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ABSTRACT
Given n-copies of an unknown bipartite ( possiblly mixed ) state, our task is to test whether the
state is a pure state of not. If one is allowed to use global operations, optimal one-sided error
test is the projection onto the symmetric subspace, obviously. Is it possible to approximate
the globally optimal measurement by LOCC when n is large?

KEYWORDS
statistical test, entanglement, LOCC, group representation

1 Introduction
Given n-copies |φ〉⊗n of an unknown bipartite ( possi-

blly mixed ) state |φ〉 ∈ H⊗HB, consider test of whether
the state is a pure state of not.

If one is allowed to use all quantum operations, opti-
mal one-sided error test is the projection onto the sym-
metric subspace of (HA ⊗ HB)⊗n. Here, one-sided test
means a test accepting the hypothesis with certainty in
case it is true. Then, the POVM element [1] for accept-
ing the hypothesis have to be larger than the projector
onto the linear span of

{
|φ〉⊗n ; |φ〉 ∈ HA ⊗HB

}
, which

is the symmetric subspace. Therefore, to minimize the
probability of accepting the hypothesis in case it is not
ture, the POVM element has to be the projection onto
the symmetric subspace.

In this paper, we restrict operations used for test to lo-
cal operations and classical communications (LOCC).
Obviously, the globally optimal test, being non-
separable, cannot be performed by LOCC. Therefore,
we consider possitility of approximating the globally
optimal measurement by LOCC when n is large. This
problem is an example of LOCC testing of the hypothe-
sis constituted of continuous family of entangled states.

2 A standard form of an ensemble of
identical bipartite pure states

Suppose we are given n-copies of unknown pure bi-
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partite state |φ〉 ∈ HA ⊗ HB. Here we assume HA �
HB � H and dimH = d. It is known that |φ〉⊗n has the
standard form defined as follows.

Note |φ〉⊗n is invariant by the reordering of copies, or
the action of the permutation σ in the set {1, . . .n} such
that

n⊗
i=1

|hi,A〉|hi,B〉 �→
n⊗

i=1

|hσ−1(i),A〉|hσ−1(i),B〉, (1)

where |hi,A〉 ∈ HA and |hi,B〉 ∈ HB . The action of the
symmetric group gives a decomposition of the tensored
spaceH⊗n [2],

H⊗n =
⊕
λ

Wλ, Wλ := Uλ ⊗ Vλ,

whereUλ and Vλ is an irreducible space of the tensor
representation of SU(d), and the representation (1) of
the symmetric group, respectively, and

λ = (λ1, . . . , λd), λi ≥ λi+1 ≥ 0,
d∑

i=1

λi = n

is called Young index, which Uλ and Vλ uniquely cor-
responds to. We denote by Uλ,A, Vλ,A, and Uλ,B,
Vλ,B the irreducible component of H⊗n

A and H⊗n
B , re-

spectively. Also, Wλ,A := Uλ,A ⊗ Vλ,A, Wλ,B :=
Uλ,B⊗Vλ,B. Hereafter, the projector onto a subspace is
represented by the same symbol as the subspace.

Due to [3], in terms of this decomposition, |φ〉⊗n can
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be written as

|φ〉⊗n =
⊕
λ

aλ |φλ〉 |Φλ〉 , (2)

where |φλ〉 ∈ Uλ,A ⊗ Uλ,B, and |Φλ〉 ∈ Vλ,A ⊗ Vλ,B.
While aλ and |φλ〉 are dependent on |φ〉, |Φλ〉 is a maxi-
mally entangled state which does not depend on |φ〉,

|Φλ〉 :=
1√
dλ

dλ∑
i=1

| fi〉 | fi〉 ,

with {| fi〉} being an orthonormal complete basis of Vλ,
and dλ := dimVλ.

Observe that the linear span of all the vectors in the
form of (2) is the symmetric subspace of (HA ⊗HB)⊗n.
Therefore, denoting the projector on this subspace by
Πn, we have

Πn =
⊕
λ

1Uλ,A ⊗ 1Uλ,B ⊗ |Φλ〉 〈Φλ| . (3)

3 An LOCC test of maximally entangled
state

[4] treats the problem of testing whether the given
state ρ is the d dimensional maximally entangled state

|Φ〉 :=
1√
d

d∑
i=1

| fi〉 | fi〉

using LOCC, and found out a protocol whose probabil-
ity of accepting the hypothesis equals

〈Φ| ρ |Φ〉 + 1
(d)2

1 + 1
(d)2

. (4)

This test is one-sided, i.e., accepts the hypothesis
with probability 1 in case that it is true. Also, when d is
very large, this approximately equals 〈Φ| ρ |Φ〉, which is
the accepting probability of globally optimal one-sided
test.

4 Protocol
Observe the globally optimal test, Πn, is equivalent

to the composition of the projector Wλ,A ⊗ Wλ,B fol-
lowed by 1Uλ,A⊗Uλ,B ⊗ |Φλ〉 〈Φλ|. While the former is
implemented by an LOCC, the latter requires global
operations. Hence, instead, we perform an asymptot-
ically optimal LOCC test of the maximally entangled
state in [4]. So, our protocol is:

(i) A and B applies the projective measurement{Wλ,A
}
λ and

{Wλ,B
}
λ, respectively.

(ii) Do the test for maximally entangled state in [4] to
trUλ,Aρn,λ, where qn

λ := tr ρ⊗nWλ,A ⊗ Wλ,B and
ρn,λ := 1

qλ
Wλ,A ⊗Wλ,B ρ

⊗nWλ,A ⊗Wλ,B.

5 Performance of the protocol
In this subsection, it is proved that our protocol is

asymptotically as good as globally optimal test, Πn. If
the given state is a pure state, obviously the acceptance
probability Pn

opt of the test Πn is 1. If the input is not a
pure state, due to (9), we have

− lim
n→∞

1
n

log Pn
opt = D ( (1, 0, · · · , 0) | | p)

= − log p1,

where p := (p1, · · · , pd2) is eigenvectors of the given
state ρ. Also, by (3), when the given state is ρ⊗n,

Pn
opt :=

∑
λ

trρ⊗n 1Uλ,A ⊗ 1Uλ,B ⊗ |Φλ〉 〈Φλ|

=
∑
λ

qn
λtr 〈Φλ| ρn,λ |Φλ〉 .

Below, we will show our LOCC test is asymptoti-
cally equivalent to this globally optimal test. On the
other hand, due to (4), our test will accept the input ρn

with the probability

Pn
∗ :=

∑
λ

qn
λ

tr 〈Φλ| ρn,λ |Φλ〉 + 1
(dλ)2

1 + 1
(dλ)

2

.

If the given state ρ is a pure state,

Pn
∗ =

∑
λ

qn
λ

1 + 1
(dλ)

2

1 + 1
(dλ)

2

= 1.

Suppose ρ is not a pure state. Observe

Pn
∗ ≤

∑
λ

qλ

(
tr 〈Φλ| ρn,λ |Φλ〉 + 1

(dλ)2

)

= Pn
opt +

∑
λ

qn
λ

(dλ)2
,

where, by virture of (5),

∑
λ

qn
λ

(dλ)2
=

∑
λ

tr ρ⊗nWλ,A ⊗Wλ,B

(dλ)2

≤
∑
λ

(p1)n (
dim Wλ,A

)2

(dλ)2

= (p1)n
∑
λ

(
dim Uλ,A)2

= (p1)n
∑
λ

⎛⎜⎜⎜⎜⎜⎜⎝
∏

i< j

(
λi − λ j − i + j

)
∏d−1

i=1 (d − i)!

⎞⎟⎟⎟⎟⎟⎟⎠
2

≤ (p1)n (n + 1)d nd2
.
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(Also, one may use the relation
∑
λ

(
dim Wλ,A

)2

= dim
(
symmetric subspace of

(
C

d2)⊗n
)

≤ (n + 1)d2

)
Therefore, even if the state ρ is not a pure state,

− lim
n→∞

1
n

log Pn
∗ ≥ log p1 = − lim

n→∞
1
n

log Pn
opt.

Since the other side of inequality is trivial, we have

− lim
n→∞

1
n

log Pn
∗ = − lim

n→∞
1
n

log Pn
opt.

Therefore, regardless of whether ρ is pure or not, our
LOCC protocol very closely approximates the globally
optimal protocol when n is large.
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Appendix

A Group representation theory
Lemma 1 Let Ug and U ′g be an irreducible represen-
tation of G on the finite-dimensional space H andH′,
respectively. We further assume that Ug and U ′g are not
equivalent. If a linear operator A in H ⊕H′ is invari-
ant by the transform A→ Ug ⊕U ′gAU∗g ⊕U

′∗
g for any g,

HAH′ = 0 [2].

Lemma 2 (Shur’s lemma [2]) Let Ug be as defined in

lemma 1. If a linear map A in H is invariant by the
transform A→ UgAU∗g for any g, A = cIdH .

B Representation of symmetric group
and SU

Due to [2], we have

dimUλ =
∏

i< j

(
li − l j

)
∏d−1

i=1 (d − i)!
, (5)

dλ = dimVλ = n!∏d
i=1 (λi + d − i)!

∏
i< j

(
li − l j

)
,

(6)

with li := λi + d − i. It is easy to show

log dimUλ ≤ d2 log n. (7)

Below,

|φ〉 =
d∑

i=1

√
pi |ei〉 |ei〉 , ρ := TrB|φ〉〈φ|

where {|ei〉}i is an orthonormal basis of H . With aφλ =
TrWλ,Aρ

⊗n,
∣∣∣∣∣ log dλ

n
− H

(
λ

n

)∣∣∣∣∣ ≤ d2 + 2d
2n

log(n + d), (8)

∑
λ
n ∈R

aφλ ≤ (n + 1)d(d+1)/2 exp

{
−n min

q∈R
D (q||p)

}
,

(9)

where R is an arbitrary closed subset [5].
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