
Special issue: Quantum information technology

Progress in Informatics, No. 8, pp.81–87, (2011) 81

Research Paper

Phase estimation with photon number constraint

Masahito HAYASHI
Graduate School of Information Sciences, Tohoku University
Centre for Quantum Technologies, National University of Singapore

ABSTRACT
Many researches proposed the use of the noon state as the input state for phase estimation,
which is one topic of quantum metrology. This is because the input noon state provides the
maximum Fisher information at the specific point. However, the Fisher information does
not necessarily give the attainable bound for estimation error. In this paper, we adopt the
local asymptotic mini-max criterion as well as the mini-max criterion, and show that the
maximum Fisher information does not give the attainable bound for estimation error under
these criteria in the phase estimation. We also propose the optimal input state under the
constraints for photon number of the input state instead of the noon state.
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1 Introduction
As one of the most simple methods in quantum

metrology, phase estimation has been treated by many
authors [1]–[6] and its experimental demonstration has
been reported by many groups [7]–[10]. As is pointed
by [11], the phase estimation with Mach-Zehnder (MZ)
interferometer is important from the view point of the
standard configuration. Many experiment groups real-
ized the noon state. The reason is why the noon state
provides the optimal Fisher information. In the inde-
pendent and identical distributed setting of state estima-
tion, Fisher information provides the asymptotic bound
of mean square error (MSE) [12]–[14]. However, the
phase estimation does not fall in this setting. Hence,
it has not been discussed sufficiently whether the mini-
mum estimation error is realized when the noon state is
inputed.

In this paper, we treat the phase estimation with two
kinds of photon number constraints. One is the con-
straint for the average of the square of the photon num-
ber concerning the input state. The other is the con-
straint for the maximum photon number concerning the

Received October 28, 2010; Revised January 3, 2011; Accepted January 12,
2011.
hayashi@math.is.tohoku.ac.jp

input state. In order to treat the phase estimation, we fo-
cus on two criteria. One is the minimum mean square
error (MSE) under the locally unbiased (LUB) condi-
tion, which coincides with the SLD Fisher information
[15]–[17]. The other is the mini-max value of the MSE,
which minimizes the worst MSE. The latter is essen-
tially equivalent with the optimization with the covari-
ant restriction for measurement [18]. As an intermedi-
ate concept, we focus on the local asymptotic mini-max
criterion, which was introduced by Hajek [19] and was
applied to quantum channel estimation by Hayashi [20].
Then, we can define three kinds of bounds under two
kinds of constraint. The main purpose of this paper is
the comparison between these three bounds with both
constraints. The second purpose is to check the validity
of use of the noon state as the input state and seeking
the optimal input state.

The organization of this paper is the following. In
section 2, we treat the phase estimation problem under
the locally unbiased condition. In section 3, we clar-
ify the relation between the single-application case and
the multiple-application case. In section 4, we discuss
the locally asymptotic mini-max criterion. In section
5, we treat the global mini-max criterion and the rela-
tion among three kinds of criteria under the asymptotic
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limit. In section 6, we treat the MSE of the noon state
with both of the global and local asymptotic mini-max
criteria.

2 SLD Fisher information and locally
unbiased condition

In the two-mode photonic system L2(R2), the phase
operator Uθ is given by

Uθ :=
∑

n,m≥0

ei(n−m)θ |n,m〉〈n,m|

with θ ∈ [−π, π]. When the true parameter θ is un-
known, we can estimate the parameter by inputing
the known state |φ〉 and measuring the output state
Uθ |φ〉. Hence, when the measurement corresponds to
the POVM M = {Mθ̂}, our estimator is described by the
pair of the input state |φ〉 and the POVM M as Fig. 1.

In this case, the estimate θ̂ obeys the distribution
〈φ|U†θ Mθ̂Uθ |φ〉. The mean square error (MSE) is given
by

Eθ(|φ〉, M) :=
∫ π

−π
(θ − Tθ(θ̂))2〈φ|U†θ Mθ̂Uθ |φ〉dθ̂,

where

Tθ(θ̂) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ̂ + 2π if θ̂ < θ − π
θ̂ if θ − π ≤ θ̂ < θ + π
θ̂ − 2π if θ + π ≤ θ̂.

When the input state Uθ |φ〉 is given, our problem is es-
timation of the parameter θ with the pure state family
{Uθ|φ〉〈φ|U†θ }. In order to treat the lower bound of the
MSE, we focus on the symmetric logarithmic derivative
(SLD) Fisher information [21]

Jθ(|φ〉) = 4〈φ|dUθ

dθ

† dUθ

dθ
|φ〉 − 4|〈φ|dUθ

dθ
|φ〉|2. (1)

This equation can be shown by the following way:
d
dθUθ |φ〉〈φ|U†θ = X|φ〉〈φ| + |φ〉〈φ|X†, where X = dUθ

dθ −
〈φ| dUθ

dθ |φ〉. Thus, d
dθUθ |φ〉〈φ|U†θ = 2(X|φ〉〈φ|+ |φ〉〈φ|X†)◦

|φ〉〈φ|, where A ◦ B = AB+BA
2 . Then, Jθ(|φ〉) =

Tr(2(X|φ〉〈φ| + |φ〉〈φ|X†))2|φ〉〈φ|, which equals the right
hand side of (1).

In statistical inference, an unbiased estimator plays
an important role. However, since the parameter space

Fig. 1 Scheme of phase estimation.

is the interval [−π, π], it is difficult to define the unbi-
ased condition. It is possible to define the locally un-
biased condition. When the estimator (|φ〉, M) satisfies
the condition∫ π

−π
Tθ(θ̂)〈φ|U†θ0

Mθ̂Uθ0 |φ〉dθ̂ = θ0∫ π

−π
Tθ(θ̂)

d
dθ
〈φ|U†θ Mθ̂Uθ|φ〉|θ=θ0 dθ̂ = 1,

it is called locally unbiased at θ0. When an estima-
tor (|φ〉, M) is locally unbiased (LUB) at θ0, the SLD
Cramer-Rao inequality

Eθ(|φ〉, M) ≥ Jθ(|φ〉)−1. (2)

Its proof is similar to the usual case of the SLD Cramer-
Rao inequality [15]–[17] because the Schwarz inequal-
ity plays the same rule.

In this problem, when we input the state with a larger
photon number, the MSE becomes smaller. So, it is
suitable to constraint the photon number of the input
state. As the first kind of constraint, we restrict the
average of the square photon number (N2)av(|φ〉) :=
〈φ|N̂2|φ〉 of the input state |φ〉, where N̂ :=

∑
n,m(n +

m)|n,m〉〈n,m|. As the second kind of constraint, we re-
strict the maximum of the photon number Nmax(|φ〉) :=
maxn,m{n+m|〈n,m|φ〉 � 0} of the input state |φ〉. So, we
define the two bounds of MSE as follows:

C̃av,θ(E)

:= inf

{
Eθ(|φ〉, M)

∣∣∣∣∣∣ (|φ〉, M)is LUB at θ0

(N2)av(|φ〉) ≤ E2

}

C̃max,θ(E)

:= inf

{
Eθ(|φ〉, M)

∣∣∣∣∣ (|φ〉, M)is LUB at θ0

Nmax(|φ〉) ≤ E

}
.

Since Jθ(|φ〉) ≤ 4〈φ|N̂2|φ〉, the SLD Cramer-Rao in-
equality (2) implies

C̃max,θ(E) ≥ C̃av,θ(E) ≥ 1
4E2

.

When E is an integer n and the input state |φ〉 is the noon
state |φn,noon〉 := 1√

2
(|n, 0〉+ |0, n〉), Jθ(|φn,noon〉)−1 = 1

4n2 .
There exists a POVM satisfying the locally unbiased
condition whose MSE attains the inverse of the SLD
Fisher information. Hence,

C̃max,θ(n) = C̃av,θ(n) =
1

4n2
.

In the state estimation, it is known that there ex-
ists a sequence of estimators that asymptotically at-
tains the inverse of the SLD Fisher information at all
points [12]–[14]. Hence, we expect that the bounds

C̃max,θ := lim
E→∞ E2C̃max,θ(E) =

1
4

(3)
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C̃av,θ := lim
E→∞ E2C̃av,θ(E) =

1
4

(4)

can be attained asymptotically in all points by a single
sequence of estimator under the respective restrictions.
However, the same argument does not necessarily hold
in the case of channel estimation.

3 Multiple application
As an extension of the formulation given in Section

2, we assume that the m-fold tensor product system of
L2(R2), i.e., L2(R2)⊗m, is allowed as the input system
and the unknown operator U⊗m

θ is applied. It is required
to estimate the unknown parameter θ. In this case, we
consider the number operator N̂m :=

∑m
k=1 I⊗k−1 ⊗ N̂ ⊗

I⊗m−k, and the estimator is given by the pair of the in-
put state |φ〉 on L2(R2)⊗m and a POVM M on L2(R2)⊗m.
Now, we define the projection

Pa,b :=
∑
#1

∑
#2

|a1, b1〉〈a1, b1| ⊗ · · ·

⊗ |am, bm〉〈am, bm|,
where #1 is a1, . . . , am :

∑
j a j = a and #2 is b1, . . . , bm :∑

j b j = b. Then, we define the normalized vec-
tor |φa,b〉 := 1

‖Pa,b |φ〉‖Pa,b|φ〉 and the isometry Vm :=∑
a,b |a, b〉〈φa,b| from L2(R2)⊗m to L2(R2). Then, the pair

of the state Vm|φ〉 and the POVM {VmMθ̂V
†
m} gives an

estimator on the single input system L2(R2). The out-
come of this estimator has the same statistical behav-
ior of the original estimator (|φ〉, M) on L2(R2)⊗m. Fur-
ther, the average of the square number of Vm|φ〉 equals
that of |φ〉. Conversely, any estimator (|φ〉, {Mθ̂}) on
the single input system L2(R2) can be simulated by
an estimator (W†m|φ〉, {W†mMθ̂Vm}) on L2(R2)⊗m, where
Wm :=

∑
a,b |ψa,b〉〈a, b| and |ψa,b〉 is a normalized vec-

tor on the range of Pa,b. So, the optimization of es-
timator (|φ〉, {Mθ̂}) on the single input system L2(R2)
with constraint concerning average of square of photon
number is mathematically equivalent with that on the
m-fold tensor product system L2(R2)⊗m with constraint
concerning average of square of photon number.

Next, we consider the case when only state in the
subspace spanned by {|00〉, |10〉, |01〉} is allowed as the
input system. In this case, the input system is 3-
dimensional and is written by H . Its m-fold input sys-
tem is given as H⊗m. For a given input state |φ〉 ∈
H⊗m, the state Vm|φ〉 satisfies the condition maxa,b{a +
b|〈a, b|Vm|φ〉 � 0} ≤ m. Conversely, when the input
state |φ〉 satisfies the condition maxa,b{a + b|〈a,b|φ〉 �
0} ≤ m, and when |ψa,b〉 is chosen from the intersection
the range of Pa,b and H⊗m, the state Wm|φ〉 belongs to
H⊗m. The estimator (Wm|φ, {WmMθ̂W

†
m}) simulates the

estimator (|φ〉, {Mθ̂}). So, the optimization of estimator

on the single input system L2(R2) with constraint con-
cerning maximum of photon number is mathematically
equivalent with that on the m-fold tensor product sys-
temH .

Overall, multiple application setting is a physical sit-
uation different from single application setting. This is
because multiple application requires multiple applica-
tion on the same system L2(R2). However, this setting
can be mathematically simulated by single application
setting. This kind of simulation plays an important role
in the next section.

4 Locally asymptotic mini-max crite-
rion

In this section, we consider the locally asymptotic
mini-max criterion. In statistics, we often treat mini-
max criterion, in which, we optimize the worst case. In
the following, we optimize the worst MSE among the ε-
neighborhood of the given point θ0. We treat the asymp-
totic behavior of this optimum value and consider the
limit ε → 0 concerning the asymptotic coefficient. That
is, we define

Cav,θ := lim
ε→0

lim
E→∞ E2Cav,θ(E, ε)

Cav,θ(E, ε) := inf
|φ〉
{Cθ(|φ〉 : ε)|(N2)av(|φ〉) ≤ E2}

Cθ0 (|φ〉 : ε) := inf
M

sup
θ∈U(ε,θ0)

Eθ(|φ〉,M)

Cmax,θ := lim
ε→0

lim
E→∞ E2Cmax,θ(E, ε)

Cmax,θ(E, ε) := inf
|φ〉
{Cθ(|φ〉 : ε)|Nmax(|φ〉) ≤ E}.

We also define similar values with multiple application.

Cav,θ0,m(E, ε)

:= inf
(|φ〉,M)

{
sup

θ∈U(ε,θ0)
Eθ(|φ〉, M)|(N2

m)av(|φ〉) ≤ E2m2

}

Cmax,θ0,m

:= inf
(|φ〉,M)

{
sup

θ∈U(ε,θ0)
Eθ(|φ〉, M)| |φ〉 ∈ H⊗m

}
,

where (|φ〉,M) is an estimator on L2(R2)⊗m. As is dis-
cussed in Section 3, estimators on L2(R2)⊗m can be sim-
ulated by estimators on L2(R2) with large photon num-
ber states. Hence,

Cav,θ = lim
ε→0

lim
m→∞m2E2Cav,θ,m(1, ε)

Cmax,θ = lim
ε→0

lim
m→∞m2Cmax,θ,m.

Further, Proposition 1 of [20] implies that

lim
ε→0

lim
m→∞m2Cav,θ,m(1, ε) ≤ C̃av,θ

lim
ε→0

lim
m→∞m2Cmax,θ,m ≤ C̃max,θ.
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That is,

Cav,θ ≤ C̃av,θ

Cmax,θ ≤ C̃max,θ.

5 Global mini-max criterion
Next, we consider global optimization, i.e., global

mini-max criterion. For this purpose, we consider
group covariant condition for our POVM M. In this
optimization with photon number constraint, we can
restrict the input state on the subspace H1 spanned
by {|n, 0〉} ∪ {|0, n〉}. A POVM M = {Mθ̂} is
covariant when there exists a vector |T〉 such that
Mθ̂dθ̂ =

1
2πUθ̂|T 〉〈T |U†θ̂dθ̂, where |T〉 = ∑∞

n=0 eiθn |n, 0〉 +∑∞
n=1 eiθ′n |0, n〉, and θn and θn are arbitrary coefficients.

As is shown by Holevo [18], since the stochastic behav-
ior of the error θ̂ − θ of the covariant POVM does not
depend on the true parameter θ, any input state |φ〉 sat-
isfies

inf
M

max
θ

Eθ(|φ〉, M) = inf
M:cov

max
θ

Eθ(|φ〉, M).

Hence, when we optimize the worst value
maxθ Eθ(|φ〉, M), it is sufficient to treat the covari-
ant POVM. That is, our estimator is written by the
pair of input state |φ〉 = ∑∞

n=0 an|n, 0〉 + ∑∞
n=1 a−n|0, n〉

and |T〉 = ∑∞
n=0 eiθn |n, 0〉 + ∑∞

n=1 eiθ′n |0,n〉, where �a
= {an}∞n=−∞ ∈ L2(Z). This estimator is simulated by
the pair of the input state |φ′〉 = ∑∞

n=0 e−iθnan|n, 0〉 +∑∞
n=1 e−iθ′na−n|0, n〉 and the covariant POVM given

by |T0〉 = ∑∞
n=0 |n, 0〉 +

∑∞
n=1 |0, n〉. This is because

|〈T |U†
θ̂
Uθ |φ〉|2 = |〈T0|U†θ̂Uθ |φ′〉|2. Hence, it is sufficient

to treat the case with |T〉 = |T0〉. In this case, we
define a′n := e−iθnan for n ≥ 0 and a′−n := e−iθ′na−n

for n > 0. Then, when the error θ̂ − θ obeys the
square |F −1(�a′)(θ)|2 of the inverse Fourier transform
F −1(�a′)(θ) :=

∑∞
n=−∞ a′ne−inθ of discrete series of

�a′ = {a′n}∞n=−∞.
Thus, we obtain

C(|φ〉) := inf
M

sup
θ

Eθ(|φ〉, M)

= inf
�a′:|a′n |=|an|

{
1

2π

∫ π

−π
θ̂2|F −1(�a′)(θ̂)|2dθ̂

}

and

Cav(E)

:= inf
(|φ,M)
{sup

θ
Eθ(|φ〉, M)|〈φ|N̂2|φ〉 ≤ E2}

= inf
�a:‖�a‖=1

{
1

2π

∫ π

−π
θ̂2|F −1(�a)(θ̂)|2

× dθ̂|(N2)av(�a) ≤ E2

}
(5)

Cmax(E)

:= inf
(|φ,M)

{
sup
θ

Eθ(|φ〉, M)|〈φ|N̂2|φ〉 ≤ E2
}

= inf
�a:‖�a‖=1

{
1

2π

∫ π

−π
θ̂2|F −1(�a)(θ̂)|2

× dθ̂|Nmax(�a) ≤ E

}
, (6)

where (N2)av(�a) :=
∑

n n2|an|2, Nmax(�a) :=
maxn{|n| |an � 0}, and ‖�a‖2 :=

∑∞
n=−∞ |an|2.

From the definitions, we obtain

C(|φ〉) ≥ Cθ(|φ〉 : ε) (7)

Cav(E) ≥ Cav,θ(E, ε) (8)

Cmax(E) ≥ Cmax,θ(E, ε), (9)

and the asymptotic limits are defined by

Cav := lim
E→∞ E2Cav(E)

Cmax := lim
E→∞ E2Cmax(E).

Given an arbitrary sequence �aE = {aE,n}∞n=−∞ of ele-
ments of L2(Z), we focus on the function

f (x) := lim
E→∞

√
EaE,Ex. (10)

Then, the relations (5) and (6) imply that

Cav = inf
f∈L2 (R):‖ f ‖=1

{〈 f |P2| f 〉|〈 f |Q2| f 〉 ≤ 1} (11)

Cmax = inf
f∈L2 ([−1,1]):‖ f ‖=1

〈 f |P2| f 〉, (12)

where Q and P are the position and momentum oper-
ators on L2(R). The equation (12) is the same as the
result obtained by Imai and Hayashi [3].

Next, we focus on the specific sequence of the input
states |φE〉 whose coefficient satisfies (10). Similar to
(11) and (12), we obtain

lim
E→∞ EnC(|φE〉) = inf

g∈L2(R):|g(x)|=| f (x)|
〈g|P2|g〉. (13)

The uncertainly relation implies that

Cav =
1
4

and the infimum is attained when f (x) = e−
x2

4 . The
latter is given by

Cmax =
π2

4

and the infimum is attained when f (x) =

(2π)1/4 sin π(1+x)
2 . Comparing the right hand sides
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of (5) and (6) with those of (11) and (12), the bounds
Cav and Cmax can be attained by sequence of input
states

c1

⎛⎜⎜⎜⎜⎜⎝
∞∑

n=0

e−
n2

4E2 |n, 0〉 +
∞∑

n=1

e−
n2

4E2 |0, n〉
⎞⎟⎟⎟⎟⎟⎠ (14)

and

c2

( E∑
n=0

sin
π(E + n + 1)

2E + 2
|n, 0〉

+

E∑
n=1

sin
π(E + n + 1)

2E + 2
|0, n〉

)
, (15)

where c1 and c2 are normalized constants.
From the relations (8) and (9), we obtain

Cav ≥ Cav,θ (16)

Cmax ≥ Cmax,θ. (17)

As is shown in Proposition 3 of Hayashi [20], the
bounds Cav,θ = limε→0 limm→∞ m2E2Cav,θ,m(ε, E) and
Cmax,θ = limε→0 limm→∞ m2Cmax,θ,m can be globally
attained by two-step methods [12] [13] asymptotically.
Since any estimator on the multiple system L2(R2)⊗m

can be simulated by a suitable estimator on the single
input system L2(R2), the opposite inequalities of (16)
and (17) hold. That is, combining (3) and (4), we ob-
tain

Cav,θ = Cav =
1
4
= C̃av,θ (18)

Cmax,θ = Cmax =
π2

4
>

1
4
= C̃max,θ. (19)

So, when we adopt the maximum photon number con-
straint, there is a non-negligible difference between the
local asymptotic mini-max bound and the bound with
locally unbiased condition.

6 Analysis on noon state
Now, we consider the asymptotic limit of the perfor-

mance with the locally asymptotic min-max criterion
when the noon state 1√

2
(|n, 0〉 + |0, n〉) is inputed and

the covariant measurement is applied. In this case, first,
we fix an arbitrary small real number ε > 0 and focus
on the neighborhood U(ε, θ0) for an arbitrary point θ0.
When n > 2π/ε, the relation Uθ

1√
2
(|n, 0〉 + |0, n〉) =

Uθ+2π/n
1√
2
(|n, 0〉+ |0, n〉) holds and θ and θ+ 2π

n belongs
to U(ε, θ0). That is, we cannot distinguish two parame-
ters θ and θ+ 2π

n . Even if we could estimate the unknown
parameter θ mod 2π

n perfectly, it is not easy to estimate
the parameter θ in the parameter space U(ε, θ0). In the

following, we consider the case of θ = θ0 − ε mod 2π
n .

Assume that we could the unknown parameter θ mod
2π
n . In this case, there are still K := � nε

π � candidates with
the width 2π

n in the parameter space U(ε, θ0). Assume
that, we decide the true parameter to be 2π

n i + θ0 − ε
with the probability pi. Then, the mini-max error is
evaluated as follows.

max
j=1,...,K

K∑
i=1

pi

(
1

2nπ

)2

( j − i)2

=

(
2π
n

)2

max
j=1,...,K

⎛⎜⎜⎜⎜⎜⎝ j2 − 2 j
K∑

i=1

ipi +

K∑
i=1

i2 pi

⎞⎟⎟⎟⎟⎟⎠

=

(
2π
n

)2
⎛⎜⎜⎜⎜⎜⎜⎜⎝ max

j=1,...,K

⎛⎜⎜⎜⎜⎜⎝ j −
K∑

i=1

ipi

⎞⎟⎟⎟⎟⎟⎠
2

+

K∑
i=1

i2 pi −
⎛⎜⎜⎜⎜⎜⎝

K∑
i=1

ipi

⎞⎟⎟⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎟⎟⎟⎠

≥
(
2π
n

)2

max
j=1,...,K

⎛⎜⎜⎜⎜⎜⎝ j −
K∑

i=1

ipi

⎞⎟⎟⎟⎟⎟⎠
2

≥
(
2π
n

)2

(K/2)2 =

(
π

n

⌊nε
π

⌋)2
.

That is, we obtain

Cθ0

(
1√
2

(|n,0〉 + |0, n〉
)

: ε) ≥
(
π

n

⌊nε
π

⌋)2
.

The lower bound ( πn � nε
π
�)2 converges ε2. This means

that the mini-max of the mean square error does not
decrease when n increase. Hence,

lim
n→∞ n2Cθ0

(
1√
2

(|n, 0〉 + |0, n〉) : ε

)
= ∞. (20)

Next, we consider the asymptotic limit of the per-
formance with the global asymptotic min-max criterion
when the noon state 1√

2
(|n, 0〉 + |0, n〉). By using (20)

and (7), the relation

lim
n→∞ n2C

(
1√
2

(|n, 0〉 + |0, n〉)
)
= ∞ (21)

holds. This fact can be shown in another method based
on (13). In fact, the L2 function corresponding to the
noon state via (10) is f0(x) := 1√

2
(δ(x − 1) + δ(x + 1)).

The function fη(x) := 1√
2
(δ(x−1)+ eiηδ(x+1)) satisfies

〈 fη|P2| fη〉 = ∞. Thus, the relation (13) yields (21).
Next, we replace the number state by the coherent

state. In the following, the coherent state with com-
plex amplitude α1, α2 is written as |α1, α2〉c. Then, we
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consider the case when the covariant measurement is
applied and we input the noon state 1√

2
(|n, 0〉c + |0, n〉c),

which is called the coherent noon state. The L2 func-
tion corresponding to the coherent noon state via (10)
is the same function f0. Hence, the relation (13) yields

lim
n→∞ n2C

(
1√
2

(|n, 0〉c + |0, n〉c)

)
= ∞. (22)

7 Conclusion
We have discussed three kinds of bounds of MSE in

the phase estimation with photon number constraints.
The first is the global minimax bound. The second is
the local minimax bound. The third is the bound with
the locally unbiased condition. These bounds have been
treated with two kinds of constraints: One is the con-
straint for the average of the square of the photon num-
ber concerning the input state. The other is the con-
straint for the maximum photon number concerning the
input state. We have shown that the asymptotic lim-
its Cav, Cav,θ, and C̃av,θ of three kinds of bounds coin-
cide under the first constraint. However, these bounds
Cmax, Cmax,θ, and C̃max,θ do not coincide under the sec-
ond kind of constraint. In fact, the locally unbiased
condition and Fisher information are originally mathe-
matical concepts. In the independent and identical dis-
tributed setting of state estimation, these values pro-
vide the asymptotic bound of MSE [12]–[14]. How-
ever, these values do not provide the operational mean-
ing in general. That is, these values have no operational
meaning when they do not coincide with operational
values. Hence, under the second kind of constraint,
only these bounds Cmax and Cmax,θ have the real mean-
ing.

Further, we should be careful of the meaning of the
noon state and the coherent noon state. When these
states are inputed, the optimal SLD Fisher information
is realized. However, under the local mini-max crite-
rion, as is discussed in section 6, the MSE of the noon
input state does not convergence to zero, and the noon
input state is far from the optimal input. The optimal
input is given in (14) and (15). Hence, in order to real-
ize the high performance phase estimation, it is desired
to implement the input states (14) and (15).
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