Online ISSN:1349-8606
Progress in Informatics  
No.8 March 2011  
Page 5-18  
Photon subtraction from traveling fields - recent experimental demonstrations

LINK [1] H. Takahashi, J. S. Neergaard-Nielsen, M. Takeuchi, M. Takeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, “Entanglement distillation from Gaussian input states,” Nature Photonics, vol.4, pp.178-181, 2010.

LINK [2] J. S. Neergaard-Nielsen, M. Takeuchi, K. Wakui, H. Takahashi, K. Hayasaka, M. Takeoka, and M. Sasaki, “Optical continuous-variable qubit,” Phys. Rev. Lett., vol.105, 053602, 2010.

LINK [3] U. L. Andersen, G. Leuchs, and C. Silberhorn, “Continuous-variable quantum information processing,” journal Laser& Photonics Reviews, vol.4, pp.337-354, 2010.

LINK [4] K. Hammerer, A. S. Sø rensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Reviews of Modern Physics, vol.82, pp.1041-1093, 2010.

LINK [5] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature, vol.390, pp.575-579, 1997.

LINK [6] A. Furusawa, J. L. Sø rensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional Quantum Teleportation,” Science, vol.282, pp.706-709, 1998.

LINK [7] A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State,” Phys. Rev. Lett., vol.87, 050402, 2001.

LINK [8] S. A. Babichev, J. Appel, and A. I. Lvovsky, “Homodyne Tomography Characterization and Nonlocality of a Dual-Mode Optical Qubit,” Phys. Rev. Lett., vol.92, 193601, 2004.

LINK [9] A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science, vol.306, pp.660-662, 2004.

LINK [10] A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science, vol.312, pp.83-86, 2006.

LINK [11] J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mø lmer, and E. S. Polzik, “Generation of a Superposition of Odd Photon Number States for Quantum Information Networks,” Phys. Rev. Lett., vol.97, 083604, 2006.

LINK [12] K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, “Photon subtracted squeezed states generated with periodically poled KTiOPO 4,” Optics Express, vol.15, p.3568-3574, 2007.

LINK [13] S. J. van Enk and O. Hirota, “Entangled coherent states: Teleportation and decoherence,” Phys. Rev. A, vo.64, 022313, 2001.

LINK [14] A. Gilchrist, K. Nemoto, W. J. Munro, T. C. Ralph, S. Glancy, S. L. Braunstein, and G. J. Milburn, “Schrödinger cats and their power for quantum information processing,” J. Opt. B: Quantum and Semiclass. Opt., vol.6, pp.S828-S833, 2004.

LINK [15] H. Jeongand, and T. C. Ralph, “Schrödinger Cat States for Quantum Information Processing,” in N. J. Cerf, G. Leuchs, and E. S. Polzik, (editors) “Quantum Information with Continuous Variables of Atoms and Light,” Imperial College Press, Chap. 9. 2007.

LINK [16] A. P. Lund, T. C. Ralph, and H. L. Haselgrove, “Fault-Tolerant Linear Optical Quantum Computing with Small-Amplitude Coherent States,” Phys. Rev. Lett., vol.100, 030503, 2008.

LINK [17] M. Dakna, T. Anhut, T. Opatrný, L. Knöll, and D.-G. Welsch, “Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter,” Phys. Rev. A, vol.55, pp.3184-3194, 1997.

LINK [18] J. Wenger, R. Tualle-Brouri, and P. Grangier, “Non-Gaussian Statistics from Individual Pulses of Squeezed Light,” Phys. Rev. Lett., vol.92, 153601, 2004.

LINK [19] T. Opatrný, G. Kurizki, and D.-G. Welsch, “Improvement on teleportation of continuous variables by photon subtraction via conditional measurement,” Phys. Rev. A, vol.61, 032302, 2000.

LINK [20] D. Browne, J. Eisert, S. Scheel, and M. Plenio, “Driving non-Gaussian to Gaussian states with linear optics,” Phys. Rev. A, vol.67, 06232, 2003.

LINK [21] H. Nha and H. Carmichael, “Proposed Test of Quantum Nonlocality for Continuous Variables,” Phys. Rev. Lett., vol.93, 020401, 2004.

LINK [22] R. García-Patrón, J. Fiurášek, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, “Proposal for a Loophole-Free Bell Test Using Homodyne Detection,” Phys. Rev. Lett., vol.93, 130409, 2004.

LINK [23] H. Jeong, ”Testing Bell inequalities with photon-subtracted Gaussian states,” Phys. Rev. A, vol.78, 042101, 2008.

LINK [24] T. Gerrits, S. Glancy, T. Clement, B. Calkins, A. Lita, A. Miller, A. Migdall, S. Nam, R. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A, vol.82, 031802(R), 2010.

LINK [25] N. Namekata, Y. Takahashi, G. Fujii, D. Fukuda, S. Kurimura, and S. Inoue, “Non-Gaussian operation based on photon subtraction using a photon-number-resolving detector at a telecommunications wavelength,” Nature Photonics, vol.4, p.655-660, 2010.

LINK [26] R. Tualle-Brouri, A. Ourjoumtsev, and P. Grangier, “Quantum Homodyne Tomography of a Two-Photon Fock State,” Phys. Rev. Lett., vol.96, 213601, 2006.

LINK [27] H. Takahashi, K. Wakui, S. Suzuki, M. Takeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, “Generation of Large-Amplitude Coherent-State Superposition via Ancilla-Assisted Photon Subtraction,” Phys. Rev. Lett., vol.101, 233605, 2008.

LINK [28] A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, “Generation of optical 'Schrödinger cats' from photon number states,” Nature vol.448, pp.784-786, 2007.

LINK [29] A. Ourjoumtsev, F. Ferreyrol, R. Tualle-Brouri, and P. Grangier, “Preparation of non-local superpositions of quasi-classical light states,” Nature Physics, vol.5, pp.189-192, 2009.

LINK [30] A. Zavatta, V. Parigi, M. S. Kim, H. Jeong, and M. Bellini, “Experimental Demonstration of the Bosonic Commutation Relation via Superpositions of Quantum Operations on Thermal Light Fields,” Phys. Rev. Lett., vol.103, 140406, 2009.

LINK [31] G. Puentes, J. Lundeen, M. Branderhorst, H. Coldenstrodt-Ronge, B. Smith, and I. Walmsley, “Bridging Particle and Wave Sensitivity in a Configurable Detector of Positive Operator-Valued Measures,” Phys. Rev. Lett., vol.102, 080404, 2009.

LINK [32] B. M. Nielsen, J. S. Neergaard-Nielsen, and E. S. Polzik, “Time gating of heralded single photons for atomic memories,” Opt. Lett., vol.34, pp.3872-3874, 2009.

LINK [33] E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky, “Quantum-optical state engineering up to the two-photon level,” Nature Photonics, vol.4, pp.243-247, 2010.

LINK [34] N. Jain, S. R. Huisman, E. Bimbard, and A. I. Lvovsky, “A bridge between the single-photon and squeezed-vacuum states,” Optics Express, vol.18, 18254, 2010.

LINK [35] A. Zavatta, J. Fiurášek, and M. Bellini, “A high-fidelity noiseless amplifier for quantum light states,” arXiv:1004.3399 [quant-ph], 2010.

LINK [36] G. Y. Xiang, T. C. Ralph, A. P. Lund, N. Walk, and G. J. Pryde, “Heralded noiseless linear amplification and distillation of entanglement,” Nature Photonics, vol.4, pp.316-319, 2010.

LINK [37] F. Ferreyrol, M. Barbieri, R. Blandino, S. Fossier, R. Tualle-Brouri, and P. Grangier, “Implementation of a Nondeterministic Optical Noiseless Amplifier,” Phys. Rev. Lett., vol.104, 123603, 2010.

LINK [38] M. A. Usuga, C. R. Mueller, C. Wittmann, P. Marek, R. Filip, C. Marquardt, G. Leuchs, and U. L. Andersen, “Noise-Powered Probabilistic Concentration of Phase Information,” Nature Physics, vol.6, pp.767-771, 2010.

LINK [39] C. Wittmann, M. Takeoka, K. N. Cassemiro, M. Sasaki, G. Leuchs, and U. L. Andersen, “Demonstration of near-optimal discrimination of optical coherent states,” Phys. Rev. Lett., vol.101, 210501, 2008.

LINK [40] K. Tsujino, D. Fukuda, G. Fujii, S. Inoue, M. Fujiwara, M. Takeoka, and M. Sasaki, “Sub-shot-noise-limit discrimination of on-off keyed coherent signals via a quantum receiver with a superconducting transition edge sensor,” Optics Express, vol.18, pp.8107-8114, 2010.

LINK [41] C. Wittmann, U. L. Andersen, M. Takeoka, D. Sych, and G. Leuchs, “Demonstration of coherent-state discrimination using a displacement-controlled photon-number-resolving detector,” Phys. Rev. Lett., vol.104, 100505, 2010.

LINK [42] N. Lee, Y. Takeno, H. Benichi, H. Yonezawa, J. Webb, E. Huntington, L. Mišta, R. Filip, P. V. Loock, S. L. Braunstein, and A. Furusawa, “Quantum teleportation of wavepackets in a non-gaussian state. In Conference on Lasers and Electro-Optics/International Quantum Electronics Conference,” Optical Society of America, 2009, ITuB4.

LINK [43] M. S. Kim, “Recent developments in photon-level operations on travelling light fields,” J. Phys. B: At. Mol. Opt. Phys., vol.41, 133001, 2008.

LINK [44] A. I. Lvovsky, and M. G. Raymer, “Continuous-variable optical quantum-state tomography,” Rev. Mod. Phys., vol.81, pp.299-332. 2009.

LINK [45] P. van Loock, “Optical hybrid approaches to quantum information,” Laser & Photonics Reviews, doi:10.1002/lpor.20100005, 2010.

LINK [46] Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of-9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Optics Express vol.15, pp.4321-4327, 2007.

LINK [47] K. Mølmer, “Non-gaussian states from continuous-wave gaussian light sources,” Phys. Rev. A, vol.73, 063804, 2006.

LINK [48] M. Takeoka, J. S. Neergaard-Nielsen, M. Takeuchi, K. Wakui, H. Takahashi, K. Hayasaka, and M. Sasaki, “Engineering of optical continuous-variable qubits via displaced photon subtraction: Multimode analysis,” J. Mod. Opt., doi:10.1080/09500340.2010.533205, 2010.

LINK [49] A. I. Lvovsky, “Iterative maximum-likelihood reconstruction in quantum homodyne tomography,” J. Opt. B: Quantum and Semiclassical Optics, vol.6, pp.S556-S559, 2004.

LINK [50] P. van Loockand, and S. L. Braunstein, “Quantum information with continuous variables,” Rev. Mod. Phys., vol.77, pp.513-577, 2005.

LINK [51] N. J. Cerf, G. Leuchs, and E. S. Polzik, (editors), Quantum Information with Continuous Variables of Atoms and Light Imperial College Press, 2007.

LINK [52] S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K. Nemoto, “Efficient Classical Simulation of Continuous Variable Quantum Information Processes,” Phys. Rev. Lett., vol.88, 097904, 2002.

LINK [53] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett., vol.81, pp.5932-5935, 1998.

LINK [54] C. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. Smolin, and W. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett., vol.76, pp.722-725, 1996.

LINK [55] J. Fiurášek, “Gaussian Transformations and Distillation of Entangled Gaussian States,” Phys. Rev. Lett. vol.89, 137904, 2002.

LINK [56] J. Eisert, M. B. Plenio, and S. Scheel, “Distilling Gaussian States with Gaussian Operations is Impossible,” Phys. Rev. Lett., vol.89, 137903, 2002.

LINK [57] G. Giedkeand, and J. Ignacio Cirac, “Characterization of Gaussian operations and distillation of Gaussian states,” Phys. Rev. A, vol.66, 032316, 2002.

LINK [58] B. Hage, A. Samblowski, J. DiGuglielmo, A. Franzen, J. Fiurášek, and R. Schnabel, “Preparation of distilled and purified continuous-variable entangled states,” Nature Physics, vol.4, pp.915-918, 2008.

LINK [59] B. Hage, A. Samblowski, J. DiGuglielmo, J. Fiurášek, and R. Schnabel, “Iterative Entanglement Distillation: Approaching full Elimination of Decoherence,” Phys. Rev. Lett., vol.105, 230502, 2010.

LINK [60] R. Dong, M. Lassen, J. Heersink, C. Marquardt, R. Filip, G. Leuchs, and U. L. Andersen, “Experimental entanglement distillation of mesoscopic quantum states,” Nature Physics, vol.4, pp.919-923, 2008.

LINK [61] A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and P. Grangier, “Increasing Entanglement between Gaussian States by Coherent Photon Subtraction,” Phys. Rev. Lett., vol.98, 030502, 2007.

LINK [62] We note that there is some confusion about terminology in the literature about entanglement distillation: By some accounts, our result should rather be classified as entanglement concentration, while the term distillation is in line with other sources-notably the conceptually similar procrustean method for qubit distillation of Kwiat et al., Nature 409, 1014 (2001).

LINK [63] G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A, vol.65, 032314, 2002.

LINK [64] P. T. Cochrane, T. C. Ralph, and G. J. Milburn, “Teleportation improvement by conditional measurements on the two-mode squeezed vacuum,” Phys. Rev. A, vol.65, 062306, 2002.

LINK [65] S. Olivares, M. G. A. Paris, and R. Bonifacio, “Teleportation improvement by inconclusive photon subtraction,” Phys. Rev. A, vol.67, 032314, 2003.

LINK [66] E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature, vol.409, pp.46-52, 2001.

LINK [67] P. T. Cochrane, G. J. Milburn, and W. J. Munro, “Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping,” Phys. Rev. A, vol.59, pp.2631-2634, 1999.

LINK [68] H. Jeong and M. S. Kim, “Efficient quantum computation using coherent states,” Phys. Rev. A, vol.65, 042305, 2002.

LINK [69] T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” Phys. Rev. A, vol.68, 042319, 2003.

LINK [70] V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, J. Shapiro, and H. Yuen, “Classical Capacity of the Lossy Bosonic Channel: The Exact Solution,” Phys. Rev. Lett., vol.92, 027902, 2004.

LINK [71] M. Takeoka and M. Sasaki, “Conditional generation of an arbitrary superposition of coherent states,” Phys. Rev. A, vol.75, 064302, 2007.

LINK [72] The bandwidths of the squeezed vacuum and the coherent displacement beam are quite different, but the very wide integrated bandwidth of the APD erases this source of distinguishability.

LINK [73] P. Marek and J. Fiurášek, “Elementary gates for quantum information with superposed coherent states,” Phys. Rev. A, vol.82, 014304, 2010.

LINK [74]