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ABSTRACT
In a typical optical implementation of the Bennett-Brassard 1984 (so-called BB84) quantum
key distribution protocol, the sender uses an active source to produce the required signal
states. While active state preparation of BB84 signals is a simple and elegant solution in prin-
ciple, in practice passive state preparation might be desirable in some scenarios, for instance,
in those experimental setups operating at high transmission rates. Passive devices usually
involve parametric down-conversion. Here we show that coherent light is also suitable for
passive generation of BB84 signal states. Our method does not require any externally-driven
element, but only linear optical components and photodetectors. The resulting key rate is
similar to the one delivered by an active source.
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1 Introduction
Quantum key distribution (QKD) is the first com-

mercial application of quantum information that of-
fers efficient and user-friendly cryptographic systems
with an unprecedented level of security [1], [2]. It
exploits quantum effects to establish a secure secret
key between two distant parties (typically called Alice
and Bob) despite the computational and technological
power of an eavesdropper (Eve), who interferes with
the signals in the channel. This secret key is the es-
sential ingredient of the one-time-pad or Vernam ci-
pher [3], the only known encryption method that can
provide information-theoretic secure communications.

Most experimental realizations of QKD are based on
the so-called BB84 QKD scheme introduced by Ben-
nett and Brassard in 1984 [4]. In a typical quantum opti-
cal implementation of this protocol, Alice sends to Bob
phase-randomized weak coherent pulses (WCP) with
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usual average photon number of 0.1 or higher. Each
light pulse may be prepared in a different polarization
state, which is selected, independently and randomly
for each signal, between two mutually unbiased bases.
On the receiving side, Bob measures each incoming
signal by choosing at random between two polarization
analyzers, one for each possible basis. Once this quan-
tum communication phase is completed, Alice and Bob
use an authenticated public channel to process their
data and obtain a secure secret key. A full proof of the
security of this protocol has been given in Refs. [5], [6].
Its performance can be improved further if the original
hardware is slightly modified. For instance, one can use
the so-called decoy-state method [7]–[9], where Alice
varies the mean photon number of each signal state she
sends to Bob. This translates into an enhancement of
the achievable secret key rate, which can now basically
reach the performance of single photon sources.

The preparation of the BB84 signal states is usu-
ally realized by means of an active source. There are
two main configurations. In the first one, Alice uses
four laser diodes, one for each possible BB84 signal.
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These lasers are controlled by a random number gener-
ator (RNG) that decides each given time which one of
the four diodes is triggered. The second configuration
uses only one single laser diode in combination with a
polarization modulator which is controlled by a RNG.
This modulator can rotate the state of polarization of
the signals produced by the source.

While active state preparation is a simple and ele-
gant solution to implement the BB84 protocol in prin-
ciple, in practice passive state preparation might be
desirable in some scenarios [10]–[15]; for instance, in
those experimental setups operating at high transmis-
sion rates, since no RNG is required in a passive de-
vice. For example, Alice can use one or more light
sources to produce different signal states that are sent
through a linear optics network. Depending on the de-
tection pattern observed in some properly situated de-
tectors, she can infer which signal states are actually
generated. Typical passive schemes involve paramet-
ric down-conversion [10], [16]. For instance, Alice and
Bob can use a beamsplitter (BS) to passively and ran-
domly select which bases is used to measure each in-
coming pulse. More recently, it has been shown that
phase-randomized weak coherent pulses can be used to
passively generate decoy states for QKD [13], [15]. In-
tuitively speaking, the authors of Refs. [13], [15] exploit
the random phases of the different incoming pulses to
passively generate states with distinct photon number
statistics. This paper follows a similar spirit; in par-
ticular we show that phase-randomized coherent light
is also suitable for passive generation of BB84 signal
states. That is, one does not need a nonlinear optics
network preparing entangled states in order to passively
generate BB84 signals, but one can exploit the arbitrary
phases of the incoming signals to prepare the desired
states at random [17]. Our method requires only linear
optical elements and photodetectors. In the asymptotic
limit of an infinite long experiment, it turns out that the
resulting key rate of a passive transmitter is similar to
the one delivered by an active source, thus showing the
practical interest of the passive setup.

Passive schemes might also be more robust than ac-
tive systems to side-channel attacks hidden in the im-
perfections of the optical components. If a polariza-
tion modulator is not properly designed, for example,
it may distort some of the physical parameters of the
pulses emitted by the sender depending on the particu-
lar value of the polarization setting selected. This fact
could open a security loophole in the active schemes.

2 Passive QKD transmitter
The basic setup is rather simple. It is illustrated in

Fig. 1. Suppose two phase-randomized strong coher-
ent pulses prepared, respectively, in +45◦ and −45◦ lin-

Fig. 1 Basic setup of a passive BB84 QKD source with
coherent light.

ear polarization, interfere at a polarizing beamsplitter
(PBS). These states can be written as

ρ±45◦ = e−
υ
2

∞∑
n=0

(υ/2)n

n!
|n±45◦〉〈n±45◦ |, (1)

where |n±45◦〉 denote Fock states with n photons in ±45◦
linear polarization. The mean photon number, υ/2, of
each signal can be chosen very high; for instance, ≈ 106

photons. This kind of states can be generated, for in-
stance, using a laser diode biased with a DC current far
below threshold and directly modulated with a strong
radio frequency current [18]. In Ref. [19], for exam-
ple, Jofre et al. reported recently on an optical source
of up 100 MHz repetition rate, which emits phase-
randomized strong coherent pulses with mean photon
number ≈ 6 · 106 photons centered at 850 nm. More-
over, as emphasized by the authors, this source might
be easily scalable to higher repetition rates.

In this scenario, it turns out that the signals σout at
the output port of the PBS (see Fig. 1) can be expressed
as [17]

σout =
1

2π
e−υ

∞∑
n=0

υn

n!

∫
θ

|nθ〉〈nθ| dθ, (2)

where the Fock states |nθ〉 are given by

|nθ〉 =
[

1√
2

(
a†
+45◦ + eiθa†−45◦

)]n
√

n!
|vac〉. (3)

The state |vac〉 represents the vacuum state, and a†±45◦
are the creation operators for the ±45◦ linear polariza-
tions modes.

Now, to prepare the signal states that are sent to Bob,
Alice performs a polarization measurement followed by
a post-selection step. By assumption, we have that the
intensity υ of the signals σout is very high. Therefore,
Alice can always employ, for instance, a BS of very
small transmittance (t � 1) to split these states into
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Fig. 2 Example of a polarization measurement based on
the passive BB84 detection scheme with classical photode-
tectors. H stands for horizontal polarization, V for vertical
polarization, L for circular left polarization and R for circu-
lar right polarization. The different intensities observed in
the four classical photodetectors determine the value of the
angle θ.

two light beams: one very weak suitable for QKD, and
one strong. The weak signal is sent to Bob through the
quantum channel (see Fig. 1). The strong beam is used
to measure its polarization by means of a polarization
measurement which, for simplicity, we assume is per-
fect. For each incoming signal, this device provides Al-
ice with a precise value for the measured angle θ. This
can be achieved, for example, by means of a passive
BB84 detection scheme where the basis choice is per-
formed by a 50 : 50 BS, and on each end there is a PBS
and two classical photodetectors. Such a detection de-
vice is illustrated for completeness in Fig. 2. From the
different intensities observed in each of the four classi-
cal photodetectors, Alice can determine the value of the
angle θ. In this scenario, the conditional states emitted
by the source can be described as

ρout,θ = e−μ
∞∑

n=0

μn

n!
|nθ〉〈nθ|, (4)

where θ denotes the value of the angle obtained by
Alice’s polarization measurement, and μ is given by
μ = υt.

Note, for instance, that whenever θ = 0, π/2, π, or
3π/2, Alice can generate one of the four BB84 polariza-
tion states perfectly. In practice, however, Alice does
not need to restrict herself to only those events where
she actually prepares a perfect BB84 state, since the
probability associated with these ideal events tends to
zero. Instead, she can also accept signals with a polar-
ization sufficiently close to the desired ones. This sit-
uation is illustrated in Fig. 3, where Alice selects some
valid regions for the angle θ. These regions are marked
with gray color in the figure. They depend on an accep-
tance parameter Ω ∈ [0, π/4] that we optimize. Specif-

Fig. 3 Graphical representation of the valid regions for the
angle θ. These regions are marked in gray.

ically, whenever the value of θ lies within any of the
intervals ψ ± (π/4 − Ω) with ψ ∈ {0, π/2, π,3π/2}, then
Alice considers the pulse emitted by the source as a
valid signal. Otherwise, the pulse is discarded after-
wards during the post-processing phase of the protocol,
and it does not contribute to the key rate. The probabil-
ity that a pulse is accepted, pacc, is given by

pacc = 1 − 4Ω
π
. (5)

To increase this probability, one can reduce the value
of Ω. Note, however, that this action also results in an
increase of the quantum bit error rate (QBER) of the
protocol, that we shall denote as E. On the other hand,
when Ω increases, we have that both pacc and E de-
crease. There is a trade-off on the acceptance parame-
ter Ω. A high acceptance probability pacc favors Ω ≈ 0,
whereas a low QBER favors Ω ≈ π/4. In the limit
where Ω tends to π/4 we recover the standard BB84
protocol.

3 Lower bound on the secret key rate
We use the security analysis provided by Gottesman-

Lo-Lütkenhaus-Preskill in Ref. [6]. It considers that
Eve can always obtain full information about the part
of the key generated from the multiphoton signals. This
pessimistic assumption is also true for the passive trans-
mitter illustrated in Fig. 1 when Alice and Bob use
only unidirectional classical communication during the
public-discussion phase of the protocol. This result
arises from the fact that all the photons contained in
a pulse are prepared in the same polarization state and,
therefore, no secret key can be distilled with one-way
post-processing techniques [20]. Note, however, that
such security analysis could still leave room for im-
provement when Alice and Bob employ two-way clas-
sical communication. In this situation, it might be pos-
sible to obtain secret key even from the multiphoton
pulses since the signal states prepared by the passive
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device are already mixed at the source. This last sce-
nario, however, is beyond the scope of this paper.

We further assume the typical initial post-processing
step in the BB84 protocol, where double click events
are not discarded by Bob, but they are randomly as-
signed to single click events [21], [22]. The secret key
rate formula can be written as [6]

R ≥ qpacc

{
(Q − pmulti)

[
1 − H(E1)

]
− Q f (E)H(E)

}
. (6)

The parameter q is the efficiency of the protocol (q =
1/2 for the standard BB84 protocol, and q ≈ 1 for its
efficient version [23]); Q is the gain, i.e., the probability
that Bob obtains a click in his measurement apparatus
when Alice sends him a signal state; f (E) is the effi-
ciency of the error correction protocol as a function of
the error rate E, typically f (E) ≥ 1 with Shannon limit
f (E) = 1; H(x) is the binary Shannon entropy function
defined as

H(x) = −x log2 (x) − (1 − x) log2 (1 − x); (7)

pmulti is the multiphoton probability of the source, i.e.,

pmulti = 1 − e−μ(1 + μ); (8)

and E1 denotes an upper bound on the single photon
error rate. In the case of the standard BB84 protocol
without decoy-states, this last quantity is given by

E1 =
E

1 − pmulti

Q

. (9)

3.1 Evaluation
For simplicity, we shall consider that Bob employs

an active BB84 detection setup. Moreover, we assume
a simple model of a quantum channel in the absence of
eavesdropping; it just consists of a BS of transmittance
ηchannel. This model allows us to calculate the observed
experimental parameters Q and E. These quantities are
given in an Appendix. Our results, however, can also be
straightforwardly applied to any other quantum chan-
nel or to the case where Bob uses a detection apparatus
with passive basis choice, as they depend only on the
observed gain and QBER.

The resulting lower bound on the secret key rate is
illustrated in Fig. 4 (dashed line). In our simulation
we employ the following experimental parameters: the
dark count rate of Bob’s detectors is εB = 1 × 10−6,
the overall transmittance of his detection apparatus is
ηB = 0.1, and the loss coefficient of the quantum chan-
nel is α = 0.2 dB/km. We further assume that q = 1/2,
and f (E) = 1.22. With this configuration, it turns out
that the optimal value of the mean photon number μ

Fig. 4 Lower bound on the secret key rate R given by
Eq. (6) in logarithmic scale for the passive source illustrated
in Fig. 1 (dashed line). The solid line represents a lower
bound on R when Alice employs an active source. The in-
set figure shows the value for the optimized parameters μ
(dashed line) and Ω (solid line) in the passive setup.

decreases with the distance, while the value of the pa-
rameter Ω increases. In particular, μ diminishes from
≈ 0.084 to approximately 4 × 10−3, while Ω augments
from ≈ 0.365 to ≈ 0.76. This result is not surprising.
At long distances the gain Q of the protocol is very low
and, therefore, it is especially important to keep both
the multiphoton probability of the source, and the in-
trinsic error rate of the signals ρout,θ, also low. Fig. 4
includes an inset plot with the optimized parameters μ
(dashed line) and Ω (solid line). This figure shows as
well a lower bound on the secret key rate for the case
of an active source. The cutoff point where the secret
key rate drops down to zero is basically the same in
both cases. It is given by l ≈ 67.5 km. This result
arises from two main limiting factors: the multipho-
ton probability of the source, and the dark count rate
of Bob’s detectors. Note that in these simulations we
do not consider any misalignment effect in the chan-
nel or in Bob’s detection apparatus. From the results
shown in Fig. 4 we see that the performance of the pas-
sive scheme is similar to the one of an active setup. The
(relatively small) difference between the achievable se-
cret key rates in both scenarios is due to two main fac-
tors: (a) the probability pacc to accept a pulse emitted
by the source, which is pacc < 1 in the passive setup,
and pacc = 1 in the active scheme, and (b) the intrinsic
error rate of the signals accepted by Alice, that is zero
only in the case of an active source.

4 Alternative implementation scheme
Instead of using the scheme shown in Fig. 1, Alice

could as well employ, for instance, the device illustrated
in Fig. 5. This setup has only one laser diode, but fol-
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Fig. 5 Alternative implementation scheme with only one
pulsed laser source. The delay introduced by one arm
of the interferometer is equal to the time difference be-
tween two consecutive pulses. The polarization rotator
R−45◦ changes the +45◦ linear polarization of the incoming
pulses to −45◦ linear polarization.

lows a similar spirit like the original scheme shown in
Fig. 1, where a polarization measurement is used to de-
termine the polarization of the incoming signals. The
main idea is just to replace two single light pulses emit-
ted by two different diodes with two consecutive light
pulses generated by only one laser diode.

To keep the analysis simple, the scheme includes as
well an intensity modulator (IM) to block either all the
even or all the odd pulses in mode a (see Fig. 5). The
main reason for blocking half of the incoming pulses is
to suppress possible correlations between them. The IM
guarantees that the signals that go to Bob are precisely
tensor product of states of the form given by Eq. (4). To
see this, note that the signal states in mode a (before the
IM) can always be written as

ρout =
1

(2π)n+1

∫
φ0

∫
φ1

∫
φ2

. . .

∫
φn

|α(φ0,φ1)〉
〈α(φ0,φ1)| ⊗ |α(φ1,φ2)〉〈α(φ1,φ2)| ⊗ . . . ⊗

|α(φn−1,φn)〉〈α(φn−1 ,φn)| dφ0dφ1dφ2 . . . dφn, (10)

where the coherent states |α(φi ,φi+1)〉 have the form
|α(φi ,φi+1)〉 = exp [

√
υ(eiφia†i − e−iφiai)]|vac〉, and the op-

erators a†i are given by

a†i =
1√
2

(
a†
+45◦ + ei(φi+1−φi)a†−45◦

)
. (11)

If now Alice blocks, for instance, all the even pulses
in mode a, we obtain that the output state σout can be
written as

σout =

� n−1
2 
⊗

i=0

1
(2π)2

∫
φ2i

∫
φ2i+1

|α(φ2i,φ2i+1)〉

〈α(φ2i ,φ2i+1)| dφ2idφ2i+1 =

� n−1
2 
⊗

i=0

σi
out, (12)

with σi
out of the form given by Eq. (2). This way we

can directly apply the security evaluation provided in

Sec. 3. This transmitter requires, therefore, an active
control of the functioning of the IM. Note, however,
that this configuration might still be much less of a
problem than using a polarization modulator to actively
generate BB84 signal states at high rates, since no RNG
is needed to control the IM. Thanks to the one-pulse de-
lay introduced by one arm of the interferometer, it can
be shown that both setups in Fig. 1 and Fig. 5 are com-
pletely equivalent, except from the resulting secret key
rate. More precisely, the secret key rate in the passive
scheme with two lasers is double than that in the setup
illustrated in Fig. 5, since half of the pulses are now dis-
carded.

5 Conclusion
We have presented a method to passively generate

the signal states of the Bennett-Brassard 1984 QKD
protocol with coherent light. It needs only linear opti-
cal components and photodetectors, and constitutes an
alternative to those active sources that use externally-
driven elements. In the asymptotic limit of an infinite
long experiment, we have shown that the secret key rate
delivered by a passive transmitter is similar to the one
provided by an active source, thus showing the practical
interest of the passive scheme.
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Appendix. Gain and QBER
In this Appendix we provide a mathematical expres-

sion for the observed gain Q and error rate E. In par-
ticular, it can be shown that, in the scenario considered,
the gain is independent of the actual polarization of the
signals ρout,θ given by Eq. (4) and the basis used to mea-
sure them. After a short calculation, we find that this
parameter has the form

Q = 1 − (1 − εB)2e−μηsys , (13)

for all θ, where εB denotes again the dark count rate of
Bob’s detectors and ηsys is the overall transmittance of
the system.

The calculation of E is slightly more involved, since
the error rate varies depending on the value of the angle
θ. By symmetry, however, we can restrict ourselves to
investigate the QBER in only one of the valid regions
illustrated in Fig. 3; note that the error rate is the same
in all of them. For instance, let us consider the case
where θ ∈ [7π/4 + Ω, π/4 − Ω] (which corresponds to
the horizontal polarization interval), and let Eθ denote
the error rate of a signal state ρout,θ in that region. After
a tedious calculation, it can be shown that this quantity
can be written as

Eθ =
1

2Q

{
εB(εB − 1) f0,θ +

[
2 + εB(εB − 3)

]
f1,θ

+
[
1 + εB(εB − 2)

]
fdc,θ + εB(2 − εB)

}
, (14)

where the parameters f0,θ, f1,θ, and fdc,θ, have the form

f0,θ = e−ηsysμ
[
− 1 + e

1
2 ηsysμ(1+cos θ)

]
,

f1,θ = e−ηsysμ
[
− 1 + e

1
2 ηsysμ(1−cos θ)

]
,

fdc,θ = 1 + e−ηsysμ − e−
1
2 ηsysμ(1+cos θ)

− e−ηsysμ sin2 ( θ2 ). (15)

The quantum bit error rate E is then given by

E =
2

π − 4Ω

∫ π
4 −Ω

7π
4 +Ω

Eθ dθ, (16)

and we solve this equation numerically.
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