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ABSTRACT
This paper presents an optimization of IP load-balanced routing for the hose model. We
present an IP load-balanced routing scheme based on the two-phase routing over shortest
paths. It is called a fine two-phase routing (F-TPR) scheme. In F-TPR, traffic is distributed
from a source node to intermediate nodes more finely, compared to the original TPR. F-TPR
introduces the distribution ratio to node m that is determined for each source-destination pair
of (p, q), kpq

m . To determine an optimum set of kpq
m , an linear programming (LP) formulation

is first derived. However, the formulation is difficult to solve as a simple LP problem. This
is because each element of the traffic matrix is not determined because of the hose model
and there are too many possible parameters for us to consider. By introducing a duality the-
orem , we successfully formulate our problem a quadratic constraint programming (QCP)
formulation that can be solved to determine the split ratios by using a mathematical pro-
gramming solver. We compare F-TPR with TPR and the Multi-Protocol Label Switching
(MPLS)-Traffic Engineering (TE). Numerical results show that F-TPR reduces the network
congestion ratio compared to TPR. Numerical results show that F-TPR greatly reduces the
network congestion ratio compared to TPR, and provides comparable routing performances
to that of MPLS-TE.
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1 Introduction
Adopting an appropriate routing scheme can in-

crease the network resource utilization rate and network
throughput of Internet Protocol (IP) networks [1]. Since
it optimizes the assignment of traffic resources, addi-
tional traffic can be supported. One useful approach
to enhancing routing performance is to minimize the
maximum link utilization rate, also called the network
congestion ratio, of all network links. Minimizing the
network congestion ratio leads to increasing additional
admissible traffic.

Several routing strategies have been extensively stud-
ied [2]–[9]. Wang et al. [2] formulates a general traf-
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fic engineering problem, where traffic demands are as-
sumed to be flexibly split among source and destina-
tion nodes. This sophisticated operation is performed
by the Multi-Protocol Label Switching (MPLS) Traffic-
Engineering (TE) technology [10]. However, legacy
networks mainly employ shortest-path-based routing
protocols such as Open Shortest Path First (OSPF) and
Intermediate System to Intermediate System (IS-IS).
This means that already deployed IP routers in the
legacy networks need to be upgraded, which signifi-
cantly increases capital expenditures. Therefore, it is
desirable that an existing IP routing protocol still in use
should be utilized.

Traffic engineering schemes that set optimum link
weights in OSPF-based networks were addressed in
[3]–[5]. When traffic demands are changed, opti-
mum link weights are re-calculated and network oper-
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ators configure the updated link weights. According to
the updated weights, IP routes are changed. Chang-
ing routes frequently causes network instability, which
leads to packet loss and the formation of loops.

Load-balanced routing increases network resource
utilization efficiency [1], [6], [7], under given traffic
conditions. It is difficult for network operators to mea-
sure and predict the actual traffic matrix [5], [9]. The
traffic matrix is denoted as T = {dpq}. dpq is a traffic
demand between source node p and destination node q.
It is, however, easy for network operators to specify the
traffic as just the total outgoing/incoming traffic from/to
node p and node q, The total outgoing traffic from node
p is represented as

∑
q dpq = αp, where αp is the traffic

that node p can send into the network. The total in-
coming traffic to node q is represented as

∑
p dpq = βq,

where βq is the traffic that node q can receive from the
network. The traffic model that is specified by the total
outgoing and incoming traffic for the network is called
by the hose model [11]–[13].

Oki et al. presented a simple shortest-path-based
load-balanced IP routing scheme for the hose model
[14], which is an extension of the Smart-OSPF scheme
[6]. The extended S-OSPF scheme, the same as the
original S-OSPF, splits traffic demand only at source
edge nodes and transmits the traffic along the short-
est path routes. In the original S-OSPF scheme, the
split ratios are determined for each source-destination
edge node pair by assuming that the traffic demand be-
tween all source-destination edge node pairs are known,
in other words, the exact traffic matrix is completely
given. On the other hand, extended S-OSPF assumes
the use of the hose model. Extended S-OSPF enhances
the routing performance compared with the classical
shortest path routing scheme. However, since source
edge nodes distribute traffic only to the neighbor nodes,
the routing performance of S-OSPF highly depends on
the number of neighbor nodes.

Kodialam et al. [7], [8] introduced a general two-
phase routing strategy for the hose model. The routing
strategy performs load balancing in two stages across
intermediate nodes. A linear programming problem
was presented to maximize the network throughput
to determine routing between source and intermediate
nodes and between intermediate and destination nodes.
Zhang et el. presents a fault-tolerant network design
approach based on the two-phase routing strategy [1].

Antić et al. [9] extends the general two-phase rout-
ing strategy presented in [7] to a simpler routing strat-
egy than the general one by using shortest paths be-
tween source and intermediate nodes and between in-
termediate and destination nodes for the hose model,
as shown in Fig. 1. To differentiate the original two-
phase routing strategy presented in [7], [8] from the ex-

Fig. 1 Network structure of Two-Phase Routing (TPR) and
Fine TPR (F-TPR) based on shortest paths.

tended routing strategy over shortest paths presented
in [9], this paper calls the former strategy the original
two-phase routing (TPR), and simply the latter strat-
egy TPR. TPR performs load balancing and each flow
is routed according to the OSPF protocol, which is an
existing IP routing protocol, in two stages across in-
termediate nodes. TPR makes the number of possible
routes increase for load balancing. This reduces net-
work congestion. In TPR, however, a source node dis-
tributes traffic to all the nodes in the network as tran-
sit or destination nodes with a set of optimum distri-
bution ratios that are set to be the same values among
all source-destination pairs. The distribution ratio to
node m for all the source-destination pairs is km, where
0 ≤ km ≤ 1 and

∑
m km = 1. km does not depend on

source-destination pair of (p, q). As a result, the traffic
load is not efficiently distributed so as to minimize the
network congestion ratio. It is also possible for some
traffic to go through the same node twice on the two
routes of the first and second stages.

Fig. 2 shows an example of TPR. First, consider traf-
fic from node 1 to node 3, as shown in Fig. 2 (a). In-
termediate nodes are nodes 2, 3, and 4, but node 3 is
also the destination node. In the first phase, node 1 dis-
tributes traffic to nodes 2, 3, and 4 with the distribution
ratios of k2, k3, and k4, respectively, through IP tunnels,
which are routed on their shortest paths. In the sec-
ond phase, intermediate nodes 2 and 4 forward traffic
to node 3 on the shortest paths. As node 3 is the des-
tination node, the second phase does not exist for node
3. Second, consider traffic from node 1 to node 2, as
shown in Fig. 2 (b). Intermediate nodes are nodes 2, 3,
and 4, but node 2 is also the destination node. In the first
phase, node 1 distributes traffic to nodes 2, 3, and 4 with
the same distribution ratios as the case of Fig. 2 (a). In
the second phase, intermediate nodes 3 and 4 forward
traffic to node 2 on the shortest paths. As node 2 is the
destination node, the second phase does not exist for
node 2. The route from node 1 to node 2 via node 3
is clearly not efficient, because a link between node 2
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(a) Traffic from node 1 to node 3 (b) Traffic from node 1
to node 2

Fig. 2 Example of TPR.

and node 3 is used twice for the same traffic in case of
k3 � 0, where k3 is determined considering traffic for
all source and destination node pairs.

Therefore, to make traffic load efficiently balanced,
the distribution ratio to node m should be determined
for each each source-destination pair of (p, q). In other
words, the distribution ratio should be defined as kpq

m ,
where 0 ≤ kpq

m ≤ 1 and
∑

m kpq
m = 1.

This paper presents an optimization of IP load-
balanced routing for the hose model. We introduce
an IP load-balanced routing scheme based on the two-
phase routing over shortest paths [15]. It is called a
fine two-phase routing (F-TPR) scheme [16]. In [16],
F-TPR was proposed assuming that the exact traffic
matrix is completely given. This paper describes de-
tail analysis of F-TPR by extending our previous work
in [15], by assuming the hose model, where the total
outgoing and incoming traffic to each edge node in the
network is given. The network structure of F-TPR is
similar to that of TPR, as shown in Fig. 1. However,
in F-TPR, traffic is distributed from a source node to
multiple intermediate nodes more finely, compared to
TPR. F-TPR introduces the distribution ratio to node
m that is determined for each source-destination pair
of (p, q), kpq

m . To determine an optimum set of kpq
m , an

linear programming (LP) formulation is first derived.
However, the formulation is difficult to solve as a sim-
ple LP problem. This is because each element of the
traffic matrix is not determined and there are too many
possible parameters for us to consider. By introduc-
ing a duality theorem [5], we successfully formulate
our problem a quadratic constraint programming (QCP)
formulation that can be solved to determine the split ra-
tios by using a mathematical programming solver. We
compare F-TPR with TPR and MPLS-TE. Numerical
results show that F-TPR greatly reduces the network
congestion ratio compared to TPR, especially when the
network topology becomes dense. In addition, F-TPR
provide the network congestion ratio close to that of

(a) Traffic from node 1 to node 3 (b) Traffic from node 1
to node 2

Fig. 3 Example of F-TPR.

MPLS-TE within the difference of 10%.
Fig. 3 shows an example of F-TPR. Compared with

the example of TPR, as shown in Fig. 2, the distribution
ratios of F-TPR are different from those of TPR. In F-
TPR, the distribution ratios of k13

2 , k13
3 , and k13

4 are set
for traffic from node 1 to node 3, while those of k12

2 , k12
3 ,

and k12
4 are differently set for traffic from node 1 to node

2. For traffic from node 1 to node 2, k12
3 is able to set

to 0 in order to avoid using a link between node 2 and
node 3 twice, because k12

3 is independent of k13
3 . Thus,

F-TPR solves the issue of inefficient traffic distribution.
The remainder of this paper is organized as follows.

Section 2 uses a network model to introduce the termi-
nology of this paper. Section 3 describes the original
TPR scheme. Section 4 describes the proposed F-TPR
scheme. Section 5 evaluates the performance of F-TPR
in a comparison with TPR. Finally, Section 6 summa-
rizes the key points.

2 Network model
The network is represented as a directed graph

G(V,E), where V is the set of vertexes (nodes) and E
is the set of links. A link from node i ∈ V to node j ∈ V
is denoted as (i, j) ∈ E. ci j is the capacity of (i, j) ∈ E.
Li j is the link load of (i, j) ∈ E. T = {dpq} is the traffic
matrix, where dpq is the traffic demand from node p to
node q. αp is the traffic that node p can send into the
network. βq is the traffic that node q can receive from
the network. T = {dpq} is bounded by the hose model
as follows.

∑

q∈V
dpq = αp p ∈ V (1a)

∑

p∈V
dpq = βq q ∈ V (1b)

Let a set of T s that satisfy the condition specified by
Eqs. (1a)-(1b).
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The network congestion ratio, which refers to the
maximum value of all link utilization rates in the net-
work, is denoted as r. Minimizing r means that addi-
tional admissible traffic is maximized. The additional
admissible traffic volume is accepted up to the current
traffic volume multiplied by 1/r. Minimizing r with
routing control is the objective of this paper. In this
case, the length of each computed path between source
and destination nodes does not always choose the short-
est path.

3 Two phase routing with hose model
In TFR [9], the traffic from node p to node q is not

sent directly. It is split in portions that are directed to
intermediate node m ∈ V . For all source-destination
pairs (p, q), the portion of a flow dpq that is balanced
across a node m equals km, where 0 ≤ km ≤ 1 and∑

m km = 1. Then, every intermediate node m forwards
the received traffic to its final destination node q. Traf-
fic from node p to node m and from node m to node q is
routed along the shortest paths. TRF assumes to use an
existing IP protocol, where the configuration of IP tun-
nels is required, such as IP-in-IP and Generic Routing
Encapsulation (GRE) tunnels, between all edge nodes
and intermediate nodes in the network.

We briefly review the formulation to determine an
optimum set of km so as to minimize the network con-
gestion ratio, r, in the hose model. Consider traffic from
node p to node q across node m. Let bpm the traffic be-
tween node p and node m. The traffic between node p
and node m consists of two components. The first one
is the traffic generated by node p and balanced across
node m, which is defined as b(1)

pm. The second one is the
traffic for m balanced across node p, which is defined
as b(2)

pm. Therefore, bpm is given by:

bpm = b(1)
pm + b(2)

p,m. (2)

The traffic generated by node p and balanced across
node m is given by:

b(1)
pm =

∑

q∈V
kmdpq = kmαp. (3)

The traffic for m balanced across node p is given by:

b(2)
pm =

∑

u∈V
kpdum = kpβm. (4)

In Eqs. (3) and (4), the equalities are obtained by the
constraints of the hose model. Thus,

bpm = kmαp + kpβm. (5)

Let the variable Fi j
pm set 1 if (i, j) belongs to the shortest

path between the nodes p and m and otherwise 0. The

link load Li j of (i, j) is given by:

Li j =
∑

p∈V

∑

m∈V
Fi j

pmbpm

=
∑

p∈V

∑

m∈V
Fi j

pm(kmαp + kpβm). (6)

An optimal routing formulation with TPR for the hose
model to determine the distribution ratio km is as fol-
lows.

min r (7a)

s.t.
∑

m∈V
km = 1 (7b)

∑

p∈V

∑

m∈V
Fi j

pm(kmαp + kpβm) ≤ ci j · r

(i, j) ∈ E (7c)∑

i∈V

∑

p∈V

∑

m∈V
(Fi j

pm − F ji
pm)(kmαp + kpβm)

= β j − α j j ∈ V (7d)

0 ≤ km ≤ 1 m ∈ V (7e)

0 ≤ r ≤ 1 (7f)

The objective function in Eq. (7a) minimizes the net-
work congestion ratio. Eq. (7b) states that the sum of km

over all intermediate nodes m is equal to 1. Eq. (7c) in-
dicates that the sum of the fractions of traffic demands
transmitted over (i, j) is equal to or less than the net-
work congestion ratio times the total capacity ci j for
all links. The constraints of the hose model is incor-
porated in Eq. (7c) by using Eqs. (3) and (4). Eq. (7d)
is a constraint for flow conservation. It states that the
difference of the traffic flows incoming to node j and
outgoing from j is equal to β j − α j. Eqs. (7a)-(7d) are
an LP problem and can be solved optimally with stan-
dard LP solver.

4 Fine two phase routing with hose
model

In F-TPR, traffic is distributed from a source node to
intermediate nodes more finely, compared to the orig-
inal TPR. The distribution ratio to node m for each
source-destination pair of (p, q) is introduced as kpq

m .
To determine an set of optimum kpq

m that minimizes the
network congestion ratio, a general programming for-
mulation is presented in this section.

In the same way as TPR, the traffic generated by node
p and balanced across node m is given by:

b(1)
pm =

∑

q∈V
kpq

m dpq. (8)

The traffic for m balanced across node p is given by:

b(2)
pm =

∑

u∈V
kum

p dum. (9)
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Note that Eqs. (8) and (9) are not able to be expressed
by the constraints of the hose model, as is the case of
Eqs. (3) and (4). This is because kpq

m depends on node
pair (p, q). The link load Li j of (i, j) is obtained as:

Li j =
∑

p∈V

∑

m∈V
Fi j

pmbpm

=
∑

p∈V

∑

m∈V
Fi j

pm(b(1)
pm + b(2)

pm)

=
∑

p∈V

∑

m∈V
Fi j

pm

⎛⎜⎜⎜⎜⎜⎜⎝
∑

q∈V
kpq

m dpq +
∑

u∈V
kum

p dum

⎞⎟⎟⎟⎟⎟⎟⎠

=
∑

p∈V

∑

q∈V

∑

m∈V
(Fi j

pm + Fi j
mq)kpq

m dpq

=
∑

p∈V

∑

q∈V
ϕ

i j
pqdpq, (10)

where ϕi j
pq is defined as:

ϕ
i j
pq =
∑

m∈V
(Fi j

pm + Fi j
mq)kpq

m (11)

The difference of the traffic flows incoming to node j
and outgoing from j is given by:

∑

i∈V
(Li j − L ji)

=
∑

i∈V

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

p∈V

∑

q∈V

∑

m∈V
(Fi j

pm + Fi j
mq)kpq

m dpq

−
∑

p∈V

∑

q∈V

∑

m∈V
(F ji

pm + F ji
mq)kpq

m dpq

⎫⎪⎪⎪⎬⎪⎪⎪⎭

=
∑

p∈V

∑

q∈V

∑

i∈V

∑

m∈V
(Fi j

pm+ Fi j
mq−F ji

pm− F ji
mq)kpq

m dpq

=
∑

p∈V

∑

q∈V
τ

j
pqdpq, (12)

where τ j
pq is defined as:

τ
j
pq =
∑

i∈V

∑

m∈V
(Fi j

pm + Fi j
mq − F ji

pm − F ji
mq)kpq

m (13)

Let a set of Ts that satisfy the condition specified
by Eqs. (1a)-(1b) be {T }. Assuming that T is given, the
network congestion ratio, r. K is represented as a three-
dimensional distribution-ratio matrix whose element is
kpq

m , or K = {kpq
m }. {K} is a set of K.

We would like to find the optimal routing, in other
words, the optimal set of distribution ratios that mini-
mizes r for K ∈ {K}, and maximizes the minimal r in
terms of T ∈ {T }. This routing is called oblivious rout-
ing [7], [17].

min
K∈{K}

max
T∈{T }

r (14)

To find the optimal r and K, first an optimal routing
problem to obtain minK∈{K} r is considered, under the
condition that T ∈ {T } is given. Then, “maxT∈{T }” in
Eq. (14) is incorporated into the problem. For a given
T ∈ {T }, an optimal routing formulation with F-TPR
for the hose model to determine the distribution ratio
kpq

m is as follows.

min r (15a)

s.t.
∑

m∈V
kpq

m = 1 p, q ∈ V (15b)

∑

p∈V

∑

q∈V
ϕ

i j
pqdpq ≤ ci j · r (i, j) ∈ E (15c)

∑

p∈V

∑

q∈V
τ

j
pqdpq = β j − α j j ∈ V (15d)

0 ≤ kpq
m ≤ 1 p, q,m ∈ V (15e)

0 ≤ r ≤ 1 (15f)

The objective function in Eq. (15a) minimizes the net-
work congestion ratio. Eq. (15b) states that the sum
of kpq

m over all intermediate nodes m for each source-
destination node pair of (p, q) is equal to 1. Eq. (15c)
indicates that the sum of the fractions of traffic demands
transmitted over (i, j) is equal to or less than the net-
work congestion ratio times the total capacity ci j for all
links. Eq. (15d) states that the difference of the traffic
flows incoming to node j and outgoing from j is equal
to β j − α j.

Although Eqs. (15a)-(15f) can be expressed as an LP
problem, it cannot be easily solved as a regular LP
problem. Constraint (15c) lists every valid combina-
tion in T = {dpq} specified by Eqs. (1a)-(1b). It is im-
possible to solve the LP problems for all possible sets
of T = {dpq}. A noticeable difference between the TPR
formulation in Eqs. (7a)-(7f) the F-TPR formulation in
Eqs. (15a)-(15f) is as follows. The TPR formulation ex-
presses the conditions by αp and βq, and dpq does not
appear in the formulation. On the other hand, in the
F-TPR formulation, dpq still remains in the constraints,
because kpq

m depends on node pair (p, q).
The problem of Eqs. (15a)-(15f) is solved by the fol-

lowing property, which is obtained by extending Chu’s
property [5] to F-TPR, using a duality theorem.
Property 1. kpq

m achieves congestion ratio ≤ r for all
traffic matrices in T = {dpq} constrained by the hose
model if and only if there exist non-negative parameters
πi j(p), λi j(p), ξi j(p), and ζi j(p) for every (i, j) ∈ E such
that
i)
∑

p∈V αpπi j(p)+
∑

p∈V βpλi j(p)+
∑

p∈V (βp −αp)ξi j(p)
≤ ci j · r for each (i, j) ∈ E
ii) ϕi j

pq ≤ πi j(p)+λi j(q)+
∑

m∈V τm
pqξi j(m) for each (i, j) ∈

E and every p, q ∈ V .
Property 1 is proved in Appendix A.
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Property 1 allows us to replace constraints (15c) and
(15d) in Eqs. (15a)-(15f) with requirements (i)-(ii) in
Property 1, and transforms the formulation into the fol-
lowing.

min r (16a)

s.t.
∑

m∈V
kpq

m = 1 p, q ∈ V (16b)

∑

p∈V
αpπi j(p) +

∑

p∈V
βpλi j(p)

+
∑

p∈V
(βp − αp)ξi j(p) ≤ ci j · r

(i, j) ∈ E (16c)

ϕ
i j
pq ≤ πi j(p) + λi j(q) +

∑

m∈V
τm

pqξi j(m)

p, q ∈ V(i, j) ∈ E (16d)

πi j(p), λi j(p), ξi j(p) ≥ 0

p, q ∈ V, (i, j) ∈ E (16e)

0 ≤ kpq
m ≤ 1 p, q,m ∈ V (16f)

0 ≤ r ≤ 1 (16g)

Eqs. (15c)-(15d) are replaced by Eqs. (16c)-(16d).
Property 1 eliminates T = {dpq} in Eqs. (16a)-(16g) by
introducing the variables of πi j(p), λi j(p), and ξi j(m).
As τm

pq includes liner terms in terms of kpq
m as expressed

in Eq. (13), Eq. (16d) is a quadratic constraint. There-
fore, Eqs. (16a)-(16g) represent a QCP formulation that
can be solved to determine the split ratios by using a
mathematical programming solver.

Note that the distribution ratios, kpq
m , can be com-

puted by a path computation element (PCE), which
collects the information of the network topology and
the hose-model parameters of αp and βq. The com-
puted distribution ratios are sent to nodes by PCE. Each
node updates their forwarding tables according to the
received distribution ratios.

5 Performance evaluation
The performances of the four schemes, which are F-

TPR, TPR, and MPLS-TE [10] are compared by solv-
ing their LP or QCP problems. The performance mea-
sure is the network congestion ratio, r. We use ran-
domly generated network topologies under the con-
dition that average node degree D is satisfied for a
given number of nodes N and at least one path ex-
ists between every source-destination node pair. D is
the average number of other nodes to which individual
nodes are connected by links. Link capacities are ran-
domly generated with uniform distribution in the range
of (80,120). αp and βq, which are the parameters of the
hose models, are also randomly generated in the range
of (0,100). In F-TPR and TPR, the link weights that

Fig. 4 Comparison of congestion ratios (N = 8).

are used for shortest path computation are set to be in-
versely proportional to the link capacities. To compare
the r of the different models, we normalize the network
congestion ratios of F-TPR, and TPR by that of MPLS-
TE. The normalized network congestion ratios for F-
TPR, TPR, and MPLS-TE are denoted as rF−TRP, rT PR,
rMPLS−T E(= 1.0) respectively. MPLS-TE provides the
best routing so as to minimize the network congestion
ratio due to its sophisticated operations.

Fig. 4 shows comparisons of the network congestion
ratios of the three schemes. We obtained the average
values of the normalized network congestion ratios for
100 randomly generated networks with N = 8. The
results indicate that F-TPR reduces the network con-
gestion ratio, compared to TPR. The reduction effect
of the network congestion ratio becomes strong as D
increases. For example, with D ≥ 4, the difference be-
tween rF and rT is more than 20%. This is because the
routing flexibility of F-TPR is much higher than that of
TPR with large D. The results also indicate that rF is
close to rM within the difference of 6% for any D. This
means that the F-TPR, which uses a routing protocol
that is already deployed in the existing network, pro-
vides flexible routing close to that of MPLS-TE, which
requires functional upgrades and sophisticated opera-
tions.

The time to solve the optimization problems are mea-
sured by using a Linux-based computer with 3.00 GHz
Intel R© CoreTM2 Duo CPU E8400 and 3 GB memory.
For N = 6, 8, 10, and 12 with D = 3, the average times
for F-TPR are 1.084, 12.562, 131.077, and 631.606 sec-
onds, respectively, while those for TPR are equal to or
less than 0.004 seconds, which is the minimum measur-
able time in the solver. F-TPR provides higher routing
performances than TPR at the cost of the computation
time. Solving the optimization problems for F-TPR is
able to be applied to small-size networks. However, for
large size networks, it is difficult to solve them within a
practical computation time. Some heuristic algorithms
for FTPR are required to be developed for large-size
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networks.

6 Conclusions
This paper presented an IP load-balanced routing

scheme based on the two-phase routing over shortest
paths for the hose model. It is called a fine two-phase
routing (F-TPR) scheme. F-TPR distribute traffic from
a source node to intermediate nodes more finely. F-
TPR introduces the distribution ratio to node m that is
determined for each source-destination pair of (p, q),
kpq

m . To determine an optimum set of kpq
m , we success-

fully formulate our problem a quadratic constraint pro-
gramming (QCP) formulation that can be solved to de-
termine the split ratios by using a mathematical pro-
gramming solver. Numerical results show that F-TPR
greatly reduces the network congestion ratio compared
to TPR, and provides the network congestion ratio close
to that of MPLS-TE within the difference of 6%. It
is noted that solving QCP problems for F-TPR is able
to be applied to small-size networks. For largesize
networks, it is difficult to solve them within a practi-
cal computation time. Therefore, some heuristic algo-
rithms for FTPR are required to be developed for large-
size networks.
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Appendix
Property 1. kpq

m achieves congestion ratio ≤ r for all
traffic matrices in T = {dpq} constrained by the hose
model if and only if there exist non-negative parameters
πi j(p), λi j(p), ξi j(p), and ζi j(p) for every (i, j) ∈ E such
that
i)
∑

p∈V αpπi j(p)+
∑

p∈V βpλi j(p)+
∑

p∈V (βp −αp)ξi j(p)
≤ ci j · r for each (i, j) ∈ E

ii) ϕi j
pq ≤ πi j(p)+λi j(q)+

∑
m∈V τm

pqξi j(m) for each (i, j) ∈
E and every p, q ∈ V
Proof: To prove Property 1, we extend Chu’s proof to
F-TPR [5].
(“only if” direction): Let routing kpq

m have congestion
ratio ≤ r for all traffic matrices constrained by the hose
model. (i.e,

∑
p,q∈V ϕ

i j
pqdpq ≤ ci j · r for all (i, j)). The

problem of finding T = {dpq} that maximizes link load
on (i, j) is formulated as the following LP problem.

max
∑

p∈V

∑

q∈V
ϕ

i j
pqdpq (17a)

s.t.
∑

q∈V
dpq = αp p ∈ V (17b)

∑

p∈V
dpq = βq q ∈ V (17c)

∑

p∈V

∑

q∈V
τ

j
pqdpq = β j − α j j ∈ V (17d)

dpq ≥ 0 (17e)

The decision variables are dpq. The given parameters
are ϕi j

pq, τ j
pq, αp, and βq. The dual of the LP problem in

Eqs. (17a)-(17e) for (i, j) is:

min
∑

p∈V
αpπi j(p) +

∑

p∈V
βpλi j(p)

+
∑

p∈V
(βp − αp)ξi j(p) (18a)

s.t. ϕi j
pq ≤ πi j(p) + λi j(q) +

∑

m∈V
τm

pqξi j(m)

p, q ∈ V, (i, j) ∈ E (18b)

πi j(p), λi j(p), ξi j(p) ≥ 0

p, q ∈ V, (i, j) ∈ E. (18c)

The derivation of Eqs. (18a)-(18c) is described after this
proof. Because of

∑
pq ϕ

i j
pqdpq ≤ ci j · r in Eq. (17a), the

dual,
∑

p∈V αpπi j(p) +
∑

p∈V βpλi j(p) +
∑

m∈V τm
pqξi j(m)

in Eq. (18a), for any (i, j), must have the same optical
value. The optimal value in Eq. (18a) should be ≤ ci j ·r.
Therefore, the objective function of the dual satisfies
(i). Requirement (ii) is satisfied by dual problem con-
straint (18b).
(“if” direction): Let ϕi j

pq be a value obtained from the

routing result, and T = {dpq} be any valid traffic matrix.
Let πi j(p), λi j(p), and ξi j(p) be the parameters satisfy-
ing requirements (i)-(ii). Consider (i, j). From (ii) we
have,

ϕ
i j
pq ≤ πi j(p) + λi j(q) +

∑

m∈V
τm

pqξi j(m). (19)

Summing over all node pairs (p, q), we have

∑

p∈V

∑

q∈V
ϕ

i j
pqdpq

≤
∑

p∈V

∑

q∈V
[πi j(p) + λi j(q) +

∑

m∈V
τm

pqξi j(m)]dpq

=
∑

p∈V
πi j(p)

∑

q∈V
dpq +

∑

q∈V
λi j(q)

∑

p∈V
dpq

+
∑

p∈V

∑

q∈V

∑

m∈V
τm

pqξi j(m)dpq

=
∑

p∈V
αpπi j(p) +

∑

p∈V
βpλi j(p)

+
∑

p∈V
(βp − αp)ξi j(p). (20)

The last equality is obtained by using the constraints
of the flow conservation and the hose model, which are
expressed in Eqs. (15d) and Eqs. (1a)-(1b), respectively.
From (i), we have

∑

p∈V

∑

q∈V
ϕ

i j
pqdpq

=
∑

p∈V
αpπi j(p) +

∑

p∈V
βpλi j(p)

+
∑

p∈V
(βp − αp)ξi j(p)

≤ ci j · r. (21)

This indicates that for any traffic matrices constrained
by the hose model, the load on any link is at most r.

Eqs. (17a)-(17e), which is the LP problem of finding
T = {dpq} that maximizes link load on (i, j) is repre-
sented with a matrix expression by

maxΦT
i jd (22a)

s.t. Ad = C (22b)

d ≥ 0, (22c)

where

ΦT
i j = [ϕi j

11ϕ
i j
12 · · ·ϕi j

1N | · · · |ϕi j
N1ϕ

i j
N2 · · ·ϕi j

NN] (23a)

dT = [d11d12 · · · d1N | · · · |dN1dN2 · · · dNN] (23b)
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1 0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 · · · 0 0 · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 · · · 1 1 · · · 1
1 0 · · · 0 1 0 · · · 0 1 0 · · · 0 · · · 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0 0 1 · · · 0 · · · 0 1 · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · 1 0 0 · · · 1 0 0 · · · 1 · · · 0 0 · · · 1
τ1

11 τ1
12 · · · τ1

1N τ1
21 τ1

22 · · · τ1
2N τ1

31 τ1
32 · · · τ1

3N · · · τ1
N1 τ1

N2 · · · τ1
NN

τ2
11 τ2

12 · · · τ2
1N τ2

21 τ2
22 · · · τ2

2N τ2
31 τ2

32 · · · τ2
3N · · · τ2

N1 τ2
N2 · · · τ2

NN· · · · · · · · · · · · · · ·
τN

11 τN
12 · · · τN

1N τN
21 τN

22 · · · τN
2N τN

31 τN
32 · · · τN

3N · · · τN
N1 τN

N2 · · · τN
NN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23c)

C = [α1α2 · · ·αN |β1β2 · · · βN |β1 − α1 β2 − α2 · · · βN − αN]. (23d)

N is the number of nodes. d is an NN × 1 matrix. Φi j

is an NN × 1 matrix. A is a 3N × NN matrix. C is a
3N × 1 matrix. The dual of the LP problem represented
by Eqs. (22a)-(23d) for (i, j) is

min CT zi j (24a)

s.t. AT z = Φi j (24b)

zi j ≥ 0, (24c)

where

zT
i j = [πi j(1)πi j(2) · · ·πi j(N)|λi j(1)λi j(2) · · ·

λi j(N)|ξi j(1)ξi j(2) · · · ξi j(N)]. (25a)

zi j is a 3N × 1 matrix. Eqs. (24a)-(25a) and Eqs. (23a)-
(23d) is a matrix expression of Eqs. (18a)-(18c).
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