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ABSTRACT
In a previous work [ArXiv:0909.2530] we proposed a method for accelerating optimization
problem search using Bose-Einstein condensation (BEC). The system encodes an optimiza-
tion problem into an Ising model and cools it down by the process of BEC to find its ground
state spin configuration which corresponds to the solution of the problem. The system uses
the final state stimulation (FSS) property of bosonic particles, an effect originating from the
quantum indistinguishability of bosons, to provide speedups over the classical case. The
speedup is typically ∝ N, where N is the number of bosons in the system per site. In this
article we firstly review the proposed system, and give a more detailed numerical study of
the equilibration time with the boson number and the number of sites M in the Ising model.
We find that the equilibration time scales as τ ∼ exp(M)/N in agreement with previous ar-
guments based on simulated annealing. A detailed description of the kinetic Monte Carlo
method used for the study of the proposed system is also discussed.
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1 Introduction
Optimization problem search usually takes huge

amount of computational time to find the optimal so-
lution. In particular, for the class of NP-complete prob-
lems [1] the time complexity grows exponentially with
the problem size. Solving large-scale NP-complete
problems is a nontrivial and important task with many
practical applications. Quantum computers promise to
offer a new approach to computation with great in-
creases in speed over current computers for certain
kinds of problems. Shor’s factoring algorithm [2] and
Grover’s database search [3] algorithms are two exam-
ples where quantum computers have been shown to out-
perform the best classical computer algorithms. How-
ever, it has proven rather difficult to construct quantum
algorithms for a general computational problem. Sec-
ondly, in the ideal case quantum computation [4], as-
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sumes that the computation is performed by manipulat-
ing qubits using perfect unitary transformations, which
implicitly assumes that there is zero coupling to an ex-
ternal environment. In practice there is always some
small coupling to the environment which results in de-
coherence, a major obstacle in the quest for building
a scalable quantum computer. Therefore, alternative
methods of computation beyond the standard quantum
computation model that possess speedups beyond the
classical case are of distinct practical interest.

Previously we have proposed an alternative model
of computation [5] that involves a dissipative coupling
to the environment, and a large number of (quantum)
bosonic particles in the system. The general idea of the
scheme is to cool the system from an initial high tem-
perature state into the ground state, via the dissipative
coupling to the environment. The approach has simi-
larities with thermal annealing where the ground state
is found via cooling the system, rather than performing
a computation in the traditional sense. We have shown
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that there is a quantum speedup by using indistinguish-
able bosons in the system, originating from the bosonic
final state stimulation (FSS) effect [6]. FSS refers to the
effect where bosons cool faster by a factor of N + 1 in
a dissipative system, when there are N bosons occupy-
ing the destination state. In this article we give a more
detailed presentation of the system and investigate the
scaling of the system with problem size.

2 Review of the proposed system
We start by considering a representative optimization

problem, MAX-CUT, which is known to be in the class
of NP-complete problems [7]. Given a graph with M
vertices and connection links between them, the task
is to group the vertices into two groups A and B such
as to minimize the number of connections between the
groups (Fig. 1). Such a computational problem can
be formulated as an energy minimization problem of
a given Hamiltonian [8]. By assigning each vertex to
a spin σi (i.e. the “up” state spin as the vertex being
grouped in A and “down” state as in B) the problem is
equivalent to finding the minimal energy spin configu-
ration {σi} of an Ising model

H =
M∑

i, j=1

Ji jσiσ j. (1)

For this particular problem, Ji j = 1 if the vertices are
connected and zero otherwise. For other types of opti-
mization problems, the Ji j can take any real numbered
values such that the matrix is symmetric.

The problem one typically encounters in such a
scheme is that it is very difficult to find the ground
state of such a Hamiltonian because of the nature of
the configurational energy landscape. In simulated an-
nealing [9], very long annealing times are necessary to
ensure that the system does not get caught in local min-
ima. Quantum annealing [10] overcomes such prob-
lems due to local minima by introducing a quantum
tunneling term but requires a slow adiabatic evolution
to prevent leaks into excited states. The basic idea of
this work is to take advantage of the fact that bosons
tend to accumulate in the ground state of a system, and
that they reach this ground state very quickly through

Fig. 1 A simple example of MAX-CUT problem.

the process of FSS, to find the ground state of (1).
The schematic device proposed in Ref. [5] is shown

in Fig. 2. Each spin σi in the Hamiltonian (1) is associ-
ated with a trapping site containing N bosons. In each
trap, the bosons can occupy one of two states, which
we label by σ = ±1. Any particle that displays bosonic
statistics may be used, such as neutral atoms used to
create BECs. Atom chips may therefore be a suitable
candidate for making such a device [11]. Another pos-
sibility is to use exciton-polaritons in semiconductor
microcavities, which have recently observed to undergo
BEC [12]–[14]. BECs are convenient for this purpose
since we assume only two states on each site, which
could be provided by the internal degree of freedom
of the bosonic particles used. Exciton-polaritons pos-
sess a spin of σ = ±1 which can be injected by opti-
cal pumping with a linearly polarized laser beam. The
interactions between the sites are externally controlled
(Fig. 2b) such as to follow the Hamiltonian

Fig. 2 (a) The schematic device configuration. Each site
of the Ising Hamiltonian is encoded as a particular site, con-
taining N bosons. The bosons can occupy one of two states
σ = ± 1, depicted as either red or blue. (b) The interaction
between the sites denoted by the arrows in (a) are exter-
nally controlled by a measurement feedback loop in order
to produce the desired interaction Jij.
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H =
M∑

i, j=1

Ji jS iS j, (2)

where S i =
∑N

k=1 σ
k
i is the total spin on each site i, and

Ji j is the same matrix as (1) which specifies the compu-
tational problem. The interaction (2) can be created by
measuring the average spin on each site and feeding this
back into the system by applying a field Bi =

∑M
j=1 Ji jS j

on site i (see Fig. 2b). Although in general Ji j has a
large connectivity and is long-ranged, by using such a
feedback method to induce the interactions there is no
restriction to the kind of interactions Ji j that can be pro-
duced in principle.

Initially each site is prepared in a random configu-
ration of σ = ±1 spins such that the ensemble average
gives zero spin on each site. The system is cooled in the
presence of the interactions between the sites, by im-
mersing the system in an external heat bath. The read-
out of the computation is simply performed by measur-
ing the average spin on each site after some time after
the system cools down. Since the “computation” here
is the cooling process itself, no complicated gate se-
quence needs to be employed in contrast to the standard
model of quantum computation.

The computation on a BEC system starts from a ran-
dom spin state in each site, and evolves with the pres-
ence of the interaction, finally the system reaches a dy-
namic equilibrium. The time required to reach the equi-
librium thus is considered to be the computation time.
The time evolution of the bosonic Ising Hamiltonian is
performed by an extension of the method presented by
Glauber [15] to bosons. Given the M-site Hamiltonian

H =
∑
i, j

Ji jS iS j + λN
∑

i

S i, (3)

the states are labeled

|k〉 =
M∏

i=1

1√
ki!(N − ki)!

(a†i+)ki(a†i−)
N−ki |0〉, (4)

where the ki range from 0 to N, a†iσ is the creation op-
erator for a boson on site i in the state σ, and we have
defined the vector k = (k1, k2, ..., kM). At t = 0, there is
an equal probability pk of all states |k〉. The probability
distribution then evolves according to the equation

dpk

dt
=

M∑
i=1

N−ki∑
δki=−ki

−w(k, δki)pk

+ w(k + δki,−δki)pk+δki , (5)

where pk is the probability of the system in the state
k. Here δki = (0, ..., 0, δki, 0, ..., 0), the w(k, δki) is a
weight factor for the process |k〉 → |k+δki〉, containing

a transition rate factor from Fermi’s golden rule and a
coefficient to ensure that the system evolves to the cor-
rect thermal equilibrium distribution, in a similar way
to that discussed in [15].

We first derive the transition rate for the process
|k〉 → |k + δki〉. To derive the transition rate for
|δki| > 1, we require a generalization of Fermi’s Golden
rule beyond first order in perturbation theory. Such a
generalization is provided in [16], considering the case
of a multi-level atom transitioning to a continuum. In
our case, the bosonic site plays the role of the multi-
level atom and the continuum is the phonon reservoir
that the system loses energy to. We repeat the final re-
sult for a Nth order transition here for convenience:

T =
2π
�
ρ(EK )|Vk,N−1|2

N−1∏
n=1

|Vn,n−1|2
h2

n(EK) + s2
n(EK )

, (6)

where

hN−1(EK) = EK − EN−1 − δN−1,K(EK )

sN−1(EK) =
1
2
γN−1,K(EK )

hn−2(EK) = EK − En−2 − |Vn−2,n−1|2hn−1(EK )

h2
n−1(EK) + s2

n−1(EK)

sn−2(EK) =
|Vn−2,n−1|2sn−1(EK)

h2
n−1(EK) + s2

n−1(EK)

δN−1,K(E) = P
∫

dK
(2π)3

|VN−1,K |2
E − EK

γN−1,K(E) = 2π
∫
ρ(EK)

|VN−1,K |2
K

dK (7)

and EK is the energy of the continuum state K, En is
the energy of the nth atomic energy level, ρ(EK) is the
density of states for the continuum state K, and Vnm is
the transition matrix element between the nth and mth
atomic levels. For N = 1 the transition rate reduces to
that of Fermi’s golden rule.

Applying this formula to our case, we assume a per-
turbative transition on the system

V ∝ g
∑

i

[
a†i+ai− + a†i−ai+

]
, (8)

and energy levels in the bosonic site that are equally
spaced

En = nΔE + EK . (9)

The matrix elements are

|〈ki + 1|V |ki〉|2 = g2(ki + 1)(N − ki). (10)

If we assume that the perturbation V is very weak (g�
ΔE), we may simplify the expression (6) and take

h2
n(EK ) + s2

n(EK ) ≈ h2
n(EK)
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hn(EK) ≈ EK − En = −nΔE (11)

giving

T (k→ k + δki) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αξδk−1

((δk − 1)!)2∏δk
m=1(ki + m)(N − ki − δk + m) (δk > 0)

αξ|δk|−1

((|δk| − 1)!)2∏|δk|
m=1(ki − |δk| + m)(N − ki + m) (δk < 0)

(12)

where we have defined the parameters

α =
2π
�
ρ(EK)g2

ξ =
( g
ΔE

)2
(13)

and compacted the notation such that δki → δk.
We take the parameters α and ξ as phenomenological

parameters that may be determined by experiment. For
our numerical simulations, we measure all time scales
relative to α (or equivalently set α = 1), and choose a
small value for ξ, i.e. ξ � 1.

At thermal equilibrium, the transition rates are equal
between the states |k〉 ↔ |k + δk〉, which ensures that
dpk

dt = 0. Following [15], we demand that

w(k, δki)
w(k + δki,−δki)

=
pk+δki

pk
, (14)

The transition rates calculated in (12) cancel, and on
the RHS we can calculate from the probability distribu-
tion at thermal equilibrium

pk+δki

pk
= exp

⎡⎢⎢⎢⎢⎢⎢⎣−δkβ
⎛⎜⎜⎜⎜⎜⎜⎝2λN +

∑
j�i

Ji j(4k j − 2N)

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ ,
(15)

where β = 1
kBT .

Putting all this together gives the coefficients as

w(k, δki)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 + γi(δk))
αξδk−1

((δk − 1)!)2∏δk
m=1(ki + m)(N − ki − δk + m) (δk > 0)

(1 + γi(δk))
αξ|δk|−1

((|δk| − 1)!)2∏|δk|
m=1(ki − |δk| + m)(N − ki + m) (δk < 0)

(16)

where

γi(δk) = tanh

⎡⎢⎢⎢⎢⎢⎢⎣−δkβ
⎛⎜⎜⎜⎜⎜⎜⎝λN +

∑
j�i

Ji j(2k j − N)

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ .

(17)

For a N boson, M site problem, the number of equa-
tions in (5) grows as (N + 1)M, which quickly becomes
intractable to solve directly. We therefore use a kinetic
Monte Carlo (KMC) method to investigate multiple site
systems with comparatively large particle numbers.

3 Kinetic Monte Carlo simulation
In the real BEC computing device, the bosons in each

site make transitions from one state to another follow-
ing a stochastic process as time advances. Their ensem-
ble property is described by the master equation (5).
For such a system with a stochastic transition behav-
ior, KMC is an ideal method to find its dynamic nature.
Here we give a detailed description of the algorithm
used to generate our results.

We start the simulation from a random initial value
of k = (k1, k2, ..., kM) in (5), and update the system by
repeating the stochastic transition process following the
KMC method. In each update we calculate the transi-
tion weight w(k, δki) in (5) for all the possible transi-
tions, and its cumulative function

R j =

m∑
i=1

n∑
δki=−ki

w(k, δki) (18)

where we use the index j = (m− 1)N + (n+ ki), for m =
1, ...,M and n = −ki, ...,N − ki (all possible transitions),
thus j ranges from 0 to MN. We generate a uniform
random number r ∈ (0, 1] to carry out the transition
according to R j−1 < rRMN ≤ R j where we simply define
R−1 = 0. In this way the transitions with larger weights
are more likely to be chosen.

To determine the time increment Δt between the tran-
sitions, a rejection-free approach is applied, where the
time advance is not related with what transition is taken
but only depends on the total transitions weight [17].
The Δt is assumed to be long enough that the system
has no memory of how it entered to the current state,
thus the transition weights are independent of what
state preceded the current state. During each unit time
every possible pathway has its own transition weight
w(k, δki), and the total transitions weight Wtotal = RMN

is the sum of them. The system has the same probability
of transition to another state during each increment of
time, which gives a first-order process with exponential
decay statistics. Thus the probability that the system
remains in its current state is

Premain(t) = exp(−Wtotalt). (19)
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Since

1 − Premain(t′) =
∫ t′

0
P(t)dt, (20)

from (19) and (20) we have the probability distribution
function P(t) for the time of transition

P(t) = Wtotal exp(−Wtotalt). (21)

The average time for transition tav is the first moment
of the distribution (21)

tav =

∫ ∞
0

tP(t)dt =
1

Wtotal
. (22)

Therefore the time increment Δt randomly drawn ac-
cording to the distribution (21) is calculated according
to

Δt = −(1/Wtotal) ln(r) (23)

where r ∈ (0, 1] is a randomly generated number and
− ln(r) forms an exponentially distributed random num-
ber.

The entire picture of the update process can be seen
as a Markov chain, and the transition dynamics corre-
sponds to a Markov walk. For one trajectory we set
the simulator to repeat the transition until the system
evolves to a certain running time, and by repeating a
large number of the trajectories we acquire the ensem-
ble result equivalent to the numerical solution of (5).

For each site i, in the program we divide the run-
ning time into a certain number of divisions with equal
lengths of time. Each division represents the 〈ki〉 in that
time slice, and is calculated as

〈ki(t)〉 = 〈ki(uΔT )〉 =
Ntra j∑
x=1

ki(t, x)ΔT ′(t, x)
ΔT Ntra j

, (24)

where t ∈ (uΔT, (u + 1)ΔT ], u is the index of the time
divisions, the summation is over all simulation trajecto-
ries, ki(t, x) is the state of site i at time t of trajectory x,
ΔT is the length of the time division, ΔT ′(t, x) is the
time partial that in time t of trajectory x the state ki

Fig. 3 Recording the states by time divisions in a KMC
simulation.

was kept inside the division ΔT , and Ntra j is the total
number of the trajectories (see Fig. 3). A complete flow
chart of the simulation is given in Fig. 4.

The simulator is implemented by a C program run-
ning on a Windows PC. For various small systems we
have verified the KMC simulation results to be identical
with numerically evolved results calculated in Mathe-
matica.

An example of the output from the simulator is given
in Fig. 5, The time evolution curve is fitted by a func-

Fig. 4 KMC simulation flow chart.
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Fig. 5 (a) Ensemble result by KMC simulation for site 1
of a 3 site 3 particle system. (b) One trajectory of the
KMC simulation for the same system showing transitions
between the levels on site 1.

tion f (t) = a exp(−t/t0) + kequil where kequil is the equi-
librium value of

∏M
i=1 ki, and the equilibrium time τ is

defined as the time required for the fitted function to
reach 0.9kequil.

We use the simulator to investigate systems in the
parameter space of (β,N,M) which are the inverse tem-
perature, boson number, and site number respectively.

4 Simulations and results
First to find the dependency of equilibrium time τ

to the boson number N, we analyzed a four site BEC
system with Hamiltonian

H =
∑
i� j

Ji jS iS j + λN
∑

i

S i (25)

with Ji j = −10 and λ = −1. The Hamiltonian has a
local minimum state ↑↑↑↑, and a global minimum state
↓↓↓↓. Fig. 6 is obtained by finding the equilibrium time
τ for site i and plotting this against the error for site i
defined as

εi = 1 − 1
Z

∑
{S iσi>0}

exp[−H/kBT ] (26)

Fig. 6 (a) 1/N dependence of the equilibration, (b) Aver-
age time between spin flips τflip, for the 4 site bosonic Ising
model. All calculations use α = 1 and ξ = 0.001.

where Z is the partition function, the summation is
over all configurations with the same sign of spin as
the ground state σi = −1 of the original Ising model
problem. Fig. 6a shows the curves approach zero equi-
libration time as ∝ 1/N for large N. In a typical sys-
tem implemented by exciton-polaritons, the N can be
> 105. Therefore potentially very large speedups are
possible using the bosonic systems with large particle
numbers. Fig. 6b shows the average time between spin
flips, which is defined to be a transition where any one
of the spins S i in the system changes its sign. The re-
sults show that as the boson number N is increased, the
average time between spin flips decreases in proportion
to N. We attribute this as the reason why the equili-
bration times in Fig. 6a decrease with N, even in the
presence of local minima in the problem.

To find how the equilibrium time τ changes with the
number of sites M, we analyzed the same configuration
Ji j = −J = −10, λ = −1 for M = 2, 3, 4, 5, 6 systems.
The problem for different M are equivalent in the fol-
lowing sense. For any M and N, the Hamiltonian can
be written as
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Fig. 7 (a) Transition paths combination from local minima
to global minimum for a M = 4, N = 1 system. (b) The
energy landscape for a M = 4, N = 1 system with fixed Jij =
–10 and λ = –1.

H = − J
M∑

i, j=1

S iS j + λN
M∑

i=1

S i

= − JS 2
tot + λNS tot, (27)

where S tot =
∑M

i=1 S i. The interaction part of the Hamil-
tonian (27) can be considered as a quadratic function of
the total spin of the system (Fig. 7b blue curve) with its
global minimum symmetric between positive and nega-
tive total spin. The second term in (27) introduces a bias
into the energy landscape (Fig. 7b red curve) to ensure
that there is a unique global minimum. Therefore for
any M, our problem contains a single global minimum
and a single local minimum. As the number of sites is
increased, M simultaneous spin flips are required in or-
der to transition between the local and global minimum
(Fig. 7a).

The results are shown in Fig. 8. We see that as the
boson number is increased, there is a speedup at con-
stant error of several orders of magnitude. However, as
M increases it takes a longer time for the same error
and particle number. The dependence of the equilib-
rium time with M is shown in Fig. 9. We see that for a
fixed error ε and particle number N, as the number of
site M increases the equilibrium time grows exponen-
tially, however, increasing N can reduce it by a linear
factor. In general for a fixed particle number N, a lower
error probability requires longer equilibrium times.

Fig. 8 Equilibrium time for M = 2, 3, 4, 5, 6 systems, all
systems use the same configuration Jij = –10, λ = –1.

5 Summary and conclusions
We have performed a detailed kinetic Monte Carlo

study of the equilibration time required for a Ising
model problem including a local minimum for various
site numbers M and boson numbers N. Although the
system sizes that we consider in this report are much
smaller than in a realistic setting, we do not foresee any
fundamentally different effects to occur for larger sys-
tem sizes, thus we expect that similar speedups should
be possible with a larger number of lattice sites and bo-
son numbers. From the KMC results, the order of the
time complexity to solve Ising model problem on BEC
system can be written in a form as

τ ∼ exp(M)
N
, (28)

where the time grows exponentially with the number of
sites M and can be reduced linearly with the particle
number N. Although the acceleration provided by the
N is only linear, since N can in practice be a very large
number (e.g. > 105) this scheme is promising towards a
purpose built device for solving optimization problems
that can be written in an Ising form.

The scheme described here can be combined with an
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Fig. 9 (a) M-dependency of equilibrium time τ for different
particle number with fixed ε = 0.25. (b) M-dependency of
equilibrium time τ for different ε with fixed N = 3. All systems
use the same configuration Jij = –10, λ = –1.

annealing schedule where the temperature can be grad-
ually reduced towards kBT → 0. In practice this is more
favorable than the constant temperature method that
was used in the current simulations. Since the origin
of the speedups is due to the increased spin flip times
of the bosons on each site, we do not foresee any funda-
mental difference between using an annealing schedule
to the constant temperature approach calculated here.
In some preliminary results we have already observed
speedups when combined with an annealing schedule,
however, it not clear currently what kind of schedule is
optimal for the bosonic case. We thus leave this com-
ponent as future work.

The computational scheme described in this report
is clearly different to the standard quantum computa-
tional model, where information is stored in a super-
position state of quantum bits. The “quantum” nature
of this computation occurs due to indistinguishability
of the bosons, which is the origin of speedup due to
FSS. In the sense that there is no coherence between
the sites, as shown in (28) there is no difference to the

classical case in terms of the scaling with the system
size. A different scaling behavior may be possible if
coherence is introduced between the sites, combining
the bosonic speedup with quantum parallelism. Possi-
ble extensions along this line of thinking are currently
being investigated. Another advantage of the present
scheme is that it is generally applicable to a large class
of problems, that can be formulated as a Hamiltonian
to be optimized. Due to the current experimental diffi-
culties of creating a quantum computer, examining al-
ternative models of quantum computation such as the
present scheme may open up new possibilities towards
the realization of a practical device.
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