) =
n∑

i=1

lcp(I′[i − 1], I′[i])

Proof: We show that lcp’s of adjacent suffixes in I′ are
a permutation of that in I. After dividing suffixes into
groups according to the first characters, lcp’s between
different groups are zero and they do not depend on
sorting order. Therefore the number of zeroes in lcp’s
does not depend on sorting order. Then suffixes in each
group are subdivided according to the second charac-
ters. After the subdivision lcp between two subgroups
in a group is one regardless of sorting order. Therefore
the number of ones in lcp’s does not change. We can
prove that the number of l in lcp’s between adjacent
suffixes in I′ is always equal to that in I in a similar
way. �	

Now we can show a relationship between lcp and
Ls(s). Note that we use Ls(s) instead of Ln(s).

Lemma 2 Concerning a suffix S s (s = I′[i]), a suffix
S t which corresponds to Ls(s) is located in smaller po-
sition than S s in the array I′, and

lcp(I′[i − 1], I′[i]) + 1 = Ls(s).

04

22 Progress in Informatics, No. 9, pp.19–23, (2012)

Note that the suffix S t may not be adjacent to S s.
Proof: From the definition of the order <LZ , one
of suffixes which are the longest-match suffixes of S s

is located in I′[i − 1] or I′[i + 1]. Suffixes which
are larger than S s in order of <LZ , that is, suffixes
I′[i + k](k = 1, 2, . . .) do not correspond to Ls(s) even
if lcp(I′[i], I′[i + 1]) > lcp(I′[i], I′[i − 1]). The rea-
son is as follows. We assume that a suffix S u is in
I′[i + k](k = 1, 2, . . .). Let lcp(S s, S u) = l and

js = argmin
0≤ j≤n−1

{ j|lcp(S j, S s) ≥ l1 + 1}
ju = argmin

0≤ j≤n−1
{ j|lcp(S j, S u) ≥ l1 + 1}.

Since S s <LZ S u, js < ju. It means that the suffix S u is
not a suffix which corresponds to Ls(s).

Therefore suffixes I′[i − k](k = 1, 2, . . .) are candi-
dates for the longest-match suffix of S s. Some of them
are excluded because their positions are larger than s.
However, there exists at least one suffix S t for each
suffix S s except S 0 such that t < s and lcp(S t, S s) =
lcp(I′[i − 1], I′[i]). Since Ls(s) = lcp(S t, I′[i]) + 1,
lcp(I′[i − 1], I′[i]) + 1 = Ls(s). �	

The proof of Theorem 2 is obvious from Lemma 1
and Lemma 2.

3.2 Linear time algorithm
The value

∑n−1
j=0 L j(j) is computed in linear time as

follows. First we construct the suffix array I in linear
time using a practical linear time algorithm [6]. Then
the lcp array can be also computed in linear time [7]. It
is obvious to obtain the desired value from the lcp array
in linear time.

3.3 Relation with distinguishing prefixes
We also show the relation between the summation of

B j and the summation of L j(j). B j can be computed by

B j = max{lcp(I[i − 1], I[i]) + 1,

lcp(I[i], I[i + 1]) + 1}.
Therefore the entropy estimation with this scheme is
also done in linear time.

We express an upper-bound of the summation of B j’s
for all suffixes by the summation of lcp’s between ad-
jacent suffixes in the suffix array.

Lemma 3
n−1∑

j=0

(B j − 1) ≤ 2
n∑

i=1

lcp(I[i − 1], I[i])

Proof: By using an inequality

max{a, b} ≤ a + b (a, b ≥ 0),

i 0 1 2 3 4 5 6
j = I[i] 6 3 0 4 1 5 2

$ a a b b c c
b b c c $ a
c c $ a b
$ a b c

b c $
c $
$

lcp(I[i − 1], I[i]) 0 0 3 0 2 0 1
Bj − 1 0 3 3 2 2 1 1

Fig. 3 An example of a string.

n−1∑

j=0

(B j−1)

=

n∑

i=1

max{lcp(I[i − 1], I[i]), lcp(I[i], I[i + 1])}

≤
n∑

i=1

{lcp(I[i − 1], I[i]) + lcp(I[i], I[i + 1])}

= 2
n∑

i=1

lcp(I[i − 1], I[i])

Note that lcp(I[0], I[1]) = lcp(I[n], I[n+ 1]) = 0. �	
The equality holds when the string X forms concate-

nation of the same two strings in which all characters
differ, for example ‘abc...zabc...z$.’ Fig. 3 shows an ex-
ample of a suffix array for such a string. for a string of
length 2n. In such cases,

2n∑

i=1

lcp(I[i − 1], I[i]) =
n(n + 1)

2

2n−1∑

j=0

B j = n(n + 1)

This means that estimated values of entropy by B j is
sometimes far from that by L j(j).

References
[1] H. Yokoo, “Context tables: a tool for describing text com-

pression algorithms,” In Proc. of IEEE Data Compres-
sion Conference, pp.299–308, 1998.

[2] H. Yokoo, “A Dynamic data structure for reverse lex-
icographically sorted prefixes,” In M. Crochemore and
M. Paterson, editors, Proc. of the 10th Annual Symposium
on Combinatorial Pattern Matching (CPM’99), LNCS
1645, pp.150–162, 1999.

[3] J. Ziv and A. Lempel, “A Universal algorithm for se-
quential data compression,” IEEE Trans. Inform. Theory,
vol.IT-23, no.3, pp.337–343, 1977.

04

Entropy estimation with suffix arrays 23

[4] A. D. Wyner and J. Ziv, “Some Asymptotic Properties
of the Entropy of a Stationary Ergodic Data Source with
Applications to Data Compression,” IEEE Trans. Inform.
Theory, vol.IT-35, no.6, pp.1250–1258, 1989.

[5] U. Manber and G. Myers, “Suffix arrays: A new method
for on-line string searches,” SIAM Journal on Computing,
vol.22, no.5, pp.935–948, 1993.

[6] G. Nong, S. Zhang, and W. H. Chan, “Linear suffix array
construction by almost pure induced-sorting,” In DCC,
pp.193–202, 2009.

[7] S. Gog and E. Ohlebusch, “Fast and lightweight lcp-array
construction algorithms,” In Proc. ALENEX, pp.25–34,
2011.

Kunihiko SADAKANE
Kunihiko SADAKANE received
B.S., M.S., and Ph.D. degrees from
Department of Information Science,
University of Tokyo in 1995, 1997
and 2000, respectively. He was a re-
search associate at Graduate School

of Information Sciences, Tohoku University from
2000 to 2003, and an associate professor at Faculty
of Information Science and Electrical Engineering,
Kyushu University from 2003 to 2009. Since 2009, he
has been an associate professor at National Institute of
Informatics. His research interest includes information
retrieval, data structures, and data compression. He is
a member of IPSJ and IEICE.

