
Special issue: Quantum information technology

Progress in Informatics, No. 8, pp.89–109, (2011) 89

Research Paper

Information geometric superactivation of classical
zero-error capacity of quantum channels

Laszlo GYONGYOSI1 and Sandor IMRE2

1,2Department of Telecommunications, Budapest University of Technology and Economics

ABSTRACT
This paper introduces a fundamentally new method of finding the conditions for the super-
activation of the zero-error capacity of quantum channels. The zero-error capacity of the
quantum channel describes the amount of information which can be transmitted perfectly
through a noisy quantum channel. The superactivation of the zero-error capacity of quantum
channels makes it possible to use two quantum channels, each with zero zero-error capacity,
with a positive joint zero-error capacity. Currently we have no theoretical background for
describing all possible combinations of superactive quantum channels, hence there should
be many other possible combinations. We give an algorithmic solution to the problem. To
analyze the superactivation of the zero-error capacity, we introduce a new geometrical rep-
resentation, called the quantum superball. Our method can be the first efficient algorithmic
solution to discover the still unknown combinations to determine the superactivation of the
zero-error capacity of quantum channels, without the extremely high computational costs.
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1 Introduction
The zero-error capacity of the quantum channel mea-

sures the amount of information which can be transmit-
ted through a noisy quantum channel with a zero prob-
ability of error. The superactivation of quantum chan-
nels may be the starting-point of a large-scale revolu-
tion in quantum information theory and in the commu-
nication of future quantum networks [1], [8]. The zero-
error capacity of the quantum channel can be a very
important measure where perfect communication is re-
quired or the resources for communication are very lim-
ited. This capacity could have deep relevance in secure
quantum communication, or in future quantum com-
munication networks, where the quantum communica-
tion links can become permanently unavailable. The
zero-error capacity cannot be calculated in an easy way
such as in the case of classical, “non zero-error” capac-
ity [9], [48], [49]. The computation of zero-error capac-
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ity, for both the quantum and the classical case, is an
extremely difficult computational problem [9].

This paper studies the superactivation property of the
zero-error capacity of quantum channels, using very
efficient informational geometric algorithmical tools.
Since the revolutionary properties of superactivation
of quantum channel capacities have been reported on,
many new quantum informational results have been de-
veloped [1]–[3]. The superactivation of zero-error ca-
pacity implies the fact that a possible combination of
quantum channels with zero zero-error capacity exists,
where individually totally useless channels can activate
each other, and their joint zero-error capacity will be
greater than zero [2], [3].

The number of efficient approximation algorithms
for quantum informational distances is very small be-
cause of the special properties of quantum informa-
tional generator functions and of asymmetric quantum
informational distances. If we wish to analyze the prop-
erties of quantum channels using today’s classical com-
puter architectures, an extremely efficient algorithm is
needed. Our method gives an algorithmic solution to
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the superactivation problem of the zero-error capacity
of quantum channels. Recently, Duan and Cubitt et al.
have found only one possible combination for superac-
tivation of the classical zero-error capacity of quantum
channels, and they have opened the debate on the ex-
istence of other possible channel combinations [2]–[6].
In this paper, we show that the currently known theoret-
ical results can be verified in practice with our method,
and our framework can be extended to discover other
possible channels.

As has been shown by Medeiros et al. [7], [8] there
are many unanswered questions remaining on the clas-
sical zero-error capacity of quantum channels. More-
over, the computation of the classical zero-error ca-
pacity of quantum channels is an extremely difficult
and hard computational problem, as has been stated by
Beigi et al. [9]. Currently we have no theoretical results
for describing all possible combinations of superactive
zero-capacity quantum channels, hence there should be
many other possible combinations. As we will show,
the result of Duan and Cubitt et al. [2], [3] is only one
possible solution to superactivation of zero-error capac-
ity and many other possible solutions can be discov-
ered by our algorithmic solution. Our method provides
a fundamentally new and efficient algorithmic solution
for discovering all possible superactive quantum chan-
nels.

1.1 Open questions on quantum capacities
The problem of superactivation of zero-error capac-

ity can be discussed as part of a larger problem set —
the problem of quantum channel additivity. The addi-
tivity problem is considered to be an important prob-
lem. By solving the additivity problem we can answer
the question, is the zero-error capacity of a quantum
communication channel affected by being restricted
to non-entangled separable states in different quantum
channel models? The quantum relative entropy func-
tion based on the interpretation of quantum channel
capacity has been theoretically presented by Holevo-
Schumacher-Westmoreland [16], [17], later it has been
studied by Cortese [10]. The capacity of a quantum
channel has also been studied by Shor, who proved the
equivalence of the additivity of quantum channel capac-
ity and the additivity of minimum entropy output [39].

At present, conjectures connected to quantum chan-
nel additivity are still not solved, some have only been
confirmed for some classes of quantum channel [33].
Different types of quantum channel have been stud-
ied by Brandao and Horodecki [34], King [35], Fukuda,
King and Moser [36], Datta, Holevo and Suhov [37],
Matsumoto and Yura [38], Wolf and Eisert [40], Ruskai,
Szarek and Werner [12] and Schumacher and West-
moreland [16], [17]. Recently, the additivity property of

a quantum channel has been studied by Smith [1], Hast-
ings [33], and Brandao and Horodecki [34]. As shown
in [33], the most basic questions on the classical capac-
ity of a quantum channel still remain open. Open ques-
tions related to the superactivation of quantum channel
capacities [1] can be discussed based on our novel and
efficient informational geometric approach.

2 The zero-error capacity of quantum
channels

Zero-error capacity has deep relevance in classical
and quantum communication systems [47]–[49]. The
zero-error capacity stands a very strong requirement in
comparison to the standard capacity, since in the case of
zero-error communication the error probability of the
communication has to be zero, hence the transmission
of information has to be perfect and no errors are al-
lowed [8], [9].

As has been shown, there are many open questions
and only one possible combination has been found to
realize the superactivation of the zero-error capacity
of quantum channels [3]. The zero-error capacity of
the quantum channels can be a very important issue
in some critical fields of future quantum communica-
tion networks, in which the errors cannot be tolerated.
The zero-error capacity of the quantum channels is a
very valuable field of quantum information process-
ing, however the computation of this capacity is an ex-
tremely difficult problem in practice, both in classical
system [48], [49], and both in a quantum system, as it
has been shown by Beigi and Shor [9]. In the case of
quantum channels the inputs can be product states and
entangled states, which causes other difficulties in the
computation of zero-error capacity. As also stated by
Duan [2], the zero-error capacity of a quantum channel
can be approached from the viewpoint of classical and
quantum capacities.

The general view of the superactivation of quantum
channels is illustrated in Fig. 1. Two quantum channels
each with zero zero-error capacity, can be used to trans-
mit classical information through a very noisy quantum
communication channel. The superactivation of zero-
error capacity cannot be imagined for classical systems,
and in the near future these results can revolutionize
the communications over long-distance telecommuni-
cation, and it can help to enhance the security of quan-
tum communication.

In Duan’s work the superactive quantum channels
could be superactivated after two uses [2]. Later, this
result was improved by Cubitt et al. [3], since his com-
bination required only a single use of the channel pair
to realize the superactivation of zero-error capacities.

On the other hand, the entanglement among the input
states is a required condition to realize the superactiva-
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Fig. 1 Combination of quantum channels, with individual zero zero-error capacity, to realize perfect information transmis-
sion.

tion, otherwise the channels cannot be superactivated
and the zero-error capacity will not be positive [3]. As
also stated by Duan [2], superactivation can be achieved
by using the entanglement, hence any classical mes-
sages can be transmitted perfectly through a zero error-
capacity channel, if the classical messages are encoded
by entangled states. Duan and Cubitt et al. simulta-
neously studied the possibility of superactivation of the
classical zero-error capacity of quantum channels [2]–
[6], and concluded that a possible channel combination
exists, in which one of the channels or each of the quan-
tum channels can have zero classical zero-error capac-
ity, however, the combinations of these kind of channels
result in a positive classical zero-capacity. Hence the
superactivation of the classical zero-error capacity of
quantum channels is possible, although they only found
one possible solution [2], [3].

The superactivation problem has been also studied by
Smith [1], however in his work the superactivation of
the quantum capacity of zero-capacity quantum chan-
nels has been analyzed instead of the zero-error ca-
pacity. In this paper we focus on the superactivation
of asymptotic classical zero-error capacity of quantum
channels which is currently a very important topic in
quantum information theory, with still many open ques-
tions.

We give an extremely efficient algorithmical solution
to discover the still undiscovered possible channel com-
binations for realize the superactivation of the classi-
cal zero-error capacity of quantum channels. Our work
can be very valuable tools to a better understand of the
properties of the classical zero-error capacity of quan-
tum channels, and it can help to resolve the extremely

difficult computational tasks regarding to the comput-
ing of zero-error capacity of quantum channels [9].

2.1 Superactivation in the future’s quantum communi-
cations networks

In many cases the error in the communication can-
not be tolerated and the channel has to be totally error-
free. The zero-error information theory describes the
maximum achievable rates and capacities, which are
achieved in the case of a zero-error probability commu-
nication channel. The zero-error capacity was defined
in Shannon’s paper [47], later Bollobas [48] and Korner
and Orlitsky [49] analyzed the mathematical and infor-
mational theoretic properties of zero-error capacity. In
the case of future quantum communication networks,
many new phenomena can be exploited, which were not
available in the case of a classical communication net-
works. To use two zero-error capacity quantum links,
we have to characterize only the input quantum states
and the maps of the quantum channels, and after that
has been done the two damaged or very noisy quantum
links can be used to transmit information perfectly.

In future quantum communication networks, super-
activation can be the ultimate weapon in situations
where a quantum channel becomes totally or tempo-
rally unavailable due to damage to a link or a network
communication problem, or where quantum communi-
cation channels are extremely noisy. With the help of
the superactivation of zero-error capacity of quantum
channels, the perfect information transmission can be
realized in a very noisy network environment or in a
damaged link. Moreover, it can be used to enhance the
security of quantum communication over a very noisy
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Fig. 2 The superactivation of zero-error capacity can help to transmit information through a very noisy quantum network,
and the information can be transmitted perfectly through a temporarily unavailable quantum channel.

quantum environment, hence the application of super-
activation in future quantum communication networks
is very diverse.

In Fig. 2, we show possible ways of the applying
superactivation in future quantum communication net-
works. Since the superactivation makes it possible
to transmit information through a damaged quantum
channel it can be used to avoid the temporarily unavail-
able status of network services.

Superactivation can be applied to an optical-fiber
based optical quantum communication network [50], or
in a free-space environment, both in a dense metropoli-
tan area or over very long distances to improve the qual-
ity of information transmission. Our method can be a
very valuable tool to realize noiseless quantum com-
munication over a noisy communication environment.
Using the superactivation of quantum channels, the ef-
fectiveness of the communication techniques in the fu-
ture’s quantum networks — in long-distances, or in a
noisy metropolitan area — can be increased, and the
currently used communication techniques can be revo-
lutionized.

In addition to aiding metropolitan and long-distance
quantum communication, the perfect information trans-
mission through a quantum channel can have deep rel-
evance both in military and secret government applica-
tions, or other cases where extremely high security is
required.

2.2 Theoretical results on the superactivation of zero-
error capacity

Cubitt et al. investigated an algebraic approach to
study the superactivation property of the zero-error ca-
pacity, and as it has been found, there is also exists a
stronger superactivation for the asymptotic zero-error
capacity [3]. In their work, both quantum channels
can have zero zero-error capacity, while in the case of
Duan’s method one of the channels has to be equipped
with a greater than zero zero-error capacity, otherwise
the superactivation would not have worked. Duan has
found only one class of quantum channels with zero
zero-error capacity for which the entangled input states
can superactivate their capacities. The usage of entan-
glement also implies the fact that superactivation is not
possible in the case of classical communication chan-
nels. Duan has also stated, that besides the fact that
the classical zero-error capacity of quantum channels is
superactive, the quantum zero-error capacity of a quan-
tum channel is also superactive, hence there is an over-
lapping with the results of Smith [1]. We note, he has
studied the quantum capacity of quantum channels in-
stead of the quantum zero-error capacity.

Our method can be used to verify both the results
of Duan and, the stronger conditions of Cubitt et al.
In future work we would like to extend our method to
analyze the superactivation of the asymptotic quantum
capacity of zero-capacity quantum channels, which is
still an open problem in quantum information theory
[1].
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2.3 Geometrical analysis of zero-error capacity
This paper introduces a completely revolutional al-

gorithmical approach to find the still undiscovered
combinations for realizing superactivation of the clas-
sical zero-error capacity of quantum channels. The
proposed geometrical method is based on the Holevo-
Schumacher-Westmoreland (HSW) channel capacity
and its geometrical interpretation [10], [16]–[18]. In
our work, we apply computational geometry in quan-
tum space, between pure and mixed quantum states.
Using extremely fast computational geometric meth-
ods the superactivation of asymptotic zero-error capac-
ity quantum channels can be efficiently analyzed with
the help of currently available classical computational
architectures.

Computational Geometry was originally focused on
the construction of efficient algorithms and provides
a very valuable and efficient tool for computing hard
tasks. In many cases, traditional linear programming
methods are not very efficient. In this paper, advanced
geometric methods play a fundamental role in the anal-
ysis of the superactivation of zero-error capacity quan-
tum channels. To analyze a quantum channel for a large
number of input quantum states with classical computer
architectures, very fast and efficient algorithms are re-
quired [44]–[46].

In Fig. 3, we illustrate the logical structure of the
analysis and the cooperation of classical and quantum
systems. We would like to analyze the properties of
quantum channels using current classical computer ar-
chitectures — since, currently we have no quantum
computers — and the most efficient currently available
algorithms. To this day, the most efficient classical al-
gorithms for this purpose are computational geometric
methods. We use these classical computational geo-
metric tools to discover the still unknown “superactive”
zero-error capacity quantum channels.

In this paper, we will apply the methods of com-
putational geometry to analyze the superactivation of
zero-error capacity quantum channels, however we will
use quantum information as a distance measure instead
of classical geometric distances. Unlike ordinary geo-
metric distances, the quantum informational distance is
not a metric and is not symmetric, hence this pseudo-
distance features as a measure of informational dis-
tance. We combine the models of information geom-
etry and the fast methods of computational geometry,
as depicted in Fig. 4.

At present, computational geometry algorithms are
an active, widely used and integrated research field.
Many difficult problems can be extended to compu-
tational geometric methods, however these geomet-
ric problems require well-designed and efficient algo-
rithms [10], [14], [18]. Recently, the possibilities of

Fig. 3 The logical structure of our analysis. We use cur-
rent classical architectures to analyze the properties of
quantum channels.

Fig. 4 Quantum information as distance measure in clas-
sical computational geometric methods.

the application of computational geometric methods
in quantum space have been studied by Kato et al.
[26] and Nielsen et al. [30]. Nielsen has shown very
useful and efficient geometrical approaches to com-
pute the Voronoi diagrams between the quantum states
[28], [29], [31], [32].

2.4 Problem of superactivation
To this day, strict additivity of quantum channel ca-

pacity has been conjectured, but not proven. The prop-
erty is known to hold for some special cases, but the
generalized rule is still unknown. As depicted in Fig. 5,
the problem of superactivation of zero-error capacity
quantum channels can be viewed as a smaller subset
of a larger problem set involving the additivity of quan-
tum channels and the superactivation of zero-capacity
quantum channels.

We show that a modified version of Chen’s weak
coreset method [20] and Ackermann’s modified cluster-
ing algorithm [19] can be applied to quantum informa-
tional distances. Then the superactivation property of
different quantum channel models with various channel
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probabilities can be analyzed extremely fast in our fun-
damentally new framework. Our iterations are based
on the computed radius of a superball, the iterations are
made on the channel input states, channel models, and
channel parameters. The output of the algorithm is the
radius of the quantum informational superball.

In our model, the results of Duan and Cubitt et al. on
superactivation of zero-capacity channels is only one
possible solution to the problem of searching for “su-
peractive” quantum channels. Our method can be ex-
tended to every possible quantum channel model and
channel parameter. Using the coreset method [20], we
can analyze the capacities of quantum channels, for an
extremely large input set and for all possible channel
models with extremely high efficiency. We show that
the modified version of Chen’s algorithm can be applied
in quantum space to quantum informational distances
and the performance of the iteration can be dramati-
cally accelerated by the introduction of weak coresets
and μ-similar quantum informational distances. We use
the modified version of Ackermann’s clustering algo-
rithm [19] for weak coresets, hence the k-median prob-
lem and the radius of the super quantum informational
ball can be computed very fast with respect to quantum
informational distances.

The presented algorithm has less complexity than
other existing coreset and approximation algorithms,
which can also be applied in quantum space. In clas-
sical systems, the Kullback-Leibler distance is used
as a distance metric in many fields, such as statis-
tics, mathematics, speech recognition and informa-
tional databases. The Kullback-Leibler distance is a
more useful distance metric in these cases than the or-
dinary Euclidean distance, since we have to compare

Fig. 5 The problem of superactivation of zero-error capac-
ity of quantum channels as a sub domain of larger problem
sets.

probability distributions, speech samples, images, time
series or other matrices, etc. [20].

2.5 Median quantum states in quantum space
We will use the well-known coreset method in quan-

tum space between quantum states and we will show
that these methods can be implemented very efficiently
to analyze the properties of quantum channels. The
coreset approach can be extended to the k-median clus-
tering of channel output states. The construction of
coresets has been studied in classical systems in [15],
[22], [23]. In classical computational geometry, coreset
algorithms are well-known and widely applied meth-
ods. The coreset method generates a small weighted
set from the original dataset, such that the smaller set
has the same properties as the original, larger set. The
coreset method can be applied to analyze the proper-
ties of quantum channels for a large set of output chan-
nel states, since coreset methods have the same cost for
clustering as the original larger set, with an approxima-
tion error ε. Hence, the structural properties of quantum
channels can be approximated well by a much smaller
set, called the coreset. Coreset methods were studied
by Har-Peled and Kushal [23] who have found that the
size of the coreset is independent of the size of the input
set, however it still has an exponential dependence on
the dimension parameter d. Later, Chen has shown [20]
that the size of the coreset can be a linear function
of d, so it can be applied to higher dimensions with
great efficiency. After Chen’s work, Feldman [25] in-
troduced the definition of weak coresets, which differs
a little from the coreset method as defined originally.
The properties of Voronoi diagrams [13] in quantum
space have been studied by Kato et al. [26] and Nielsen
et al. [24], [29], [30] however the problem of clustering
was not analyzed in their work. The coreset method
for different distances has been studied in the litera-
ture. Euclidean methods were studied in [21], [22] and
a non-Euclidean metric by Banerjee [27], Nielsen [24]
and Ackermann [19].

In our paper, we will define a coreset approach be-
tween quantum states in quantum space to analyze the
channel output states in terms of a smaller set generated
by the coreset method. The input and the output of the
coreset algorithm are illustrated in Fig. 6.

The output of the joint measurement of two channels
is the input of the proposed geometrical approach. The
geometrical method computes the joint capacity, based
on the clustering of channel output quantum states and
a convex hull calculation. The output of the constructed
method is the radius of the smallest quantum informa-
tional superball.
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Fig. 6 The superactivation of the zero-error capacity is an-
alyzed in terms of the radius of the quantum superball,
which is computed by our geometrical approach.

3 Communication over quantum chan-
nels

Before we start to discuss the properties of zero-error
capacity of quantum channels, in this section we give a
brief overview on the general properties of communi-
cation over such channels.

3.1 The general classical communication model
In the classical communication model, the sender

and receiver can be modeled by random variables X =
{pi = P(xi)}, i = 1, . . .N and Y = {pi = P(yi)},
i = 1, . . .N. In classical systems, the Shannon entropy
of the discrete random variable X is denoted by H(X)

and can be defined as H(X) = −
N∑

i=1

pi log(pi).

For conditional random variables, the probabil-
ity of random variable X given Y is denoted by
p(X|Y). The noise in the channel increases the un-
certainty in X, given Bob’s output Y. The in-
formational theoretic noise of the channel increases
the conditional Shannon entropy H(X|Y), defined as

H(X|Y) =
NX∑
i=1

NY∑
j=1

p(xi, y j) log p(xi|y j), thus the radius

of the smallest enclosing quantum informational ball
will decrease for fixed H(X) [11].

The general classical informational theoretic model
for a noisy quantum channel is illustrated in Fig. 7. Our
geometrical analysis is focused on the mixed quantum
state, received by Bob. Alice’s pure state is denoted
by ρA, the noise is modeled by an affine map N and
Bob’s mixed input state is denoted byN(ρA) = σB. For
random variables X and Y, H(X, Y) = H(X) + H(Y |X),
where H(X), H(X, Y) and H(Y |X) are defined by prob-
ability distributions. We measure in a geometrical rep-
resentation the information which can be transmitted in
the presence of noise on the quantum channel.

In the classical communication model, we seek to
maximize H(X) and minimize H(X|Y) in order to max-
imize the radius of the smallest enclosing ball of Bob,
since the radius can be computed as

r∗ = max{all possible xi}H(X) − H(X|Y). (1)

Fig. 7 The classical communication model.

To compute the radius r∗ of the smallest informa-
tional ball of quantum states and the entropies between
mixed quantum states, instead of the classical Shannon
entropy, we use the Holevo-Schumacher-Westmoreland
(HSW) channel capacity [16], [17].

Geometrically, the presence of noise on the quantum
channel causes a detectable mapping to change from a
noiseless one-to-one relationship to a stochastic map.
In the classical model of a quantum channel, the input
is in a pure state denoted by {pi, ρi} and a measurement
is made at the end of the quantum channel, which ex-
tracts the classical information from the sent quantum
state. The image of the quantum channel’s linear trans-
form N is an ellipsoid. To preserve the condition for a
density matrix ρ, the noise on the quantum channel N
must be trace-preserving, i.e. TrN(ρ) = Tr (ρ) and it
must be completely positive, i.e. for any identity map I,
the map N ⊗ I maps a semi-positive Hermitian matrix
to a semi-positive Hermitian matrix. A quantum chan-
nel N can be described by an affine map, which maps
quantum states to other quantum states. Geometrically,
the effect of the transformation N maps the Bloch ball
to a deformed ball contained inside the Bloch ball.

3.2 Holevo-Schumacher-Westmoreland channel ca-
pacity

In our work, we use the Holevo-Schumacher-
Westmoreland (HSW) channel capacity [16], [17] to an-
alyze the superactivation property of quantum channels.
According to the HSW theorem, the single use capac-
ity C(1)(N) of a quantum channel N , can be defined as
follows [16], [17]:

C(1)(N) = max{all possible pi and ρi}Xoutput

= max
p1,...,pn,ρ1,...,ρn

S

⎛⎜⎜⎜⎜⎜⎝N
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

pi(ρi)

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠ (2)

+

n∑
i=1

piS(N(ρi)),
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where Xoutput is the Holevo quantity of the output,
S(ρ) = −Tr(ρ log ρ) is the von Neumann entropy, and
N(ρi) represents the output density matrix obtained
from the quantum channel input density matrix ρi [16].
Using the result of the HSW theorem [16], we will re-
fer to the single use channel capacity as the radius of
the smallest enclosing ball as follows:

r∗ = C(1)(N) = max{all possible pi and ρi}Xoutput . (3)

In this paper, we use the geometrical interpretation of
HSW channel capacity, using quantum relative entropy
as a distance measure function. The HSW channel ca-
pacity can be defined by using the quantum relative en-
tropy function as a distance measure. We will show
that the superactivation of zero-error capacity quantum
channels can be analyzed in a geometrical represen-
tation, which uses the quantum relative entropy-based
HSW channel capacity.

3.2.1 Geometrical interpretation of HSW channel ca-
pacity

We use the results of Schumacher and Westmore-
land to describe geometrically the channel capacity of
quantum channels in terms of quantum relative entropy.
The authors of [16] have shown that the capacity of a
quantum channel can be measured geometrically, using
quantum relative entropy function as a distance mea-
sure. Schumacher and Westmoreland have shown that
the channel capacity of every optimal output state ρk

can be expressed as [16]

C(1)(N) = D(ρk‖σ), (4)

where σ =
∑

pkρk is the optimal average output state
and the relative entropy function of two density matri-
ces can be defined as

D(ρk‖σ) = Tr[ρk log(ρk) − ρk log(σ)]. (5)

In this definition, Tr is the trace operator. In conclu-
sion, for non-optimal output states δ and optimal av-
erage output state σ =

∑
pkρk, we have C(1)(N) =

D(δ‖σ) ≤ D(ρk‖σ). Moreover, in [16], Schumacher
and Westmoreland have also shown that there exists at
least one optimal output state {pk, ρk} which achieves
the optimal capacity C(1)(N) = D(ρk‖σ). The geomet-
rical interpretation of quantum channel capacity was
introduced in [16], using the quantum relative entropy
function as a distance measure as follows:

C(1)(N) = r∗ = min{σ}max{ρ}D(N(ρ)‖N(σ)). (6)

If we define the convex hull of possible channel out-
put states for channel N as A and the convex hull of
the set of states as B, then forA ∈ ρ and B ∈ σ:

C(1)(N) = r∗ = min{σ}max{ρ}D(ρ‖σ). (7)

Schumacher and Westmoreland have also proven in
[16], that there exists an optimum output state {pk, ρk}
for every σ that satisfies the maximization, such that
σ =

∑
pkρk. They have also shown that the average

output state σ =
∑

pkρk which maximizes the capac-

ity for any optimal set of output states ρ =
∑
{pk, ρk}

is unique [10], [16]. We analyze the superactivation of
the quantum channel by clustering and convex hull cal-
culations based on quantum relative entropy. If we
denote the optimal output states by {N(ψk) = pk, ρk}
which achieve the capacity C(1)(N) of channel N and
σ =

∑
k

pkρk, then the single use quantum channel ca-

pacity can be derived in terms of the quantum relative
entropy in the following way [16], [17]:∑

k

pkD(ρk‖σ)

=
∑

k

(pkTr[ρk log(ρk)] − pkTr[ρk log(σ)])

=
∑

k

(pkTr[ρk log(ρk)]) − Tr

⎡⎢⎢⎢⎢⎢⎣
∑

k

(pkρk log(σ))

⎤⎥⎥⎥⎥⎥⎦
=

∑
k

(pkTr[ρk log(ρk)]) − Tr[σ log(σ)]

= S(σ) −
∑

k

pkS(ρk) = X. (8)

It can therefore be concluded that the Holevo quan-
tityX can be expressed in terms of the quantum relative
entropy and the C(1)(N) single use HSW channel ca-
pacity as [16]

C(1)(N) = max{all pk ,ψk}
∑

k

pkD(N(ψk)‖N(ψ)),

(9)

where ψk denotes the input quantum states of channel
N and ψ =

∑
k

pkψk. The geometric interpretation of

the HSW channel capacity has been studied by Cortese
[10], who also extended these results to the general qu-
dit channels.

3.3 Asymptotic HSW channel capacity and quantum
superball representation

Using the resulting quantum relative entropy func-
tion [16] and the HSW-theorem, the C(N) asymptotic
classical capacity of the quantum channel can be ex-
pressed with the help of the radii of the smallest quan-
tum informational balls as follows:

r∗super(N) = C(N) = lim
n→∞

1
n

C(1)(N⊗n)
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Fig. 8 The superactivation of the zero-error capacity is analyzed by the quantum informational superball.

= lim
n→∞

1
n

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

r∗i

⎞⎟⎟⎟⎟⎟⎠
= lim

n→∞
1
n

max
p1,...,pn,ρ1,...,ρn

(XAB)⊗n

= lim
n→∞

1
n

∑
n

(minσ1...n maxρ1...n

× D(ρAB
k ‖σAB)), (10)

where r∗i is the single use capacity of the i-th use of
quantum channel N , ρAB

k is the optimal output chan-
nel state, and σAB is the average state. We analyze the
superactivation property of the quantum channel, using
the mini-max criterion for states ρAB

k and σAB. The ra-
dius r∗super of the superball is equal to the asymptotic
classical capacity.

In the superactivation problem, we have to use dif-
ferent quantum channel models [1]. For two different
quantum channels N⊗n

1 and N⊗n
2 , the asymptotic HSW

channel capacity C(N1 ⊗N2) is equal to the sum of the
radii r∗super(N1) and r∗super(N2) of the quantum informa-
tional superballs, whose radii form a new quantum su-
perball with radius

r∗super(N1 ⊗ N2) = C(N1 ⊗ N2)

= lim
n→∞

1
n

C(1)((N1 ⊗ N2)⊗n)

= r∗super(N1) + r∗super(N2). (11)

In Fig. 8, we illustrate the superball representation
for the analysis of two quantum channels, however it
naturally can be extended to n different quantum chan-
nel models.

The quantum informational ball has a distorted ge-
ometrical structure, and the elements of classical Eu-
clidean geometry, such as the classical Euclidean dis-
tance functions, cannot be used. It makes the computa-
tion of the quantum ball a much harder computational
task, but on the other hand, efficient geometrical func-
tions can be constructed for this purpose.

In Fig. 9, we summarize our geometrical iteration
process. The inputs of the rounded box are the chan-
nel output states of two quantum channels N⊗n

1 and
N⊗n

2 . The joint channel construction is denoted by
(N1+N2)⊗n, the output of the rounded box is the radius
r∗super(N1⊗N2) of the quantum informational superball.

The output of the algorithm is the quantum informa-
tional superball, which ball is computed by efficient in-
formational geometrical approaches. The quantum su-
perball can be obtained after the joint measurement of
the quantum channels. The superactivation property is
analyzed by the length of the radius of the quantum su-
perball.

The recursive iterations are made on the following
parameters: the maps of the quantum channels, the
probabilities of the channel combinations and the type
of the input states. According to the length of the su-
perball radius, the iteration stops if the conditions for
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Fig. 9 The recursive algorithm used to find a combination
for which superactivation holds.

superactivation hold.
The problem of clustering in quantum space, using

the quantum informational distance as a distance func-
tion, is a completely new area in quantum information
theory.

4 Geometrical interpretation of quan-
tum informational distance

The quantum entropy S(ρ) is equal to the Shannon
entropy for the eigenvalue distribution S(ρ) = S(λ) =

−
d∑

i=1

λi log λi, where d is the level of the quantum sys-

tem. The relative entropy in classical systems is a mea-
sure that quantifies how close a probability distribution
p is to a model or candidate probability distribution
q [24]. For p and q probability distributions, the relative

entropy is given by D(p‖q) =
∑

i

pi log2
pi

qi
, while the

relative entropy between quantum states is measured by

D(ρ‖σ) = Tr[ρ(log ρ − logσ)]. (12)

The quantum informational distance has some
distance-like properties, however it is not commutative
[24], thus D(ρ‖σ) � D(σ‖ρ), and D(ρ‖σ) ≥ 0 iff ρ � σ,
and D(ρ‖σ) = 0 iff ρ = σ. As it has been stated by
Cortese [10], the quantum relative entropy for general
quantum state ρ = (x, y, z) and mixed state σ = (x̃, ỹ, z̃),
with radii rρ =

√
x2 + y2 + z2 and rσ =

√
x2 + y2 + z2

is given by

D(ρ‖σ) =
1
2

log
1
4

(1 − r2
ρ)

+
1
2

rρ log
(1 + rρ)

(1 − rρ)
− 1

2
log

1
4

(1 − r2
σ)

− 1
2rσ

log
(1 + rσ)
(1 − rσ)

〈ρ, σ〉, (13)

where 〈ρ, σ〉 = (xx̃ + yỹ + zz̃). For a maximally mixed
state σ = (x̃, ỹ, z̃) = (0, 0, 0) and rσ = 0, the quantum

Fig. 10 Depiction of generator function as a negative von
Neumann entropy.

relative entropy can be expressed as [10]:

D(ρ‖σ) =
1
2

log
1
4

(1 − r2
ρ)

+
1
2

rρ log
(1 + rρ)

(1 − rρ)
− 1

2
log

1
4
. (14)

The relative entropy of quantum states can be de-
scribed by a strictly convex and differentiable generator
function F:

F(ρ) = −S(ρ) = Tr(ρ log ρ), (15)

where −S is the negative entropy of quantum states.
The quantum relative entropy D(ρ‖σ) for density ma-
trices ρ and σ is given by generator function F in the
following way [24]:

D(ρ‖σ) = F(ρ) − F(σ) − 〈ρ − σ,∇F(σ)〉, (16)

where 〈ρ, σ〉 = Tr(ρσ∗) is the inner product of quantum
states and ∇F(·) is the gradient [24], [29], [30].

In Fig. 10, we have depicted the quantum informa-
tional distance, D(ρ‖σ), as the vertical distance be-
tween the generator function F and H(σ), the hy-
perplane tangent to F at σ. The point of intersec-
tion of quantum state ρ on H(σ) is denoted by Hσ(ρ)
[24], [28], [29].

As it has been shown by Nielsen et al. [24], [28], for
the quantum informational distance function, the gen-
erator function is the negative von Neumann entropy
function −S,

F(ρ) = −S(ρ) = Tr(ρ log ρ), (17)

where F : S (Cd)→ R. The quantum informational dis-
tance function DF(ρ‖σ) with generator function F(ρ) =
−S(ρ) is illustrated in Fig. 11 [24].
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Fig. 11 Negative von Neumann generator function.

Fig. 12 Circumcenter for Euclidean distance and quantum
relative entropy.

Fig. 13 The maximal distance states of the smallest balls
differ for the quantum informational distance and Euclidean
distance.

The generator function of the quantum informational
distance is the negative von Neumann entropy function.
The quantum informational distance function is a lin-
ear operator, thus for convex functions ∀F1 ∈ C and
∀F2 ∈ C, DF1+λF2 (ρ‖σ) = DF1 (ρ‖σ) + λDF2 (ρ‖σ), for
any λ ≥ 0. The density matrices of quantum states can
be represented by 3D points in the Bloch ball. The
geometrical structure of quantum informational balls
differs from the geometrical structure of ordinary Eu-
clidean balls.

In Fig. 12, we have illustrated the circumcenter c∗ of
S for the Euclidean distance and for quantum relative
entropy [24], [29], [30].

In Fig. 13, we compare the smallest quantum infor-
mational ball and the ordinary Euclidean ball.

We conclude that the quantum states ρ1, ρ2 and ρ3

which determine the smallest enclosing ball in a Eu-
clidean geometry differ from the states of the quantum
informational ball. This fact also reveals the difference
between the mathematical and geometrical background
of the two approaches [28].

4.1 Computation of quantum delaunay triangulation on
bloch sphere

We would like to compute the information-
theoretical radius r∗ of the smallest enclosing ball of
the channel output quantum states which describes the
maximal capacity of the channel, thus we must first
seek the center c∗ of the set of quantum states S. The
set S of quantum states is denoted by S = {ρi}ni=1. The
distance d(·, ·) between any two quantum states of S is
measured by the quantum relative entropy, thus a mini-
max mathematical optimization is applied to the quan-
tum relative entropy-based distances to find the center
c of the set S. We denote the quantum relative en-
tropy from c to the furthest point of S by d(c,S) =
maxi d(c, ρi). Using a minimax optimization, we can
minimize the maximal quantum relative entropy from c
to the furthest point of S by c∗ = arg minc d(c,S).

In classical computational geometry, Voronoi dia-
grams and Delaunay triangulations play an important
role [13], [16]. A Voronoi diagram is a division of space
[28]–[30]. The dual diagram for a Voronoi diagram is
called a Delaunay tessellation [13], [14]. In the graph
of a Delaunay triangulation, any circle is empty if it
contains no vertex of S in its interior. If two quantum
states of set S are denoted by ρ and σ, then edge e is
in Del(S) if and only if there exists an empty circle that
passes through ρ and σ. An edge satisfying the empty
circle property is said to be Delaunay. The Delaunay
triangulation is guaranteed to be a triangulation only if
the vertices of S are in a general position, thus there are
no four quantum states of S lying on the same circle.
The circumcircle of a triangle is the unique circle that
passes through all three of its vertices, and the trian-
gle is Delaunay if and only if its circumcircle is empty.
The quantum Delaunay triangulation of a set of quan-
tum states S, denoted by Del(S), is the geometric dual
of quantum Voronoi diagrams vo(S).

In Fig. 14, we compare a classical Euclidean Delau-
nay and a quantum informational Delaunay triangula-
tion for a set of quantum states.

The quantum Voronoi diagrams can be first-type or
right-sided diagrams. Similarly, we can derive two
triangulations from quantum Voronoi diagrams [24],
[29], [30]. The first-type quantum informational ball
circumscribing any simplex of quantum Delaunay tri-
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Fig. 14 Comparison of classical Euclidean (a) and quantum Delaunay triangulation (b).

Fig. 15 Comparison of first-type and second-type quan-
tum Delaunay triangulations on the Bloch-ball.

angulation Del(S) is empty. If we choose a subset Υ of
at most d + 1 states in S = {ρ1, . . . , ρn}, then the con-
vex hull of the associated quantum states ρi, i ∈ Υ, is
a simplex of the quantum triangulation of S, iff there
exists an empty quantum informational ball B passing
through the ρi, i ∈ Υ. The first-type and second-type
quantum diagrams for quantum states which have non-
equal radii, are different [24], [29], [30].

In Fig. 15, we compare the first-type and second-type
quantum Delaunay diagrams for mixed quantum states
on the Bloch sphere.

The approximated value of the radius of the super-
ball is obtained by the radii of the smallest information
balls.

4.2 Laguerre diagram for quantum states
We use the Laguerre Delaunay diagram [13], [14],

[24] to compute the radius of the smallest enclosing
ball. In general, the Laguerre distance for generating
points xi with weight r2

i , in a Euclidean space is defined

by

dL(ρ, xi) = ‖ρ − xi‖2 − r2
i . (18)

The Delaunay diagram for the Laguerre distance is
called the Laguerre-Delaunay diagram. As it has been
shown by Nielsen et al. [24], for the Laguerre bisector
of two three-dimensional Euclidean balls B(ρ, rP) and
B(σ, rQ) centered at quantum states ρ and σ, we can
write the equation

2〈x, σ − ρ〉 + 〈ρ, ρ〉 − 〈σ, σ〉 + r2
Q − r2

P = 0. (19)

In a Euclidean space, the Laguerre distance dL(ρ, xi)
with weight r2

i can be interpreted as the square of the
length of the line segment starting at ρ and tangent to

the circle centered at xi with radius
√

r2
i . Thus, the

circle centered at xi with radius
√

r2
i is the circle asso-

ciated with xi [13], [14], [24].
We show a new method for deriving the quantum rel-

ative entropy-based Delaunay tessellation on the Bloch-
ball to analyze the superactivation property of the quan-
tum channel. In our algorithm we present an effective
solution to seek the center c of the set of smallest en-
closing quantum information ball, using Laguerre dia-
grams [13], [14], [24].

Our geometrical analysis has two main steps:
1. We construct Delaunay triangulation from Laguerre

diagrams on the Bloch-ball.
2. We seek the center of the smallest enclosing ball.

4.3 Quantum delaunay triangulation from laguerre di-
agrams

In a Euclidean space, the Laguerre distance of a point
x to a Euclidean ball b = b(ρ, r) is defined as dL(ρ, x) =
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Fig. 16 Regular triangulation on the Bloch-ball.

‖ρ − x‖2 − r2, and for n balls bi = b (ρi, ri), where
i = 1, . . . , n, the Laguerre diagram [13], [14], [24] of
bi is defined as the minimization diagram of the cor-
responding n distance function

di
L (x) = ‖ρ − x‖2 − r2. (20)

In Fig. 16, we show the ordinary triangulation of
quantum relative entropy-based diagram. As it can be
concluded from this result, the computation of quantum
Delaunay diagram can be taken back to the classical
Euclidean geometry [24], [29], [30].

We use the result of Aurenhammer to construct the
quantum relative entropy-based Delaunay tessellation,
using the Laguerre diagram of the n Euclidean spheres
of equations [14]

〈x − ρ′i , x − ρ′i〉 = 〈ρ′i , ρ′i〉 + 2(F(ρ′i ) − 〈ρi, ρ
′
i〉).

(21)

The most important result of this equivalence is that
we can efficiently construct a quantum relative entropy-
based Delaunay triangulation on the Bloch sphere, us-
ing fast methods for constructing classical Euclidean
Laguerre diagrams [14].

4.4 Center of the quantum informational ball
We use an approximation algorithm from classical

computational geometry to determine the smallest en-
closing ball of balls using core-sets. The core-sets have
an important role in our calculation and approximate
method. We apply the approximation algorithm pre-
sented by Badoui et al. [15], however in our algorithm
the distances between quantum states are measured by
quantum relative entropy. The E-core set C is a subset
of the set C ⊆ S, such that for the circumcenter c of the
minimax ball [15], [22], [23], [25]

d(c,S) ≤ (1 + E) r, (22)

Fig. 17 The smallest enclosing ball of a set of balls in the
quantum space.

where r is the radius of the smallest enclosing quan-
tum information ball of the set of quantum states S
[15], [22]. The approximating algorithm, for a set of
quantum states S = {s1, . . . , sn} and circumcenter c,
first finds the farthest point sm of ball set B, and moves
c towards sm in O(dn) time in every iteration step.

The algorithm seeks the farthest point in the ball set
B = {b1 = Ball(c1, r1), . . . , bn = Ball(cn, rn)} by maxi-
mizing the quantum informational distance for a current
circumcenter position c as maxi∈{1,...,n} DF(c, bi). Using
equation maxx∈bi DF (c, xi) = DF(c, S i) + ri, we get

maxi∈{1,...,n}DF (c, bi)=maxi∈{1,...,n})(DF (c, S i)+ri).

(23)

In Fig. 17, we illustrate the smallest enclosing ball of
balls in the quantum space.

We denote the set of n d-dimensional balls by B =
{b1, . . . , bn}, where bi = Ball(S i, ri), S i is the center of
ball bi and ri is the radius of the i-th ball. The smallest
enclosing ball of set B = {b1, . . . , bn} is the unique ball
b∗ = Ball(c∗, r∗) with minimum radius r∗ and center c∗

[23], [25]. The algorithm does

⌊
1
E2

⌋
iterations to ensure

an (1 + E) approximation, thus the overall cost of the

algorithm is O
(

dn
E2

)
[15]. The smallest enclosing ball

of ball set B can be written as

mincFB(c), (24)

where FB(X) = d(X, B) = maxi∈{1,...,n} d(X, Bi) and the
distance function d(·, ·) measures the relative entropy
between quantum states [15], [22], [43]. The minimum
ball of the set of balls is unique, thus the circumcenter
c∗ of the set of quantum states is c∗ = arg minc FB(c).

The main steps of our algorithm can be summarized
[29], [30]:
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Algorithm 1.

1. Select a random center c1 from the set of quantum states S
c1 = S 1

for
(
i = 1, 2, . . . ,

⌈
1
E2

⌉)

do
2. Find the farthest point s of S wrt. quantum relative entropy

S ← arg maxs′∈S DF (ci, s′)
3. Update the circumcircle:

ci+1 ← ∇−1
F

(
i

i + 1
∇F(ci) +

1
i + 1

∇F (S )

)
.

4. Return ci+1

At the end of our algorithm, the radius r∗ of the small-
est enclosing ball with respect to the quantum informa-
tional distance is equal to the single use classical capac-
ity of the quantum channel.

5 Fitting the smallest quantum infor-
mational ball

Geometrically, the smallest quantum informational
ball can be computed from the intersection of contours
of the quantum relative entropy ball with the ellipsoid
of the channel, whose ellipsoid is generated by the map
of the channel. The maximum length, radius, rρ, can
be determined by an iterative algorithm using the quan-
tum relative entropy as a distance measure. The steps
of the approximation of the quantum informational su-
perball are based on the fitting mechanism of a single
informational, which will be presented later in this sec-
tion. In the case of the representation of our superball,
the average state and the optimal output state are in-
terpreted from the meaning of joint channel capacity,
which states are available after the joint measurement.
In the case of the single Bloch ball representation there
is average and optimal output state which comes from
a single channel measurement [10].

The computation of quantum channel capacity us-
ing geometrical approaches also has been presented
by Hayashi et al. [41], [42]. Hayashi’s work is a very
useful and practical tool to approach the capacity of a
quantum channel based on the quantum relative entropy
function, however in our work we will construct ad-
vanced algorithmic approaches to analyze the classical
capacity of quantum channels.

In Fig. 18 (a), the smallest quantum informational
ball with radius r∗ = Dmax(rρ‖rσ) intersects the chan-
nel ellipsoid at magnitude mρ of the Bloch vector rρ.
The Euclidean distance between the origin and center
c∗ is denoted by mσ. Similarly, the Euclidean distance
between the origin and state ρ is denoted by mρ. In
our geometrical iteration algorithm, we would like to

Fig. 18 Intersection of radius of smallest enclosing quan-
tum informational ball and channel ellipsoid (a). The opti-
mal ball is shown in light-grey (b).

determine the location of vector rσ inside the channel
ellipsoid such that, the largest possible contour value
Dmax(rρ‖rσ) touches the channel ellipsoid surface and
the remainder of the Dmax contour surface lies entirely
outside the channel ellipsoid. The point on the channel
ellipsoid surface is defined as the set of channel output
ρ. The vector rσ is defined in the interior of the ellip-
soid, as the convex hull of the channel ellipsoid. To de-
termine the optimal length of the radius, the algorithm
moves point σ.

As we move vector rσ from the optimum position, a
larger contour corresponding to the larger value of the
quantum relative entropy D will intersect the channel
ellipsoid surface, thereby maxrρ D(rρ‖rσ) will increase.
We can conclude that vector rσ should be adjusted to
minimize maxrρ D(rρ‖rσ), as illustrated in Fig. 18 (b).

The vector rσ should be adjusted to minimize the
value of maxrρ D(rρ‖rσ). To find the optimal value of
vector rσ in our geometrical analysis, we choose a start
point for vector rσ in the interior of the ellipsoid.

In Fig. 19 (a), we show the initial start point inside
the channel ellipsoid chosen by the algorithm. The vec-
tor of stateσ is denoted by rσ. In the next step, the algo-
rithm determines the set of points to the vector r′ρ on the
ellipsoid surface most distant from rσ, using the quan-
tum relative entropy as distance measure. In Fig. 19 (b),
the new state is notated by ρ′.

The maximum distance between the states can be ex-
pressed as maxrρ D(r′ρ‖rσ). We choose a random Bloch
sphere vector from the maximal set of points accord-
ing to vector r′ρ. The selected point is denoted by r′′ρ .
The algorithm makes a step from rσ towards the sur-
face point vector r′′ρ in the Bloch sphere space. In this
step, the algorithm updates vector rσ to

r∗σ = (1 − γ)rσ + γr′′ρ , (25)

where γ denotes the size of the step. In Fig. 20 (a), the
updated state and the vector of the state are denoted by
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Fig. 19 The algorithm determines the points on the ellip-
soid surface most distant from the point, using the quantum
relative entropy as distance measure.

Fig. 20 The algorithm makes a step towards the found
surface point vector and updates the vector.

ρ′′ and r′′ρ . The center of the quantum informational
ball is denoted by r∗σ.

In Fig. 20 (b), we illustrate the quantum informa-
tional distance between the final center point and
the maximal distance state ρ, using the notation
maxrρ D(rρ‖rσ). Using the updated vector r∗σ, the algo-
rithm continues to loop until maxr∗ρ D(r′ρ‖r∗σ) no longer
changes. We conclude that the iteration converges
to the optimal rσ, because the algorithm minimizes
maxrρ D(rρ‖rσ).

At the end of the iteration process, the radius of the
smallest quantum informational ball can be expressed
as

min maxrρD(rρ‖rσ). (26)

In our geometrical method, we compute r∗, the ra-
dius of the smallest enclosing quantum informational
superball, to determine the information-theoretic super-
activation of the quantum channel capacities.

6 Efficient coreset construction of
channel output states

The coreset technique has deep relevance to classical
computational geometry. A coreset of a set of output

quantum states has the same behavior as the larger in-
put set, so clustering and other approximations can be
made with smaller coresets. The coreset can be viewed
as a smaller input set of channel output states, hence it
can be used as the input to an approximation algorithm.
The weighted sum of errors of the smaller coreset is
a (1 ± ε) approximation of the larger input set. The
bound on this error can be decreased only if the center
points that form a finite set are used in the approxima-
tion. These coresets are called weak coresets [22], [25]
and this method can be applied in quantum space be-
tween quantum states.

Using weak coresets, the run time of (1 + ε) core-
set algorithms [25] with respect to quantum informa-
tional distance can be improved. To construct the core-
set method analyzing the superactivation of zero-error
capacity quantum channels, we have to introduce the
definition of similar quantum informational distances
and weak coresets of quantum states.

6.1 Similar quantum informational distance
The quantum informational distance is asymmetric

and contains singularities, since there exist density ma-
trices ρ and σ for which D(ρ, σ) = ∞. The similar
quantum informational divergence function does not
contain these singularities and these distances are ap-
proximately symmetric. To use the similar quantum
informational divergence function, first we define it as
follows. The quantum informational distance function
D(ρ‖σ) between density matrices ρ and σ is μ-similar
for a positive real constant μ, if there exists a positive
definite matrix A such that

μDA(ρ‖σ) ≤ D(ρ‖σ) ≤ DA(ρ‖σ). (27)

For quantum informational distances, if the domain

is given as χ = [λ, γ] ⊆ Rd
+, then μ =

λ

γ
and

1
2λ

I.

If we have 0 < λ < γ, then the quantum infor-
mational distance function can be calculated by the
D(ρ‖σ) quantum relative entropy function on the do-
main χ = [λ, γ] ⊆ Rd [25]. As can be proven, the

quantum informational distance is μ-similar if μ =
λ

γ

and A =
1

2λ
I. In these cases, the quantum informa-

tional distance function is μ-similar, because it is re-
stricted to a sub-domain, which avoids the singulari-
ties [19]. It can be easily proven that the quantum in-
formational distance function is strictly convex and all
second-order partial derivates exist and are continuous

on the domain χ = [λ, γ] ⊆ Rd with parameters μ =
λ

γ

and A =
1

2λ
I [19]. The applied coreset algorithm was
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originally presented by Chen et al. [20], [21]. We show
that this method can be used to generate a coreset based
on a similar quantum informational distance function.
To obtain an enhanced version of previously known
coreset approximation algorithms, we must define weak
coresets.

6.2 Weak coreset of quantum states
The weak coresets include all the relevant informa-

tion required to analyze the original extremely large in-
put set. The coreset approach has significantly lower
computational complexity, hence it can be applied very
efficiently [19], [20]. In our method, weak coresets are
applied to μ-similar quantum informational distances
since, in these subsets, the distances between quantum
states are symmetric, hence singularities can be avoided
and fast Euclidean methods can be applied. To ana-
lyze the properties of quantum channels, we use the
same method as presented in [19]. We use this subset to
approximate the original input set, with approximately
(1 ± ε) error, hence we can put forward the following
statement.

The superactive quantum channels can be discovered
with approximation error (1 ± ε), by using the smaller
μ-similar subset of input quantum states.

Using the results of Chen’s work [20], we show that
by using this algorithm, the superactivation capabil-
ity of quantum channels can be approximated with er-
ror (1 ± ε), using the smaller μ-similar subset of input
quantum states. Applying Chen’s modified algorithm,
the (1 ± ε)-approximation can be obtained in run time
O (dkn), where k is the number of medians of chan-
nel output quantum states. The goal of the algorithm
is to find a set of size k such that the sum of errors of
quantum informational distances is minimized, hence

error(ρi, σ) =
n∑

i=1

min Dσ(ρi‖σ). The algorithm solves

the k-median problem with respect to the quantum in-
formational distance Dσ in quantum space. The output
of the algorithm is a set of k quantum states, for which
the function error(ρi, σ) is minimized. We generalize
the k-median problem for quantum informational dis-
tances. Let us assume that we have two quantum states
ρ and σ in domain S. We would like to construct a
subset of SOUT of k quantum states, for which

D(ρ,SOUT ) = minσ∈S∗D(ρ‖σ). (28)

The k-median problem for quantum states can be
stated as follows. We would like to use only a finite set
SIN of quantum states from the original larger space.
For a set SIN , we would like to construct a set SOUT

of k-quantum states, for which error(SIN ,SOUT ) =

∑
ρ∈SIN

Dσ(ρ‖SOUT ) is minimized, hence

error(SIN ,S∗) =
∑
ρ∈SIN

min Dσ(ρ‖S∗). (29)

The error of the optimal solution for input states SIN

is denoted by optk(SIN ), and the elements of the output
set SOUT are the k median-quantum states of set SIN .
To construct a more efficient algorithm, we use only the
μ-similar quantum informational distances, hence the
set of input quantum states SIN is restricted to quantum
states for which the singularities can be avoided [19].

The superactivation properties of quantum channels
can be discovered by using μ-similar quantum informa-
tional distances and the coreset construction method.

For any set SIN of size n quantum states and for
any finite W ⊆ S, there exists a weak coreset of

size O
(

1
ε2

k log(n) log(k|W|k log n)

)
. This W-weak

coreset of quantum states can be constructed in time

O
(

1
ε2

k log(n) log(k|W|k log n) + dkn

)
, where k is the

number of quantum states in set SOUT , n is the num-
ber of input states and d is the dimension of the points.
The previous result can be integrated into our analysis
as follows.

Using μ-similar quantum informational distances
and the W-weak coreset of quantum states, the su-
peractivation of quantum channels can be analyzed
by an (1 + ε)-approximation algorithm in a run time
O

(
d22k/ε logk+2 n + dkn

)
. With the result of Banerjee

et al. [27], the optimal 1-median of any given input set
S in quantum space can be uniquely defined by the cen-

troid c =
1
|S|

∑
ρ∈S

ρ.

Using the fact that an optimal solution of the k-
median clustering problem can be approached by (k−1)
linearly separable subsets, it can be shown that for any
set SIN , at most ndk states have to considered as one of
the optimal k-median quantum states of SIN [20], [21].
We use a smaller set S from SIN , which is a small
weighted set that has the same clustering behavior as
the larger input set SIN . The coreset method used in
our approach can be defined by the error of the approx-
imation in terms of the quantum informational distance
between quantum states as follows:

errorw(S,SOUT ) =
∑
ρ∈S

w(ρ)D(ρ‖SOUT ), (30)

and this error is a (1 ± ε)-approximation of
error(SIN ,SOUT ) for any set of quantum states SOUT

of size |SOUT | = k. For the weak coreset construction,
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let us assume that we have a set of quantum states SIN

and a setW. If the weight function is defined by∑
S

w(ρ) = |SIN |, (31)

then the weighted set S is aW-weak coreset of SIN , iff
for all SOUT ∈ W of size |SOUT | = k, we have

|error(SIN ,SOUT ) − errorw(S,SOUT )|
≤ (ε)error(SIN ,SOUT ). (32)

This W-weak coreset is called the (k, ε) weak-coreset
of SIN . To get this construction with this error bound,
we use the results of Chen [20].

6.2.1 Coreset method for quantum informational dis-
tances

To apply the modified coreset method, we have
to construct a [α, β] bicriteria approximation algo-
rithm to get the set of median quantum states M =

{σ1, σ2, . . . σk} of a k-median clustering of SIN , for
which error(SIN , M) ≤ αoptk(SIN ) and |M| = k ≤ βk.
Using the results of [19], [25] the bicriteria algorithm
can be summarized as follows:

Bicriteria algorithm to channel analysis

1. Choose an initial quantum state σ1 uniformly at random
from SIN

2. Let M be the set of chosen quantum states from SIN . State

ρ ∈ SIN is chosen with probability
D(ρ‖M)

error(SIN , M)
as next

state of M.
3. Repeat step 2 until M contains k quantum states.

At the end of the bicriteria algorithm, we have a set of
median quantum states M = {σ1, σ2, . . . σk}, for which
error(SIN , M) ≤ αoptk(SIN ) and |M| = k ≤ βk. After
application of the bicriteria algorithm, we use the mod-
ified coreset construction method presented in [20] to
the quantum states as follows:

Coreset algorithm to quantum channel analysis

1. PartitionSIN intoS1,S2 . . . ,Sk by assuming each quantum
state ρ ∈ SIN to their closest σi ∈ M.

2. Let ρ ∈ SIN iff σi = arg minσ∈M D(ρ‖σ).

3. Let R =
1
αn

error(SIN , M).

4. Define quantum informational ball B(σi) with radius r∗

and center σi as follows:
B(σi) = D(x‖σi) ≤ r.

5. Define partition of {Si j}i, j of SIN by Si j = Si ∩ B(σi) for
i = 1, 2, . . . , k.

6. Let Si j = Si ∩ (B2 j (σi)\B2 j−1 (σi)) for i = 1, 2, . . . , k and
j = i = 1, 2, . . . γ, where γ = �log(αn)�.

7. For i, j let Si j be a uniform set from SIN of size |Si j| = m.

8. Let w(ρ) =
1
m
|Si j| be the weight associated with ρ ∈ Si j.

9. Define weak coreset S of input quantum states SIN as fol-
lows:

S = ⋃
i, j
Si j of size |S| = mkγ = mβk�log(αn)�.

As shown by Ackermann et al. [19], if m =

Ω

(
α2

ε2
log

(
β

δ
k|W|k log(αn)

))
, then the output set S =⋃

i, j
Si j of Chen’s algorithm [20] is a W-weak core-

set of SIN with probability 1 − δ. As also shown
in [19], if we have found the parameters [α, β] with
the bicriteria algorithm, then an [α, β]-approximate k-
median clustering of SIN in a W-weak coreset of

size O
(

1
ε2

k log n log(k|W|k log n)

)
can be constructed

in time O
(
dkn +

1
ε2

k log n log(k|W|k log n)

)
.

Using Chen’s coreset construction [20], we design
an algorithm for clustering quantum states, using the
previously generatedW-weak coreset of set SIN . The
algorithm has approximation error (1 + ε), however
the run time of the proposed method is more efficient
since it uses theW-weak coreset of set SIN generated
by Chen’s algorithm, instead of the original input set
SIN . For clustering of quantum states, we use the mod-
ified version of Ackermann’s method from [19]. As can
be concluded using the modified coreset and cluster-
ing algorithm and theW-weak coreset of the original
input set SIN , the superactivation properties of quan-
tum channels can be analyzed very efficiently. The
(1 + ε)-approximation can be obtained in a run time
O(d22k/ε logk+2 n + dkn).

6.3 Determination of median-quantum states
The clustering method of [19] for a weak set of quan-

tum states and μ-similar quantum informational dis-
tances can be summarized as follows:

CLUSTER : Clustering of channel output states

1. Let SIN the set of remaining input states, with w(SIN) = n
2. Let the weight function on input quantum states SIN

3. Let m the number of median-quantum states yet to be found
4. Let C the set of medians already found
5. if m = 0 then return C
6. else
7. if m ≥ |SIN | then return C ∪ SIN

8. else
9. Sample a multiset of quantum statesM

of size
96k2

ε2μδ
from SIN
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Fig. 21 Clustering of quantum states. The smallest quan-
tum informational ball contains the computed medians.

10. T ← Let c the weighted centroid ofM′ ⊆ M,

with |M′| = 3
εμδ

11. for all c ∈ T do
12. C(c) ← CLUSTER(SIN ,w,m − 1,C ∪ {c})
13. end for
14. Partition of set of input quantum states SIN into

set N and SIN\N such that:
15. ∀ρ ∈ N, σ ∈ SIN\N : D(ρ‖C) ≤ D(σ‖C) and

16. w(N) = w(SIN\N) =
n
2

17. Let w∗ the new weight function on SIN\N
18. Let C∗ ← CLUSTER(SIN\N, q,m,C)
19. return C(c) or C∗ with minimum error
20. end if
21. end if

In Fig. 21, we illustrate the clustering of channel out-
put states. In the clustering process, our algorithm com-
putes the median-quantum states denoted by σi, using a
fast weak coreset and clustering algorithm. In the next
step, we compute the convex hull of the median quan-
tum states and, from the convex hull, the radius of the
smallest quantum informational ball can be obtained.
The smallest superball measures the channel capacity,
hence the radius of the superball is equal to the sum of
radii of quantum balls of independent channel outputs.
The output states are measured by a joint measurement
setting.

As shown in Fig. 22 the proposed analysis combines
the weak coreset method of Chen and the clustering
algorithm presented by Ackermann. To use Chen’s
method [20], [21] to construct the weak coreset, we ap-
ply a bicreteria algorithm [19], [20] to find the required
parameters, then we apply the result of Ackermann et
al. [19] in quantum space. In both methods, we use
quantum informational distance functions as distance
measures. With the help of the coreset method, we can
construct a more efficient (1 + ε)-approximation algo-
rithm in quantum space, using only a small subset of

Fig. 22 Decomposition of our geometrical approach. The
output of the algorithm is the radius of the superball.

Fig. 23 Complexity of coreset and weak coreset algo-
rithms for clustering channel output quantum states.

the original larger input set.
Using the modified weak coreset algorithm and the

(1 + ε)-approximation algorithm, the superactivation
of quantum channels can be analyzed relative to μ-
similar quantum informational distances and k median-
quantum states with error error(SIN ,SOUT ) ≤ (1 +
7ε)optk(SIN ).

The overall run time of the algorithm used above has
been proven to be O(d22k/ε logk+2 n + dkn), with con-
stant probability, since the working mechanism of the
proposed method is based on probabilistic events.

The bicreteria algorithm can be computed in time
O(dkn), hence the coreset method can be constructed
in time O(|W| + dkn).

In Fig. 23, we have compared the complexity of the
coreset algorithm presented in [25] with our advanced
weak coreset approach, as a function of input size. Both
algorithms result in (1 + ε)-approximations, however
the complexities of the proposed methods differ signif-
icantly.

As our results confirm, the complexity of the weak
coreset method is significantly lower than for the core-
set method, especially for a large number of input quan-
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tum states n. The precision of the approximation is
the same as the standard coreset approach, however the
complexity of our weak coreset method is significantly
lower, hence the quantum channels can be analyzed
more efficiently.

7 Conclusions and future work
This paper shows a fundamentally new algorithmic

solution for superactivation of the asymptotic zero-
error capacity of quantum channels. With the help
of the proposed informational geometric approach, the
complexity of the computation of the zero-error capac-
ity of the quantum channels can be dramatically de-
creased. Using our method, a larger set of superac-
tive zero-capacity channels can be discovered very effi-
ciently and our method can bridge the gap between the-
oretical and experimental results. The proposed algo-
rithmic solution can be the key to finding other possible
channel models and channel parameter domains, with
possible combinations being proved by theory. If there
exist other combinations of channel models that realize
superactivation of the classical zero-error capacity of
the quantum channels, our method can find them. We
have constructed an extremely fast recursive geomet-
ric algorithm to find the conditions for the computation
and for the superactivation of the asymptotic classical
zero-error capacity of the quantum channels.

This paper is intended as an introduction to our algo-
rithmical framework to study the superactivation of the
classical zero-error capacity of quantum channels. Our
method is the first to solve the problem of the compu-
tation of classical zero-error capacity of quantum chan-
nels.

In future work, we would like to show some explicit
results of the combinations of channels used to real-
ize the superactivation of the classical zero-error capac-
ity of quantum channels. We would like to extend our
method to analyze the superactivation of the asymptotic
quantum capacity of zero-capacity quantum channels,
and we would like to implement and verify our results
in practice, using zero-capacity optical quantum chan-
nels.
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