
Special issue: 3D image and video technology

Progress in Informatics, No. 7, pp.11–20, (2010) 11

Research Paper

Diminished reality using plane-sweep algorithm
with weakly-calibrated cameras

Songkran JARUSIRISAWAD1, Takahide HOSOKAWA2, and Hideo SAITO3

1,2,3Department of Infomation and Computer Science, Keio University

ABSTRACT
We present a plane-sweep algorithm for removing occluding objects in front of the objective
scene from multiple weakly-calibrated cameras. Projective grid space (PGS), a weak cameras
calibration framework, is used to obtain geometrical relations between cameras. Plane-sweep
algorithm works by implicitly reconstructing the depth maps of the targeted view. By exclud-
ing the occluding objects from the volume of the sweeping planes, we can generate new views
without the occluding objects. The results show the effectiveness of the proposed method and
it is fast enough to run in several frames per second on a consumer PC by implementing the
proposed plane-sweep algorithm in graphics processing unit (GPU).

KEYWORDS
Diminished reality, plane-sweep, real-time, video-based rendering, Graphics processing unit
(GPU)

1 Introduction
Augmented reality (AR) [1], [2] is a term of the tech-

nology that composites the computer generated image
to the real image viewed by the user. AR supplements
the computer generated image to the real scene, rather
than completely replacing it. Ideally, the rendered vir-
tual object should coexist in the scene realistically so
that the viewer cannot distinguish between the real and
the virtual ones.

In contrast, the goal of diminished reality research
(so-called mediated reality [3]) is to generate the im-
ages in which some real objects are deliberately re-
moved. This means that whatever is behind the object
should be rendered when the occluding objects are re-
moved. The information about occluded area normally
comes from either the other camera views or from the
same camera view but at the different frames in which
the occluded area is seen.

This paper proposed a new method of diminished
reality from multiple weakly-calibrated cameras using
plane-sweep algorithm. Plane-sweep algorithms have

Received September 30, 2009; Revised December 15, 2009; Accepted January
4, 2010.
1) songkran@hvrl.ics.keio.ac.jp, 2)hosokawa@hvrl.ics.keio.ac.jp,
3)saito@hvrl.ics.keio.ac.jp

been proposed in the literatures [4]–[7] to generate free
viewpoint videos. In this paper, we adapted plane-
sweep algorithm to use for diminished reality applica-
tions with weakly-calibrated cameras. Fig. 1 illustrates
what our proposed system does. From several cameras,
user can create new view images between any cameras
while also remove the occluding object to reveal the

Fig. 1 Overview of the proposed system.

DOI: 10.2201/NiiPi.2010.7.3

c©2010 National Institute of Informatics

12 Progress in Informatics, No. 7, pp.11–20, (2010)

hidden area behind.
We utilize projective grid space (PGS) [8], a weak

cameras calibration framework, to obtain the geomet-
rical relation between multiple cameras. Thus, our
method does not need the information about cameras’
intrinsic parameters or the Euclidean information of a
scene. The proposed plane-sweep algorithm in PGS
can render image in which the occluding object is re-
moved at any viewpoint between two reference views.
We also implemented our method on GPU to reduce the
computation time.

The rest of this paper is organized as follows. We
firstly survey about previous works of diminished real-
ity. Then projective grid space framework that we use
for weak cameras calibration is explained in section 3.
We describe conventional plane-sweep algorithm in the
Euclidean space that was used for rendering free view-
point video in section 4. Then we explain our proposed
plane-sweep algorithm on PGS for diminished reality
application in section 5. Section 6 presents the imple-
mentation detail on GPU. Finally, we show the experi-
mental results and conclusion.

2 Related works
Several researchers have used “Diminished Real-

ity” term in the past. Mann and Fung [9] proposed
the method in which planar objects are removed from
a video sequence and replaced with another texture.
Wang and Adelson [10] divided video sequence from a
single camera into several layers using motion analysis.
The occluding layer then can be simply removed and
replaced with the layers below. Lepetit and Berger [11]
proposed a semi-interactive method for outlining the
occluding objects over a video sequence for diminished
reality applications. The user has to outline the occlud-
ing object in some key-frames, then the algorithm can
predict the contours in other frames. Hill et al. im-
plemented diminished reality platform that runs in real-
time using graphics processing unit (GPU) [12].

In the mention works, single camera is used to cap-
ture the scene. Information that is used to fill the area
hidden by the occluding object comes from the other
frames of the same camera where the occluded area is
seen.

There are also several works that proposed method
for diminished reality from multiple cameras. Zokai et
al. [13] proposed a paraperspective projection model to
generate the background behind the occluding object
from multiple calibrated views. However, it requires
the user to select the regions of obstacles which is not
suitable for dynamic scenes.

Jarusirisawad et al. [14] proposed a diminish reality
system that can remove the occluding object while also
render free viewpoint images from pure rotation and

zoom cameras. The limitation is that the static back-
ground must be approximated and segmented to several
planes manually at the first frame. Silhouette of occlud-
ing object must also be labeled by the user.

The mentioned diminished reality researches have
some restrictions in each work. For example, they as-
sume that cameras must be previously calibrated, oc-
cluding objects or the objective scene must not move or
manual operation is necessary.

In this paper, we present a new method for online di-
minished reality. It allows both occluding objects and
objective scenes to move. Moreover, we do not need to
know intrinsic parameters of the cameras. This is dif-
ferent from most of the previous works which assume
that cameras are strongly calibrated.

This paper is the extension of our previous work
in [15]. In [15], the rendered views are limited to the
viewpoint of the capturing cameras and the background
image must be captured in advance. In this paper, our
method does not need to capture the background image
beforehand and the rendered images can be synthesized
at the virtual viewpoint between real cameras.

3 Projective grid space
This section describes weak cameras calibration

framework for our plane-sweep method. To imple-
ment the plane-sweep algorithm, we need to project 3D
points onto image frame of each camera including the
virtual one. Projective grid space allows us to define
that 3D space and find the projection without knowing
cameras’ intrinsic parameters or the Euclidean informa-
tion of a scene.

Projective grid space (PGS) [8] is a 3D space defined
by image coordinate of two arbitrarily selected cam-
eras, called basis camera 1 and basis camera 2. To
distinguish this 3D space from the Euclidean one, we
denote the coordinate system in PGS by P-Q-R axis.
Fig. 2 shows the definition of PGS. x and y axis in the
image of basis camera 1 corresponds to the P and Q
axis, while x axis of the basis camera 2 corresponds to

Fig. 2 Definition of Projective Grid Space.

Diminished reality using plane-sweep algorithm with weakly-calibrated cameras 13

Fig. 3 Weakly calibrating non-basis camera using trifocal
tensor.

the R axis in PGS.
Homogeneous coordinate X = (p, q, r, 1)T in PGS is

projected on image coordinate x = (p, q,1) and x′ =
(r, s, 1) of the basis camera 1 and the basis camera 2
respectively. Because x and x′ are the projection of the
same 3D point, x′ must lie on the epipolar line of x.
Thus, s coordinate of x′ is determined from x′T Fx = 0
where F is the fundamental matrix from basis camera 1
to basis camera 2.

Other cameras (non-basis cameras) are said to be
weakly calibrated once we can find the projection of
a 3D point from the same PGS to those cameras. Either
fundamental matrices or trifocal tensor between basis
cameras and non-basis camera can be used for that task.
The key idea is that 3D points in PGS will be projected
onto both two basis cameras first to make 2D-2D point
correspondence. Then, this correspondence is trans-
ferred to a non-basis camera by either intersection of
epipolar lines computed from fundamental matrices or
point transfer by trifocal tensor (Fig. 3).

However point transfer using fundamental matrices
gives less accuracy if a 3D point lies near the trifocal
plane (plane that defined by three camera centers). For
example, if three cameras are in the same horizontal
line, 3D points in front of cameras will lie on trifocal
plane. Even in the less severe case, transfered point
will also become inaccurate for the points lying near
this plane. Thus, trifocal tensors are used for weakly
calibrating non-basis cameras in our implementation of
PGS. For more detail of using fundamental matrices for
point transfer please refer to [8].

3.1 Weakly calibrating non-basis camera using trifocal
tensor

Trifocal tensor τ jk
i is a homogeneous 3×3×3 array

(27 elements) that satisfies

li = l′jl
′′
k τ

jk
i (1)

where li,l′j and l′′k are corresponding lines in the first,
second and third image respectively. For more informa-
tion about the tensor notation, please refer to Appendix.

Trifocal tensor can be estimated from point corre-
spondences or line correspondences between three im-
ages. In case of using only points correspondences,
at least 7 point correspondences are necessary to esti-
mate the trifocal tensor using the normalized linear al-
gorithm [16].

Given point correspondence x and x′, we can find
corresponding point x′′ in the third camera by equation
(2).

x′′k = xil′jτ
jk
i (2)

where l′ is the line in the second camera which pass
though point x′.

We can choose any line l′ which pass point x′ except
the epipolar line corresponding to x. If l′ is selected
as the epipolar line corresponding to x, then point x′′ is
undefined because xil′jτ

jk
i = 0k. A convenient choice for

selecting the line l′ is to choose the line perpendicular
to epipolar line of x.

To summarize, considering Fig. 3, given a 3D point
X = (p, q, r, 1)T in PGS and tensor τ defined by basis
camera 1, basis camera 2 and non-basis camera we can
project point X to non-basis camera as the following
1. Project X = (p, q, r, 1)T to x = (p, q,1)T and

x′ = (r, s, 1)T on basis camera 1 and basis camera 2
respectively. s is found by solving x′T Fx = 0.

2. Compute epipolar line l′e = (l1, l2, l3)T of x on basis
camera 2 from l′e = Fx.

3. Compute line l′ which pass x′ and perpendicular to
l′e by l′ = (l2,−l1,−rl2 + sl1)T .

4. The transfered point in non-basis camera is x′′k =
xil′jτ

jk
i .

4 Plane-sweep in the euclidean space
Before explaining about our contribution of the

plane-sweep algorithm in projective grid space for di-
minished reality in Section 5, this section gives a gen-
eral idea about conventional plane-sweep algorithms in
the Euclidean space of the calibrated cameras.

The plane-sweep algorithm was previously proposed
for creating novel views of a scene from several in-
put images [4], [6], [7], [17]. Considering a scene where
the objects are exclusively Lambertian surfaces, the
viewer should place the virtual camera camx some-
where around the real video cameras and define a near
plane and a far plane such that every object of the scene
lies between these two planes. Then, the space be-
tween near and far planes is divided into several par-
allel planes πk as depicted in Fig. 4.

Plane-sweep algorithm is based on the following as-

14 Progress in Informatics, No. 7, pp.11–20, (2010)

Fig. 4 Plane-sweep algorithm in the Euclidean space.

sumption: a point lying on a plane πk whose projection
on every input camera provides a similar color will po-
tentially correspond to the surface of an object. Consid-
ering an object in a scene lying on one of these planes
πk at point P, this point will be seen by every camera
as the same color, i.e., the object color. Now consider
another point P′ lying on a plane but not on the surface
of the object, this point will probably not be seen by the
capturing cameras as the same color. Fig. 4 illustrates
this principal idea of the plane-sweep algorithm.

During the new view creation process, every plane
πk is computed in a back to front order. Each point P
on a plane πk is projected onto input images. A score
and a representative color are computed according to
the matching of the colors found. A good score means
every camera see a similar color. The computed scores
and colors are projected onto the virtual camera camx.
The pixel color in the virtual view will be updated only
if the projected point p provides a better score than the
current one. Then the next plane πk+1 is computed. The
final new view image is obtained once every plane has
been computed. This method is detailed in [4], [6], [7]
with some variations in score functions and constraints.

5 Plane-sweep in projective grid space
for diminished reality

In this paper, the goal is not only to generate novel
view images but also to remove unwanted objects from
the output images. We propose a method that apply
plane-sweep algorithm to use with projective grid space
(weakly-calibrated cameras) for diminished reality ap-
plication. From the user point of view, they can easily
remove occluding object from the rendered image by
defining near and far planes to exclude unwanted ob-
jects from this volume. We proposed a score compu-

Fig. 5 Defining virtual camera in Projective Grid Space.

tation of color consistency that take into account the
outlier colors of occluding objects.

To do a plane-sweep in PGS, we need to define a
position of a virtual camera, define the planes in 3D
space and then compute new view images. These steps
are different from conventional plane-sweep algorithm
in the Euclidean space because in our case, cameras’
intrinsic parameters are unknown. In this section, we
describe the detail of each step.

5.1 Defining virtual camera position
To perform a plane-sweep algorithm, 3D point on

a plane must be projected to a virtual camera. In the
calibrated cameras cases, projection matrix of a vir-
tual camera can be defined from camera’s pose (extrin-
sic parameters) because intrinsic camera parameters are
known. This allows virtual camera to be moved any-
where around a scene.

In our case where PGS is used, intrinsic parameters
of any camera are unknown. Method for defining vir-
tual camera in calibrated case is not applicable to our
case. In our method, the position of the virtual cam-
era is limited to only between two real reference cam-
eras. A ratio r from 0 to 1 is used for defining distance
between these reference cameras. Fig. 5 illustrate this
definition. In Fig. 5, a ratio r equals to 0 (respectively
1) means the virtual camera has the same position as
camera 1 (respectively camera 2).

To find the projection of 3D point X in PGS on a
virtual camera, 3D point X is projected onto both real
reference cameras first. The position of the same 3D
point in the virtual camera is calculated using linear in-
terpolation. If the projected points in the real reference
camera 1 and 2 are x1 and x2 respectively, the projected
point x3 in a virtual camera is calculated from (3) as in
Fig. 5.

x3 = (1 − r)x1 + rx2 (3)

Note that we use view interpolation [18] that does not

Diminished reality using plane-sweep algorithm with weakly-calibrated cameras 15

Fig. 6 Defining planes for doing plane-sweep in Projective
Grid Space.

guarantee the physical validity of the scene. To get a
physically valid rendered view, a prewarp step is nec-
essary [19], [20]. However, cameras in our system are
set to be horizontal, and be parallel to each other. Thus
the rendered image does not have much distortion even
without such a prewarp step.

5.2 Defining planes in PGS
We define the near and far planes along the R axis (x

image coordinate of basis camera 2) as shown in Fig. 6.
This approach makes the 3D near and far planes adjust-
ment become easy since we can visualize them directly
from the image of basis camera 2. These planes are ad-
justed so that the occluding object is excluded from the
volume defined by these planes.

This is different from the case of the normal plane-
sweep algorithm in the Euclidean space in which full
calibration is used. In that case, the actual depth of a
scene has to be measured so that near and far planes
cover only volume of interest.

In our approach, basis camera 2 will not be used for
the color consistency testing in plane-sweep algorithm
because every planes would be projected as a line in
this image.

5.3 Computing new view images and removing occlud-
ing objects

If pixel p in a virtual camera is back projected to a
plane πk at a point P, we want to find the projection of
P on every input image to decide the color of pixelp
based on the color observed in the other cameras. As
illustrated in Fig. 7, the projection of 3D point P lying
on πk on input image i can be performed by a homog-
raphy matrix Hi. Thus, the projection pi of a 3D point

Fig. 7 Estimating homography matrices for plane-sweep.

P on the camera i is calculated from

xi = HiH−1
x x (4)

where x and xi are the position of the pixel p and pi

respectively.
Homography Hi, where i is a camera number, can be

estimated from at least four point correspondences. In
our situation, we select four image corners of the basis
camera 1 as shown in Fig. 7. Then, we project these
points onto every real cameras as described in section 3
for making 2D-2D point correspondences. Then, all ho-
mographies used for the plane-sweep method can be es-
timated from these correspondences. During the score
computation, we estimate these homographies instead
of projecting every 3D points one by one to reduce the
computation time.

Considering Fig. 6, the pixel color of the projection
of point P the lies on the object’s surface may not be the
color of point P due to occlusion. Virtual view render-
ing algorithm must determine and exclude the color of
the occluding object when rendering new view image.
Our score function that we use is motivated by [6].

Algorithm 1 summarizes the score function that we
used to compute new views while remove unwanted ob-
ject from the scene. The algorithm iterates by com-
puting color consistency score and average color. At
the end of iteration, the view that has the color farthest
from the average color is removed (this view probably
see the occluding object’s color). Then the algorithm
starts to compute color consistency score and average
color again from the current views set. The algorithm
terminates when it is confident with the current result
(color consistency score is less than some threshold) or
when there are two views or less in the current iteration.

Our color consistency score is defined by a variance
of colors from current views set plus the constance k
times the number of excluded views. The latter term is
added to bias the score so that with an equal variance,
the color from the set that has a higher cardinal is pre-
ferred.

16 Progress in Informatics, No. 7, pp.11–20, (2010)

Algorithm 1 : Plane-sweep algorithm in projective grid
space.

forech pixel p in camx do• scorep = ∞
• project pixel p to n input images excluding basis
camera 2 . c j is the color from this projection on the
j-th camera
forech plane πk in PGS do

• S = {1, 2, .., n}
repeat

• compute the average color :
colorS =

1
|S |
∑

j∈S c j

• compute the color consistency score :
scoreS =

∑
j∈S (c j − colorS)2 + k(n − |S |)

if scoreS < scorep then
• scorep = scoreS

• colorp = colorS

end
• S = S − {c f } where c f is the
farthest color from colorS

until scorep < Threshold || |S | ≤ 2
end

end

Fig. 8 Images from camera 1 to 6.

Fig. 9 Result when defining planes to cover all objects in
the scene.

Fig. 10 Result when defining planes to cover only oc-
cluded object.

Occluding object in a scene can be removed by defin-
ing near and far planes so that occluding object does not
lie in these planes. Different alignment of planes gives
the different rendering results. To illustrate this effect,
we show example results that are generated from the
different planes defining. Six cameras are used to cap-
ture input images. Camera 6 is selected as a camera
for defining planes. Fig. 8 shows input images from all
cameras.

Figs. 9 and 10 show the different results when de-
fine planes differently. In Fig. 9, planes are defined to
include the whole scene while in Fig. 10, planes are de-
fine to exclude the occluding object. We can see that
the objects lying outside the planes are removed from
the rendered image using our proposed method.

6 Implementing plane-sweep algorithm
on GPU

To achieve a fast computation (several frames per
second), we implemented our plane-sweep algorithm
in projective grid space on GPU. Because GPU has a
massive parallel processing, using GPU can give much
more computation power in many application compar-
ing to CPU.

The algorithm 1 is a pseudo code that is easy to read
when think of a processing as a single thread. How-
ever, when this algorithm is implemented on GPU, this
algorithm must be converted to suite the predefined ren-

Diminished reality using plane-sweep algorithm with weakly-calibrated cameras 17

dering pipeline of the GPU. There are several ways to
convert this abstract algorithm to a shader program on
GPU so we explain our actual implementation in this
section.

We use OpenGL and GLSL in our implementation.
Input images are transfered to GPU as multi-textures.
In the drawing function of OpenGL, we do N-pass ren-
dering from near to far plane where N is the number
of planes. We use Orthographic projection and draw
square to cover the whole image of virtual camera. In
fragment program of GLSL, we can think that it is a
processing of a pixel p with the k-th plane as in algo-
rithm 1. In fragment program, we have to find the pro-
jection of this pixel p on all cameras. To do that, we
compute homographies as Equation 4 for each render-
ing pass in OpenGL and sent them to GPU as texture
matrices.

We apply these homographies in the fragment pro-
gram to compute the projection on all cameras and
compute the color consistency score as described in al-
gorithm1. Fragment color is assigned to be an average
color from the best views set. The score of fragment is
sent to the next rendering pipeline(frame buffer opera-
tion) via gl FragDepth while the average color is sent
via gl FragColor. Then we let OpenGL select the best
scores with the z-test and update the color in the frame
buffer. When rendering is done for all planes, we get
novel view in which the occluding object is also re-
moved in the frame buffer.

7 Experimental results
In this section, we show both qualitative and quan-

titative results of our proposed method. Fig. 11 shows
experimental setup.

We used the following hardware in the experiment.

• CPU: Intel Core2 DUO 3.0 GHz

• GPU: NVIDIA Quadro FX 570

• Webcams: Logicool Qcam Orbit QVR-1

Fig. 11 Experimental setup.

2D-2D correspondences for estimating relationship
among cameras can be selected from feature points in
a scene. In our experiment we wave a marker around
a scene and track the features for 2D-2D correspon-
dence before start rendering. In future work, we plan
to find these correspondences from natural features in
a scene in real-time so that the cameras can also be
moved freely during rendering.

In our experiment, we did not use hardware synchro-
nized cameras but just consumer web cameras. Because
the object did not move so fast, even without synchro-
nization our results still seem acceptable. In case that
the object move fast so that the images captured by
the multiple cameras become clearly unsynchronized,
more artifacts will appear in the result videos. In this
case, using the cameras with synchronization mecha-
nisms would solve the problem.

7.1 Running time
The computation time for rendering output image de-

pends on the number of cameras and planes that are
used for plane-sweep algorithm. The appropriate num-
ber of planes varies depending on the complexity of a
scene. Using higher number of planes makes process-
ing time become longer but usually gives a better result.
In our experiment, it is shown that using 60 planes or
more makes the visual result become satisfied.

Table 1 shows the running time for rendering out-
put images using different number of planes. When
implementing plane-sweep algorithm on GPU, most of
the computation is done by the graphic card, hence the
CPU is free for the video stream acquisition and other
processing.

7.2 Qualitative evaluation
In this experiment, the objective is to remove a mov-

ing stick from the output image and reveal the occluded
scene. We used six webcams with resolutions 320×240
pixels. Output view was selected to be the same view
as camera 3 to compare with the input images. Fig. 12
shows input and output images from our method.

From the results, even not all part of occluding object
was perfectly removed, it can be said that 3D object
behind the occluding object is correctly reconstructed.

Table 1 Frame rates (frame/sec.) when using six cam-
eras.

Number of planes

20 40 60 80 100

Frame rates 10.00 6.67 3.49 2.47 1.76

18 Progress in Informatics, No. 7, pp.11–20, (2010)

Fig. 12 Result of removing occluding object from input camera 3.

Fig. 13 Rendered images at different views from the input
cameras. Six input images used for rendering these results
are the same as depicted in Fig. 8.

In the experiment, we used 80 planes for doing plane-
sweep. The average processing time was 2.5 fps.

Our proposed method can also remove occluding
object from the different views other than on the in-
put views as describe in Section 5. Fig. 13 shows the
rendering results at different viewpoint from the input

cameras.

7.3 Quantitative evaluation
This section gives quantitative quality measurements

of our result. We used the scene that consists of occlud-
ing object moving in front of a static background. By
using static background, we can have ground-truth ref-
erences to measure the accuracy of results. We used our
method to remove the occluding object from the input
images and compare with the ground-truth.

Views at one selected camera was rendered and com-
pare with ground-truth. PSNR (Peak Signal to Noise
Ratio) are computed to measure the errors in the ren-
dered images for 100 consecutive frames. Fig. 15
shows the PSNR of our results respect to the number
of planes used in scene reconstruction. Table 2 shows
the average PSNR over 100 frames.

Fig. 14 shows the different of the results when us-
ing different number of planes to reconstruct and render
output images in which occluding object is removed.

From the results, it is shown that increasing the num-
ber of planes in reconstruction gives a better result.
However, when enough planes has already been used,
increasing the number of planes would not give a sig-
nificant improvement.

Diminished reality using plane-sweep algorithm with weakly-calibrated cameras 19

Fig. 14 Comparison of using the different number of planes to render output images.

Fig. 15 PSNR error of the rendered images.

Table 2 PSNR error of the rendered images using differ-
ent number of planes.

Number of planes Average PSNR(dB)

20 planes 28.22

60 planes 28.43

100 planes 28.49

8 Conclusion
In this paper we present a new online rendering

method for diminished reality using plane sweep algo-
rithm. By utilizing projective grid space (PGS), our
method has mainly two advantages over doing plane-
sweep in the Euclidean space. Firstly, our method does
not need information about cameras’ intrinsic parame-
ters. Secondly, Near and f ar planes in PGS are easily
defined since they are visualized from the image of ba-
sis camera 2. Plane-sweep algorithm in the Euclidean
space has to define these planes in the real 3D coordi-
nates which is sometimes difficult to measure or visual-
ize. Our system can render images at several frames per
second thanks to the implementation of plane-sweep al-
gorithm on GPU. The results show the effectiveness of
our proposed method.

References
[1] R. T. Azuma, “A survey of augmented reality,” Pres-

ence: Teleoperators and Virtual Environments, vol.6,

no.4, pp.355–385, 1997.

[2] R. T. Azuma, Y. Baillot, R. Behringer, S. Feiner,
S. Julier, and B. MacIntyre, “Recent advances in aug-
mented reality,” IEEE Computer Graphics and Applica-
tions, vol.21, no.6, pp.34–47, 2001.

[3] S. Mann, ‘mediated reality’. TR 260, M.I.T. Media
Lab Perceptual Computing Section, Cambridge, Mas-
sachusetts, 1994.

[4] R. T. Collins, “A space-sweep approach to true multi-
image matching,” In Proceedings of IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, pp.358–363, 1996.

[5] S. Jarusirisawad, H. Saito, and V. Nozick, “Real-time
free viewpoint video from uncalibrated cameras using
plane-sweep algorithm,” In Proceedings of the IEEE In-
ternational Workshop on 3-D Digital Imaging and Mod-
eling (3DIM’09), Kyoto, Japan, October 2009.

[6] V. Nozick, S. Michelin, and D. Arques, “Real-time
plane-sweep with local strategy,” Journal of WSCG,
vol.14, no.1–3, pp.121–128, 2006.

[7] R. Yang, G. Welch, and G. Bishop, “Real-time
consensus-based scene reconstruction using commod-
ity graphics hardware,” In Proceedings of the 10th Pa-
cific Conference on Computer Graphics and Applica-
tions (PG 2002), p. 225, Washington, DC, USA, 2002.
IEEE Computer Society.

[8] H. Saito and T. Kanade, “Shape reconstruction in pro-
jective grid space from large number of images,” In Pro-
ceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’99),
vol.2, pp.49–54, June 1999.

[9] S. Mann and J. Fung, “Videoorbits on eye tap devices
for deliberately diminished reality or altering the vi-
sual perception of rigid planar patches of a real world
scene,” In International Symposium on Mixed Reality
(ISMR2001), March 14–15 2001.

[10] J. Y. A. Wang and E. H. Adelson, “Representing mov-
ing images with layers,” In IEEE Transactions on Im-
age Processing Special Issue: Image Sequence Com-
pression, September 1994.

[11] V. Lepetit and M.-O. Berger, “A semi-interactive and
intuitive tool for outlining objects in video sequences
with application to augmented and diminished reality,”

20 Progress in Informatics, No. 7, pp.11–20, (2010)

In Proceedings of International Symposium on Mixed
Reality, Yokohama, Japan, March 2001.

[12] R. Hill, J. Fung, and S. Mann, “A parallel mediated re-
ality platform,” In ICIP, pp.2865–2868, 2004.

[13] Y. G. Saivash Zokai, Julien Esteve, and N. Navab, “Mul-
tiview paraperspective projection model for diminished
reality,” In Proceedings of the Third IEEE and ACM In-
ternational Symposium on Mixed and Augmented Real-
ity (ISMAR 2003).

[14] S. Jarusirisawad and H. Saito, “Diminished reality
via multiple hand-held cameras,” In Proceedings of
ACM/IEEE International Conference on Distributed
Smart Cameras (ICDSC 2007), pp.251–258, Vienna,
Austria, September 2007.

[15] T. Hosokawa, S. Jarusirisawad, and H. Saito, “On-
line video synthesis for removing occluding objects us-
ing multiple uncalibrated cameras via plane sweep al-
gorithm,” In Proceedings of ACM/IEEE International
Conference on Distributed Smart Cameras (ICDSC
2009), Como, Italy, August 2009.

[16] R. I. Hartley and A. Zisserman, Multiple View Geom-
etry in Computer Vision, Cambridge University Press,
second edition, 2004.

[17] I. Geys, S. Roeck, and L. Gool, “The augmented audi-
torium: Fast interpolated and augmented view genera-
tion,” In Proceedings of the 2nd IEE European Confer-
ence on Visual Media Production, pp.94–103, 2005.

[18] S. Chen and L. Williams, “View interpolation for im-
age synthesis,” In Proceedings of ACM SIGGRAPH’93,
pp.279–288, 1993.

[19] S. Seitz and C. Dyer, “View morphing,” In SIGGRAPH
96, pp.21–30, 1996.

[20] S. M. Seitz and C. R. Dyer, “Physically-valid view syn-
thesis by image interpolation,” In Proceedings of the
IEEE Workshop on Representations of Visual Scenes,
pp.18–25, 1995.

Appendix
Tensor notation

This appendix gives an introduction to the tensors for
the reader who is unfamiliar with tensor notation. For
more details, please refer to [16].

A tensor is a multidimensional array that extends the
notion of scalar, vector and matrix. A tensor is writ-
ten using an alphabet with contravariant (upper) and co-
variant (lower) indexes. For example, the trifocal tensor
τ

jk
i has two contravariant indexes and one covariant in-

dex.
Considering a representation of vector and matrix us-

ing tensor notation, entry at row i and column j of ma-
trix A is written using tensor notation as ai

j, index i be-
ing contravariant (row) index and j being contravariant
(column) index. An image point represented by the ho-
mogeneous column vector x = (x1, x2, x3)T is written

using tensor notation as xi, while a line represented us-
ing the row vector l = (l1, l2, l3) is written as li.

Writing two tensors together means doing a contrac-
tion operation. The contraction of two tensors produce
a new tensor where each element is calculated from a
sum of product over the repeated index. For example
consider a matrix multiplication x̂ = Ax, this can be
written using tensor notation as x̂i = ai

jx
j. This nota-

tion imply a summation over the repeated index j as
x̂i =
∑

j ai
jx

j.

Songkran JARUSIRISAWAD
Songkran JARUSIRISAWAD re-
ceived the B.E. (First class honors)
degree in computer engineering from
Chulalongkorn University, Bangkok,
Thailand, in 2005. He earned the
M.E. and Ph.D. degrees in infor-

mation and computer science from Keio University,
Yokohama, Japan, in 2007 and 2009, respectively.
Currently, he is working at Freewill FX Co., Ltd.,
Bangkok, Thailand. His research interests include
computer vision, image based modeling and rendering.

Takahide HOSOKAWA
Takahide HOSOKAWA received
B.E. degree in Information and
Computer Science from Keio Uni-
versity, Japan, in 2009. He is now a
graduate student of Graduate School
of Science and Technology, Keio

University, Japan. His research interests include video
analysis and processing.

Hideo SAITO
Hideo SAITO received B.E., M.E.,
and Ph.D. degrees in Electrical Engi-
neering from Keio University, Japan,
in 1987, 1989, and 1992, respec-
tively. He has been on the faculty of
Department of Electrical Engineer-

ing, Keio University, since 1992. In 1997 to 1999, he
stayed in the Robotics Institute, Carnegie Mellon Uni-
versity as a visiting researcher. Since 2006, he has been
a Professor of Department of Information and Com-
puter Science, Keio University. He is currently the
leader of the research project “Technology to Display
3D Contents into Free Space”, supported by CREST,
JST, Japan. His research interests include computer vi-
sion, mixed reality, virtual reality, and 3D video analy-
sis and synthesis. He is a senior member of IEEE, and
IEICE, Japan.

