
Special issue: The future of software engineering for security and privacy

Progress in Informatics, No. 5, pp.75–89, (2008) 75

Survey Paper

Feature interaction: the security threat from within
software systems

Armstrong NHLABATSI1, Robin LANEY2, and Bashar NUSEIBEH3

1,2,3Department of Computing, The Open University

ABSTRACT
Security engineering is about protecting assets from harm. The feature interaction problem
occurs when the composition of features leads to undesirable system behaviours. Usually,
this problem manifests itself as conflicting actions of features on a shared context. Security
requirements may be violated by feature interactions creating security vulnerabilities which
can potentially be exploited by attackers. In this paper, we discuss the feature interaction
problem and some of its possible implications for security requirements. The paper concludes
that (1) the detection of the violation of security requirements by feature interactions is not
different from other types of requirements - what differs is the impact of such violation; and
(2) feature interaction detection approaches can be used as a means for vulnerability analysis.

KEYWORDS
Security requirements, feature interaction detection, vulnerability analysis

1 Introduction
In order to make the complexity of modern soft-

ware systems manageable their functionality is increas-
ingly being decomposed into features. A feature is a
set of logically-related requirements and their specifi-
cations, intended to deliver a particular behavioural ef-
fect [16], [17], [76], [88]. A feature often delivers tan-
gible end user value [44]. A requirement is a statement
of some system behaviour that a system is expected to
exhibit [90]. The implementation of a specification of
a feature satisfies the requirements associated with the
given feature. In feature-driven development [60]. the
responsibility of developing features may be allocated
to different development teams.

The individually developed features are then com-
posed, based on composition requirements, to create a
feature-based application. However, the composition
of features may lead to the feature interaction problem
[17], [44], where features interfere with each other’s be-
haviour in the composition. Such interference may lead
to the violation of the requirements individual features
satisfied in isolation.

Received September 14, 2007; Revised December 5, 2007; Accepted Decem-
ber 20, 2007.
1) a.nhlabatsi@open.ac.uk, 2)r.c.laney@open.ac.uk, 3)b.nuseibeh@open.ac.uk

The feature interaction problem has largely been
explored in terms of functional requirements. This
is evidenced in the book series [18], [65] and special
issue journals [2], [6], [51], [66] documenting research
results on proposed approaches to addressing this prob-
lem. In this paper we review the literature on feature
interaction research from a Requirements Engineering
perspective, with a focus on security requirements. One
of the aims of security engineering research is to iden-
tify vulnerabilities in a system and design strategies to
minimize the impact of potential attacks in advance [7].

Current research aimed at addressing security has fo-
cused on modelling potential attackers. However, se-
curity requirements may be violated by feature inter-
actions which create security holes, making a system
vulnerable to attacks. This paper explores research is-
sues related to addressing the feature interaction prob-
lem when security requirements are involved. Different
ways by which a security requirement may be violated
by a feature interaction, which we call interaction types,
are reviewed. For each interaction type we review the
state of the literature on offline feature interaction de-
tection approaches and identify research challenges.

Examples of violations of security requirements
where feature interaction is a primary cause can be seen
in different application domains. For example in the au-

DOI: 10.2201/NiiPi.2008.5.8

c©2008 National Instiute of Informatics



76 Progress in Informatics, No. 5, pp.75–89, (2008)

tomobile domain:

Consider a car which has an alarm sys-
tem (security feature) and a crash pro-
tection system with air bags (safety fea-
ture). The alarm system enforces secu-
rity of the car occupants and their valu-
ables. When activated it ensures that
the doors and windows are locked; and
monitors the state of the doors; and re-
ports any burglary activity by activating
the siren. Meanwhile, the safety feature
ensures that in case of a crash, there is
minimal loss of life. It achieves this by
unlocking all doors in the event that an
impact occurs on the front bumper.

Let us consider a scenario where these
features could interact. Assume the car
is stationery at a traffic intersection with
all doors locked by the Security feature.
If a thief hits the front bumper with a big
hammer, the Safety feature will unlock
the doors allowing the thief to gain entry
into the car.

This feature interaction may not be obvious to detect
until a scenario such as the one above occurs. In this ex-
ample we have assumed that safety has a higher priority
than security. Without such priority a non-deterministic
behaviour would result as both features try to gain con-
trol of the doors.

Such violations of safety and security requirements
have common characteristics with that of privacy re-
quirements [8]. The effects of such violations may be
irreversible [74]. For example, failure of the safety fea-
ture to unlock the door because it has been blocked by
the security feature may lead to the emergency person-
nel being unable to get to the passengers in time in case
of a genuine crash.

The example highlights two problems. The first
problem is how to detect, during composition, that sat-
isfying the safety requirement will compromise the se-
curity requirement and vice versa? How do we detect
during composition that having both security and safety
features share control of the doors would lead to an un-
desirable interaction? In the event of a genuine crash
it is desirable for safety to compromise security. How-
ever, this is undesirable in the case of a crash ‘simu-
lated’ by a burglar. Thus, the second problem is once
we know that safety compromises security; how to de-
sign the safety feature so that it is possible to differ-
entiate between a real and faked accident. This exam-
ple is not an isolated incident. Anderson [7] examines
cases in which security vulnerabilities resulting from

feature interactions in Telecommunications have been
exploited by attackers.

The rest of the paper is structured as follows: Section
2 discusses the feature interaction problem in software
systems, and possible sources of feature interactions in
requirements. Section 3 identifies types of feature inter-
actions and reviews approaches for their detection. In
section 4 we discuss possible implications of the fea-
ture interaction problem on security requirements. We
conclude in section 5.

2 Feature interaction
In this section we examine properties of feature inter-

actions. We also review sources of feature interactions
in requirements.

2.1 The feature interaction problem
Few features are useful in isolation. More useful

functionality is achieved when features are composed
with others into a feature-based application. However,
the composition of features may lead to undesirable
system behaviours [44]. Undesirable here means that
the exhibited behaviour violates composition require-
ments.

Composition requirements express the intended be-
haviour of a feature-based system application. One way
to express composition requirements is as the conjunc-
tion of the requirements individual features satisfied in
isolation [89].

The feature interaction problem is one of the major
challenges of feature-based software development. Re-
search in feature interaction deals with the avoidance,
detection and resolution of feature interactions. In the
next section we discuss feature interaction as a problem
of sharing context.

2.2 Feature interaction as a context sharing problem
When a feature interaction occurs, some require-

ments satisfied, in isolation, by at least one of the fea-
tures involved in the interaction are violated. The re-
lationship between two interacting features can be ex-
pressed in the formal framework for feature interac-
tion proposed in [32]. Fig. 1 shows this framework ex-
pressed using Jackson’s adequacy argument [40] and
the parallel composition notation [42].

The basic principle is that if a feature specification
S1 satisfies a requirement R1, assuming context W1 (1),
and a feature specification S2 satisfies a requirement R2,
assuming context W2 (2); then their parallel composi-
tion should satisfy the conjunction of R1 and R2 (3).
Feature interaction occurs when there are shared prop-
erties between W1 and W2. We call such properties the
shared domain (Ws). We illustrate this with security
and entertainment features from a smart home [46].



Feature interaction: the security threat from within software systems 77

Fig. 1 Feature interaction logical properties.

Fig. 2a Problem Diagram of Security Feature.

Fig. 2b Problem Diagram of Entertainment Feature.

Fig. 2c Composition of Security and Entertainment Fea-
tures.

Fig. 2a and 2b show problem diagrams for security
and entertainment features, respectively. On detecting
a burglar activity, the security feature records images of
the intruders captured by the surveillance camera onto
the DVD-R. The entertainment feature records a spe-
cific programme from the TV Tuner at a specified time
determined by the clock.

Composition of the two features shown in Fig. 2c is
expected to satisfy both the requirements of capturing
burglar activities and recording TV programmes. The
composition of the two features shows that they both
share control of the DVD-R. Due to the nature of the
DVD-R domain these two requirements may not be sat-
isfied at the same time according to (3) in Fig. 1. Hence,
there is a potential feature interaction because of the
shared context.

2.3 Sources of feature interactions in requirements
Feature interaction can be characterised by their

causes. Table 1 shows a summary of some causes of
feature interactions that can be attributed to require-
ments. This is based on a taxonomy of feature inter-
action sources proposed by Cameron et al [21]. These
include inconsistency, conflicting goals, resource con-
tention, violation of assumptions, and overlapping pre-
conditions.

The sources of interactions documented here only re-
late to the problem space.1 In section 3.1 we discuss
different types of feature interactions characterized in
terms of the sources above. Exploiting the relation-
ship between sources and types of feature interactions
may make it possible to detect feature interactions by
inspecting the relationship between their requirements.
For example if there is an overlap between the precon-
ditions of two features then a non-deterministic fea-
ture interaction may occur (see second row in Table 1).
Thus, documentation and formalization of such rela-
tionships may provide information for early detection
of feature interactions.

Indeed, the current trend in feature interaction re-
search is to study the problem in specific domains
by applying generic feature interaction detection ap-
proaches. This has led to the creation of feature interac-
tion taxonomies of the respective domains. Examples
can be seen in reports on feature interaction in smart
homes [46], [57], electronic mail systems [36], SIP ser-
vices [13], [24], [45], [85], web services [81]–[83], em-
bedded systems [54], [55], policy-based systems [12],
[26], [38], [67], [78], and product lines [15], [75].

Although there are similarities between the feature
interactions detected in these domains, each domain
presents unique challenges which have meant extend-
ing standard approaches to deal with the specific types
of feature interactions. For example, Metzger [54]
and Kolberg et al [46] have shown that a considera-
tion of the environment in addressing feature interac-
tions in embedded systems is important. This is be-
cause the environment creates dependencies between

1) We have ignored implementation-related interactions because our interest is
studying feature interactions occurring at the requirements level.



78 Progress in Informatics, No. 5, pp.75–89, (2008)

Table 1 A Summary of sources of feature interactions
(from [21]).

Source Examples

Overlapping
Pre-Conditions
(non-
determinism)

Call Waiting (CW) with Call Forward-
ing on Busy (CFB) and Voice Mail when
Busy (VMB): All three features are trig-
gered by the same pre-conditions (busy
subscriber) but they perform different and
contradictory actions on behalf of the same
user. Note: features without overlapping
pre-conditions could also interact during
their execution because of inconsistencies
in their pre-conditions.

Requirements
Inconsistency

Security (anti-theft system) and Safety
(door un-locking in case of crash): Similar
to above. Both security and safety shared
the same sensors and are hence triggered
by the same conditions, but the actions they
perform as a result are inconsistent with
each other.

Conflicting
Goals

Calling Line Identity Presentation (CLIP)
and Calling Line Identity Restriction
(CLIR): CLIP delivers the calling sub-
scribers identity, while CLIR does the op-
posite. This manifests itself as conflicting
goals when used by two subscribers.

Violations of
assumptions

Calling Number Delivery (CND) and Un-
listed Number (UN): Similar to the inter-
action between CLIR and CLIP. CND de-
livers the number of the calling subscriber
to the called subscriber for identification,
while UN prevents an unlisted subscriber
number from being delivered to a called
subscriber – an example of violation of
data availability assumptions.

Resource Con-
tention

Security and Entertainment features in a
smart home. The security feature records
Images of the intruder on the VCR when a
burglar is detected. The entertainment fea-
ture records Channel 4 news from 7:00pm
to 8:00pm on the VCR. If a burglar breaks-
in at 7:30pm the security feature will not
be able to record the intruder images since
the VCR is already being used by the en-
tertainment feature.

features which otherwise seem independent. Specific
approaches have been proposed to deal with the specific
feature interactions in the environments where they oc-
cur.

Hall [37] showed that in email systems the assertion
that feature interactions only occur as a violation of
individual feature requirements – proposed in Fig. 1 –
does not hold. He showed that feature interactions in
this domain can occur without violation of individual
feature requirements. For example:

Consider the interaction between Au-
toResponder and GroupMail features.
The AutoResponder feature enables
automatic response to incoming email
messages when the addressee is away.
The GroupMail feature enables the
creation of a virtual group of email
users in a domain. For example “Post-
GraduateStudents” could be a group
of email addresses of all post grad-
uate students in an institution. Let
the email address of this group be
postgraduatestudents@open.ac.uk .
When a message is sent to the group
address, it is forwarded to each of the
affiliated addresses. Now let Armstrong
be a member of the above group.

Consider a scenario where Armstrong is
on vacation and an email is delivered to
the group. The GroupMail feature sends
this email to all addresses in the group.
The AutoResponder feature replies by
sending a response to the group email
(not the originating address). When the
GroupMail feature receives this message
it forwards it to all the affiliated members.
The cycle is repeated indefinitely. Note
that both features have satisfied their in-
dividual requirements. However, the re-
sulting behaviour is clearly undesirable
as it ends up sending repeated mes-
sages.

Our position is that Hall’s view suggests the need for
an approach to the feature interaction problem that can
detect non-binary interactions. In such an approach fea-
ture interaction detection would involve an analysis of
the compositional effects of two features relative to a
third requirement. Such analysis would be in addition
to the framework proposed in Fig. 1. We discuss the im-
plications of such an approach to security engineering
in section 4.

3 Feature interaction detection
The nature of the feature interaction that occurs from

the composition of features depends on the types of
features involved. Feature interaction detection ap-
proaches are based on the logical relations in Fig. 1. In
section 3.1 we look at feature interaction types. We dis-
cuss them in the context of security requirements and
other requirements related to the smart home applica-
tion domain. Approaches to detecting the feature inter-
action types are reviewed in section 3.2.



Feature interaction: the security threat from within software systems 79

Table 2a Shehata et al’s taxonomy.

Interaction
Types

Short Description

[S1] Non-
Determinism

Occurs when two features have the
same pre-conditions but different post-
conditions.

[S2] Depen-
dence

The execution of one feature depends on
the correct execution of another.

[S3]
Override
(Same pre-
conditions)

Occurs when two features that have the
same pre-conditions have post-conditions
for one feature that change the state of the
environment in such a way that the other
feature does not finish executing.

[S4] Nega-
tive Impact
(Same pre-
conditions)

Occurs when two features with the same
pre-conditions but with post-conditions
that diminish each other.

[S5] Over-
ride (Linked
trig-
ger events)

Occurs between features that have
linked trigger events but where the post-
conditions of one feature change the state
of the environment in such a way that the
other feature does not finish executing.

[S6] Nega-
tive impact
(Linked trig-
ger events)

Occurs between features that have linked
trigger events with post-conditions that di-
minish each other.

[S7] Order The behaviour of execution of the features
in one sequential composition is different
from behaviour when the sequential com-
position is changed.

[S8] Bypass The execution of one feature prevents the
execution of another by putting the sys-
tem in a state that is different from the pre-
conditions of latter feature.

[S9] Infinite
Looping

Occurs when features execute indefinitely
by continuously triggering each other.

3.1 Requirements interaction types
One of the earliest feature interaction type tax-

onomies was proposed by Cameron and Velthuijsen
[22]. They identified four types of feature interactions
that could occur in the telephony domain. Studies on
feature interactions in other domains have resulted in
the refinement of this taxonomy. A notable example
is the taxonomy of feature interactions in smart homes
proposed by Kolberg et al [46]. Recently, these two tax-
onomies have been synthesized by Shehata et al [70] to
a generic taxonomy which the authors claim to be ap-
plicable to most domains. This taxonomy consists of 9
feature interaction types (shown in Table 2a).

This paper uses a reduced version of Shehata et al’s
taxonomy. We merged S3, S5, and S8 (see Table 2a) to
form a bypass category. S4 was merged with S6 to form
a single negative impact category. S2 was eliminated

Table 2b Reduced taxonomy.

Interaction
Types

Short Description

Non-
Determinism

Same as S1

Negative Im-
pact

Merged S4 and S6

Invocation
Order

Same as S7

Bypass Merged S3, S5 and S8

Infinite
Looping

Same as S9

completely.
We consider dependence to be a weaker notion of

the feature interaction problem. This is because depen-
dence implies that the dependent feature can not exe-
cute successfully in isolation. A core property of the
feature interaction problem is that both features satisfy
their requirements in isolation, which may be violated
when they are composed. Thus, dependence is not an
intrinsic property of the feature interaction problem.

The reduction resulted in 5 categories, namely: Non-
determinism, Negative Impact, Execution Order, By-
pass, and Looping (shown in Table 2b). We consider
these categories to represent conflicts that are at the
core of the feature interaction problem. This paper does
not add any new categories to this taxonomy. It pro-
vides illustrations of how these types of feature interac-
tion may impact on security requirements.

In doing so we use the concepts of pre-condition,
prestate, trigger event and post-conditions as used in
[70]. Pre-conditions describe the conditions that should
be true before a feature can execute. A pre-condition
consists of sets of prestates and trigger events. A
prestate describes what the state of the system should
be before a feature can execute. When a trigger event
occurs and the prestates are true, a feature is executed.
Post-conditions describe the state of the system after
the execution of the given feature. In essence, a post-
condition describes the effect of executing a given fea-
ture. For this reason it is stated in optative mode. [89]
For example Call Forwarding on Busy (CFB) in tele-
phony is executed when there is an incoming call (trig-
ger event) while the subscriber is engaged on another
call (prestate) and forwards the incoming call to a pre-
specified number (post-condition).

3.1.1 Non-determinism
Non-determinism occurs when two or more feature

specifications require a shared domain to engage in
different behaviours simultaneously, when the domain



80 Progress in Informatics, No. 5, pp.75–89, (2008)

can engage in only one of the requested behaviours
at a time [22]. By domain we mean a property of
the environment that a specification of a feature uses
to satisfy the requirement(s) e.g. a DVD-R in Fig. 2a.
It becomes non-deterministic as to which of the re-
quired behaviours the domain should engage in. Non-
determinism results from overlapping pre-conditions
with inconsistent post-conditions. Overlapping pre-
conditions makes it possible for features to be activated
at the same time. Such overlaps may either be exactly
or partially matching pre-states and trigger events.

The inconsistency of post-conditions can mean one
or both of two things: a logical inconsistency between
the individual feature requirements; and (or) inconsis-
tency of the actions being performed on the domain. To
illustrate this point, consider a DVD-R that is designed
in such a way that it does not allow the functions of
recording and playback to happen simultaneously.

Two features, F1 and F2, with requirements to record
and playback, respectively, cannot be said to be incon-
sistent until we can ascertain that they are both trying
to use the same DVD-R. Therefore, these features are
inconsistent with respect to the domain because they
are trying to engage it in behaviours that are incom-
patible. Incompatible here does not necessarily mean
inconsistency, it simply means that the two behaviours
cannot happen simultaneously and inconsistency could
be one of the reasons. This problem would not occur if:
each feature had their DVD-R; or if the shared DVD-
R used some time-division technique which enabled it
to record from more than one video source at the same
time. This highlights the feature interaction problem as
a “context sharing problem” as discussed in section 2.2.

3.1.2 Negative impact
Similar to a non-deterministic interaction in this

type of interaction, features have overlapping pre-
conditions. The difference is that in this case both
features are executed but the impact of their post-
conditions are inconsistent [22]. The post-conditions of
one feature diminish the effects of the post-conditions
of the other feature. This type of interaction can man-
ifest as a resource contention [10] or inconsistent state
changes on a shared resource (such as device in a smart
house [46]).

For example, consider two features: AirFreshMon-
itoring and ClimateControl. The requirements for the
AirFreshMonitoring is that when the air quality in the
room is poor and it is day time the windows should be
opened to refresh the room. The requirement of the
ClimateControl feature is that during daytime the tem-
perature in the room should be maintained at 25◦C at
all times by opening and closing the windows. If it is
too cold or too hot outside the room (compared to in-

side) and the air quality in the room is poor, AirFresh-
Monitoring will open the window and this will either
decrease or increase the room temperature. This has
a negative impact on the requirement to maintain the
room temperature at 25◦C. In this example the satisfac-
tion of the requirement is not immediate. A conflict
arises when one of the features immediately close or
open the windows while the requirement of the other
feature is in the process of being satisfied.

3.1.3 Invocation order
An invocation order interaction occurs when the se-

quential composition of two or more features result into
different system behaviours under different sequential
compositions [70], [84]. Two features F1 and F2 are
said to be sequentially composed if at the end of the
execution of F1, the execution of F2 is started. Sequen-
tial composition can be either implicit or explicit.

With implicit sequential composition the sequence
of feature execution results from linked trigger events.
Two events, e1 and e2, are linked if the occurrence of
one event leads to the occurrence of the other. For ex-
ample, consider two features associated with the con-
trol of an automated door, a DoorOpenClose feature
and a DoorLocking feature. The DoorOpenClose fea-
ture controls the opening and closing of the door. When
the door is opened and a close event occurs, the door
starts closing and eventually generates a closed event
when fully closed. If an open event occurs while the
door is closed it starts opening and generates an open
event when the door is fully opened.

The DoorLocking feature controls the locking and
unlocking of the door. It locks the door 3 seconds af-
ter the occurrence of a closed event and locks the door
immediately when a lock event occurs. Similarly, this
feature unlocks the door immediately when an unlock
event occurs. Open, Close, Lock and Unlock events
are generated by the user intending to enter the house
where the door is mounted. This relationship between
the events means that the execution of the DoorOpen-
Closed feature eventually leads to the execution of the
DoorLocking feature. Hence the features have an im-
plicit sequential composition. This is illustrated below:

Consider a scenario in which the door
is initially opened. Assume the door
has close and open buttons which gener-
ate close and open events, respectively.
When the user presses a close button
the door is closed by the DoorOpen-
Close feature and eventually locked by
the DoorLock feature. Define B1 to be
this system behaviour.

Assume a second scenario in which the



Feature interaction: the security threat from within software systems 81

door is initially opened and the user is-
sues a lock command which attempts
to lock the door. This does not have
an effect on locking the door since it is
opened. If we assume that the type of
lock is mechanical then we can imag-
ine the locking bar of the mortise lock
protruding after the lock event is issued.
If the user presses the close button the
door will start closing but will not be able
to fully close because of the protruding
locking bar. Define B2 to be this system
behaviour.

In the former scenario both features have executed
properly and satisfied their requirements. However, in
the latter scenario although both features have executed,
none has satisfied their requirements. In B1 the door is
properly closed and locked, but in B2 the door is left
unclosed! Since B1 � B2, then the composition of the
safety and security features exhibits an execution order
interaction.

Explicit sequential composition is the type of com-
position in which the preceding feature in a sequential
composition is designed in such a way that it directly
starts the execution of the next feature. For example
a security feature that automatically alerts the police
through a phone call when a break-in is detected in a
smart house is explicitly sequentially composed with a
communications feature.

3.1.4 Bypass
One feature (F1) bypasses another feature (F2) if it

changes the state of the shared environment in such a
way that the new state does not match the prestates of
the other feature (F2). This prevents F2 from executing
and hence its requirements are never satisfied. To il-
lustrate a bypass consider two features F1 and F2 with
linked trigger events. Assuming F1 is triggered and
starts executing. Also assume that its post-conditions
are different from the prestates of F2. This means that
when the trigger event of F2 occurs, F2 will not be ex-
ecuted since the current state of the environment does
not meet its prestates because of the execution of F1.

For example consider a Power Management feature
and a Security feature. The Power Management fea-
ture controls power consumption. It has parameters for
monitoring the total power consumed and the rate of
consumption. The total amount of power, measured in
Kilowatts has a monthly limit. This feature has adap-
tive power control which ensures that power consump-
tion does not exceed the monthly limit. Adaptive power
control achieves this by monitoring and adapting power
consumption by ‘greedy’ appliances. When an appli-

ance consumes power at a rate higher than the aver-
age rate then that appliance is switched-off to ensure
a steady consumption of power. On detecting a bur-
glary, the Security feature raises an alarm by sounding
a motorised siren. Assume a burglar is detected and the
security feature starts the motorised siren which con-
sumes power at a rate higher than the average rate. On
detecting this, the power management feature switches
off the power to the siren. As a result the security re-
quirement is not satisfied and the power management
feature is said to have bypassed the security feature.

3.1.5 Looping
Looping feature interactions are unique in the sense

that they defy the general notion of feature interaction.
In this type of feature interaction individual feature re-
quirements are not violated. A looping interaction oc-
curs when two features are reciprocally linked in their
post-conditions and trigger events [22], [46], [70]. Two
features, F1 and F2, are reciprocally linked if the post-
conditions of F1 create the trigger events of F2 and vice
versa. To illustrate a looping interaction, assume that
F1 is triggered and starts executing and creates the trig-
ger events of F2. Feature F2 starts executing and in turn
creates trigger events for F1. This process is repeated
indefinitely — creating infinite looping.

For example consider a Cooling feature and a Secu-
rity feature. When the temperature inside a house is
higher than that outside, the Cooling feature opens the
windows and starts the fan. On detecting movements in
the house the security feature raises an alarm by sound-
ing the siren and secures windows to ensure that the
burglar does not get away. Consider a scenario in which
the temperature in the house is hotter than outside. This
triggers the Cooling feature which by starting the fan
creates movements in the house which are interpreted
by the Security feature as being caused by a burglar.
The security feature shuts the windows. This makes
the room warm again and triggers the Cooling feature,
which again starts the fan and opens the windows. This
cycle continues indefinitely.

3.1.6 Relation to requirements interaction manage-
ment

Robinson et al [68] proposed three properties of re-
quirements interactions: Basis, Degree and Direction,
and Likelihood. The basis specifies the basic elements
of the feature interaction, that is, the minimum set of
conditions that imply an interaction between features.
This is much like the five feature interaction types we
have discussed above. The degree specifies the impact
of the interaction on the operation of the system and the
direction specifies whether the interaction is negative
(undesired) or positive (desired) with respect to the sat-



82 Progress in Informatics, No. 5, pp.75–89, (2008)

isfaction of system composition requirements. The de-
gree and direction is a measure of the interaction level
of a given set of features and can help in prioritizing
the resolution of undesirable feature interactions. Neg-
ative interactions with a high impact should be given
a higher priority than those with a lower negative im-
pact. The likelihood of a feature interaction determines
its probability of occurrence. These properties seem at-
tractive criteria for evaluating feature interactions and
such evaluation will vary from domain to domain and
may depended on the type of feature interaction. How-
ever, we do not have systematic methods of measuring
degree and likelihood of feature interactions. Current
approaches can only detect that an undesirable feature
interaction has occurred but can not tell us what the im-
pact is and how likely it is that the feature interaction
would occur.

The next section surveys approaches to detecting the
types of feature interactions described above.

3.2 Formal approaches
Formal methods are precise languages and tech-

niques for specifying and analyzing systems. Due to
their rigour, precision, and systematic treatment they
are highly desirable in the development of software sys-
tems where a high standard of safety and integrity is
essential [87]. These benefits have been demonstrated
for the detection of feature interactions in telecommu-
nications features, such as in the use of Temporal Logic
[28]. The application of these approaches in addressing
the feature interaction problem can be classified into
Logic Based, State/Model-Based, Algebraic, and Struc-
tural approaches. This classification is based on classi-
fications proposed in Liu et al [50], Turner et al [79],
and Kryvyi and Matveyeva [47].

A summary of these approaches is presented in Ta-
ble 3. For each class of approach it shows the nota-
tion used for feature specification, the type of feature
interaction detected, the feature interaction detection
approach used, the application domain, and tool sup-
port (where available). This table shows no evidence of
approaches that address the detection of looping inter-
actions. Following is a brief summary of each class.

3.2.1 Logic
This approach involves the use of logics to describe

system desired properties. Validity of properties is
checked using the associated axiom system of the used
logic. The commonest types logic systems used for
specifying features and reasoning about their compo-
sitional behaviours are modal temporal logic and the
Event Calculus. Temporal Logic expresses how the sys-
tem behaviour evolves over time, making it possible
to make statements about future states of the system.

It can be used to reason about qualitative and quan-
titative temporal properties. Qualitative properties in-
clude safety properties (such as mutual exclusion and
absence of deadlock) and liveness properties (such as
termination and responsiveness). Examples of quanti-
tative properties include periodicity, deadline, and de-
lays. Calder et al [19] and Felty [28] have used tem-
poral logic for specifying the behaviour of telecom-
munications features and used the model checking tool
SPIN [20] to automate the process of detecting interac-
tions.

The Event Calculus [69] is a logical language for
representing and reasoning about actions and their ef-
fects. It is also being used for specifying and analysing
feature-based system behaviour. An Event Calculus
description relates initiating and terminating events to
system states called fluents. A fluent is a property of
the system that holds after it is initiated by an event and
ceases to hold when terminated by another. An event
e1 is said to initiate a fluent f if upon occurrence of e1,
f becomes true. Meanwhile an event e2 is said to ter-
minate fluent f if its occurrence makes f to be false.
This logic system has been used for analysing conflicts
between policy specifications [9], avoiding feature in-
teractions resulting from inconsistent smart home fea-
tures [48], [49], and real-time monitoring of require-
ments satisfaction in service-based systems [73].

Yokogawa et al [86] propose the use of bounded
model checking for the detection of feature interac-
tions. In this approach, the problem of feature in-
teraction is reduced to that of the propositional satis-
fiability decision problem [14]. Mueller [56] presents
a comprehensive comparison between Event Calculus
and Temporal Action Logic (TAL) [30] which could
be useful as guidance in deciding which logic sys-
tem to use for a given application. Giannakopoulou
and Magee [31] have proposed an approach of translat-
ing event-based specifications into fluent propositions
which makes them amenable to analysis with model-
checking tools.

Features have also been specified as constraints on
system behaviour and feature interactions defined as
violation of such constraints. Accorsi [1] proposes
an approach in which features are specified as con-
straints and model checking tools are then used to
analyse the specifications for feature interactions. In
[27] a constraint-based approach for performing avoid-
ance, detection, and resolution of feature interactions
is proposed. Hay and Atlee [39] propose a transi-
tions synchronization technique called Conflict Free-
Synchronisation. This technique allows features to si-
multaneously react to a particular situation, but disables
transition combinations that conflict. Two features con-
flict if the combination of their transitions violates rel-



Feature interaction: the security threat from within software systems 83

Table 3 A summary of formal approaches.

Approach Feature
Specification
Notation(s)

Type of Inter-
action(s) De-
tected

Approach to
FI Detection

Application
Domain(s)

Tool Support References

State/
Model-
Based

Procedural
Event-Based
Formalism
(P-EBF),
Traces of
Finite State
Automata,
MSC, and
SDL

Negative
Impact, and
Bypass,

Constraint
Satisfaction,
Reachability
Analysis, and
Simulation

Intelligent
Networks
(IN) services,
POTS and
Distributed
SIP Services.

ISAT
LTSA [31]

Hall [35], Elf et al [27]
Kaindl [43], Turner [77],
Fu et al [29], Damas
et al [25], Lorentsen
et al [52], Uchitel and
Chechik [80]

Logic-
Based

Linear Tem-
poral Logic
Formulas
and Event
Calculus
Descriptions

Non-
Determinism
and Invariant
Violation
(Bypass)

Model Check-
ing, Con-
straints Sat-
isfaction,
and Logic
Deduction.

POTS, Smart
Homes, Poli-
cies

SPIN and
Event Calcu-
lus Planner

Calder et al [19],
Felty et al [28],
Laney et al [48],
Bandara et al [9], and
Accorsi et al [1],
Shanahan [69],
Blair et al [12], [26], [64]

Algebraic LOTOS Bypass, Over-
ride, and Neg-
ative Impact

Constraint Sat-
isfaction

POTS ELUDO,
CADP, and
LOLA [29]

Fu et al [29], Gorse [33],
and Nakamura et
al [58], [59],

Structural Petri-nets
and Use
Case Maps
(UCMs)

Non-
determinism

Simulation
and reachabil-
ity analysis2

POTS and
User Inter-
faces for
Mobile Phones

DESIGN/CPN
[3]

Amyot [5], Nakamura et
al [58], Jackson and Zave
[41], Pomakis and Atlee
[62], Kryvyi [47], Lu et al
[53], and Lorentsen et al
[52].

evant assertions.

3.2.2 State/model-based
State-based languages are used to model the be-

haviour of a feature-based system in terms of abstract
machines with sets of states and transitions between the
states. The machine changes from one state to another
depending on the input and may produce some output
in response. Some notable examples of state-based lan-
guages include the Specification and Description Lan-
guage (SDL) [43], [77], and Message Sequence Charts
(MSC) [25], [29], [52], [80].

SDL is an ITU z.100 standard language for analysing
specifications for completeness and correctness, deter-
mining conformance of implementation to specifica-
tions, and determining consistency between specifica-
tions. It is intended for specification of complex, event-
driven, real-time, and interactive applications which in-
volve concurrent processes that communicate using dis-
crete signals.

2) These approaches do not actually detect feature interaction but through their
architecture they impose feature prioritization; hence ensuring that higher pri-
ority features always takes precedence in case of a conflict. This increases the
predictability of system behaviour.

MSCs model system behaviour using scenario-based
specifications and they focus on messages exchanged
between features. The basic principle of feature inter-
action detection with stated-based approaches is deter-
mining state reachability [62], [71], i.e. whether all the
states reachable in isolation are reachable in composi-
tion. A given state is associated with the satisfaction of
certain properties; hence if the given state is not reached
the satisfaction of these properties is violated.

In the approach proposed by Hall [35], a language
similar to LISP is used to specify foreground and back-
ground models. A foreground model contains the es-
sential changes introduced by features while a back-
ground models represents the static part of the system.

3.2.3 Algebraic
Algebraic approaches are similar to stated-based ap-

proaches. The only difference is that with algebraic ap-
proaches the consideration of state information is im-
plicit and the focus is on actions that cause transitions
between states. A feature-based system is modelled as
a set of communicating processes with each process
modelling a single feature. Each feature process de-
scribes the order in which events can occur (sequen-



84 Progress in Informatics, No. 5, pp.75–89, (2008)

tially or concurrently).
An example of an Algebraic language is Language

Of Temporal Ordering of Specification (LOTOS). In
[29], LOTOS is used for describing feature speci-
fications and these specifications are then translated
into state transition model that describe properties that
should hold either globally or locally. These properties
describe required feature behaviour and their violations
are considered as feature interactions. State transitions
that do not lead to property violations are encoded as
Message Sequence Charts.

In [33], a two-stage approach to detecting feature in-
teractions in LOTOS specifications is proposed. The
first stage is filtering in which possible interactions
are detected by considering feature prestates, trigger
events, post-conditions, and constraints. Nakamura et
al [58], [59], proposes heuristics for filtering based on
feature specified with Use Case Maps. The second
stage is testing. At this stage suspect interactions iden-
tified in the filtering stage are further analysed to ascer-
tain if they can actually occur. This approach does not
guarantee that all possible interactions have been de-
tected since the set of filtering heuristics have not been
demonstrated to be complete. Moreover, it is generally
accepted that testing does not guarantee the absence of
feature interactions [32].

3.2.4 Structural
With structural approaches the organisation of the

system is defined in terms of its components – the fea-
tures. Structural approaches are useful as visual no-
tation for representing sequences of actions and the
causality among them, e.g. Use Case Maps (UCM) [5].
Structural approaches are not formal in themselves and
consequently they are often accompanied by a formal
underpinning which describes rules of valid connec-
tions between components. This is demonstrated in
[58] where a formal link is provided from UCM to LO-
TOS.

Architecture-centric methods to handling feature
interactions such as the DFC [41] and the Feature
Stack Architecture [62] demonstrate the use of struc-
tural approaches. Both of these methods resolve non-
deterministic feature behaviour by prioritizing features,
ensuring that they always execute in a deterministic
way. Practical application of the DFC (initially de-
veloped for Plain Old Telephone System (POTS) ) has
been demonstrated through its implementation in an IP
telephony platform called BoxOS [13].

Petri Nets provide a graphical representation with
formal semantics of system behaviour and they can deal
with concurrency, non-determinism, and casual con-
nections between events. In the approach proposed
in [53], feature functionality is represented as a tem-

poral formula and the behaviour of the featured-based
system is represented as the set of all firing sequences.
Feature interactions are detected by inspecting whether
or not the temporal formula is violated when executing
some of the firing sequences.

The CHISEL notation [77] is an informal graphical
notation describing telecommunications features and
services. Its graphical descriptions are supported by
LOTOS and SDL.

3.3 Research issues
Formal specifications of features help improve clar-

ity and precision [19]. Formal analysis of feature com-
positions allows for rigour in the detection of feature
interactions [17]. Although the application of formal
approaches has proven valuable in understanding fea-
ture interactions, especially in the telecommunications
domain, the main challenges for applicability of formal
approaches concern end-user programming. The main
goal of end-user programming is to equip end-users
(rather than developers) with tools for designing and
composing their features. This is different from current
practice in which features are designed and composed
by experienced developers.

Such a development paradigm raises two issues: (1)
how can formal approaches be used to capture and for-
malize user intentions, and (2) how to handle feature
interactions between end-user defined features. A ma-
jority of feature interactions can be traced to the way
user intentions are interpreted. For example resolving
interaction between the Safety feature and the Security
feature in the automobile example given earlier requires
knowledge of what the car owner prefers. Resolution
of such interactions is currently through static priorities
determined in advance. However, run-time composi-
tions may need dynamic resolutions.

Composition of features from different users will re-
quire user intentions to be captured and formalized and
such information may aid resolution. The Composi-
tion Controller [48], [49] is a step in this direction as it
can store alternative resolutions associated with certain
composition requirements. It allows the desired resolu-
tion to be chosen at run-time. However, the alternative
resolutions themselves are based on static composition
requirements.

With internet telephony end users are able to create
their own features. For example it is now possible for
a user to define a policy which handles incoming calls
depending on who is calling and when [12]. Currently,
feature interactions can be managed because the devel-
opment of features and their composition is under a few
major firms. When definition of features is distributed
among end users more sophisticated formal methods
may be required for defining feature compositional be-



Feature interaction: the security threat from within software systems 85

haviour.

4 Implications for security require-
ments

We now look at possible implications of the preced-
ing discussion for security requirements. We first look
at some of the distinct characteristics of security re-
quirements.

4.1 Some characteristics of security requirements
In order to protect assets from harm security

requirements constrain functional requirements [34],
[38], [72]. For example, transferring financial informa-
tion between accounts held in different banks is a func-
tional requirement. To achieve integrity and confiden-
tiality it is necessary to ensure, respectively, that: (1)
the amount of money to be transferred and the account
where it is to be deposited is not changed during trans-
mission; and (2) unauthorised third parties should not
know how much money has been transmitted and who
is the beneficiary. Both of these security concerns con-
strains the way information is transmitted.

To realise a security requirement it is necessary to re-
fine it into a functional requirement [34]. For example
items in a car can be stolen by opening the doors. Thus,
the requirement of preventing theft can be refined to:
“keep the doors locked”. This is a functional require-
ment whose implementation is sufficient to satisfy the
original security requirement.

A security requirement may be violated by the com-
positional behaviour of functional requirements [17].
An example of this is a three-way feature interaction
in telecommunications [44]:

Assume a telephone user A is sub-
scribed to Calling Line Identity Restric-
tion (CLIR) which prevents his number
from being displayed when calling an-
other subscriber (a confidentiality fea-
ture). Also consider another user B
who has two features: Automatic Recall
(ARC) and Itemized Billing (ITM) active.
ARC enables B to return a call to the
last caller without knowing their (caller’s)
number. ITM is a call accounting feature
which enables B to produce a list of all
telephone numbers dialled over a given
period. If A calls B and later B uses his
ARC feature, the system will connect him
to A and then A’s number will now be
listed in B’s itemized bill. As a result A’s
CLIR feature is compromised! This is il-
lustrated in Fig. 3. Note that the require-
ments of the ARC and ITM features are

Fig. 3 Illustration of a 3-way feature interaction.

satisfied. However, the confidentiality re-
quirement of the CLIR is violated.

Examples like this illustrate that the feature inter-
action problem may lead to violation of security re-
quirements. Vulnerability analysis needs to address this
problem. In the next section we briefly discuss some
techniques for vulnerability analysis.

4.2 Vulnerability analysis
A vulnerability is a weakness in a system that can

be exploited by attackers to compromise its (system’s)
security [7]. Vulnerability analysis is the process of
identifying, quantifying, and prioritizing vulnerabili-
ties [11], [61], [63]. A number of approaches have been
proposed for vulnerability analysis. These approaches
are generally classified as model-based [63], graph-
based [4], [61] and constraint-based [11].

Model-based approaches construct high-level mod-
els of system components; formalize desired security-
relevant properties of the composite system; and anal-
yse system models to check for deviation from desired
security properties [63]. Graph-based approaches or-
ganise attack exploits into trees or graphs [4]. Each
node represents relevant system attributes such as spe-
cific vulnerabilities on various hosts in a network. Each
transition in the graph represents a specific exploit that
an attacker can carry-out. Finally, constraint-based ap-
proaches use constraint satisfaction to detect and elim-
inate cascading network paths that compromise secu-
rity [11].

The main limitation of the above approaches is that
they do not explicitly consider compositional effects
of system components. Yet such compositional effects
may lead to interactions that compromise security re-
quirements.

5 Conclusions and future work
Security requirements have distinct characteristics.

However, their refinement into functional requirements
blurs this distinction with respect to the feature inter-
action problem. Hence the detection of feature interac-
tions involving security requirements can be achieved
with current approaches to feature interaction detection.

We have looked at whether specific characteristics of
security requirements may affect the feature interaction
problem. It may also be worth investigating the effect



86 Progress in Informatics, No. 5, pp.75–89, (2008)

the feature interaction problem has on the problem of
security engineering? Does it make security more chal-
lenging to address? Does the composition of two fea-
tures which satisfy some security requirements in iso-
lation result in an overall system that is not secure? To
address these issues research on software composition,
including aspect orientation [23], hold some promise.

Acknowledgements
We are grateful to the EPSRC for providing the fi-

nancial support that has made this work possible. We
are grateful to Michael Jackson for his insightful re-
view that shaped the message of this paper. We also
thank Mohammed Salifu, Thun Thein, Yudistira Asnar,
and Jan Jurjens for the helpful discussions that enriched
the ideas in this paper. Finally, we are very thankful to
the anonymous reviewers for their useful criticism that
helped improve the paper.

References
[1] R. Accorsi, C. Areces, W. Bouma, and M.d. Rijke, Fea-

tures as Constraints, in Feature Interactions in Telecom-
munications and Software Systems, M. Calder and E.
Magill, Editors. IOS Press: Amsterdam. pp. 210–225 ,
2000.

[2] I.F. Akyildiz, H. Rudin, L.G. Bouma, N. Griffeth, and
K. Kimbler, “Special issue on the feature interactions in
telecommunications systems.”Computer Networks, vol.
32, no. 4, 2000.

[3] K. Albert, K. Jensen, and R. Shapiro, “A Tool Package
Supporting the Use of Colored Nets.” Petri Net Newslet-
ter, vol. 32, pp. 22–35, 1989.

[4] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable,
graph-based network vulnerability analysis.” Proceed-
ings of the 9th ACM conference on Computer and com-
munications security, pp. 217–224, 2002.

[5] D. Amyot, “Use Case Maps as a Feature Description
Notation,” in Language Constructs for Describing Fea-
tures, S. Gilmore and M. Ryan, Editors. 2001, Springer,
Berlin.

[6] D. Amyot and L. Logrippo, “Special issue: Directions
in feature interaction research.” Computer Networks,
vol. 45, no. 5, 2004.

[7] R. Anderson, Security Engineering: A Guide to Build-
ing Dependable Distributed Systems. Canada: John Wi-
ley & Sons, Inc 2001.

[8] A.I. Antón, and J.B. Earp, “A requirements taxonomy
for reducing Web site privacy vulnerabilities.”Journal of
Requirements Engineering, vol. 9, no. 3, 2004.

[9] A.K. Bandara, E.C. Lupu, and A. Russo. “Using event
calculus to formalise policy specification and analysis.”
in Proceedings of the 4th IEEE International Workshop
on Policies for Distributed Systems and Networks. 2003.

[10] J. Bisbal and B.H.C. Cheng, “Resource-based Approach
to Feature Interaction in Adaptive Software.” Proceed-
ings of the 1st ACM SIGSOFT workshop on Self-
managed systems, pp. 23–27, 2004.

[11] S. Bistarelli, “A soft constraint-based approach to the
cascade vulnerability problem.” Journal of Computer
Security, vol. 13, no. 5, pp. 699–720, 2005.

[12] L. Blair and K.J. Turner, “Handling Policy Conflicts
in Call Control.” in Proc. International Conference on
Feature Interaction VIII. Amsterdam, IOS Press. 2005.

[13] G.W. Bond, E. Cheung, K.H. Purdy, P. Zave, and C.
Ramming, “An Open Architecture for Next-Generation
Telecommunication Services.” ACM Transactions on
Internet Technology (TOIT), vol. 4, no. 1, pp. 83–123,
2004.

[14] L. Bordeaux, Y. Hamadi, and L. Zhang, “Propositional
Satisfiability and Constraint Programming: A compara-
tive survey.” ACM Computing Surveys, vol. 38, no. 4, p.
12, 2006.

[15] J. Bredereke, “Configuring Members of a Family of Re-
quirements Using Features.” in Feature Interactions in
Telecommunications and Software Systems VIII. Leister,
U.K., IOS Press. 2005.

[16] J. Bredereke, “On Feature Orientation and on Require-
ments Encapsulation Using Families of Requirements,”
in Objects, Agents, and Features, J.-J.C.M. Mark D.
Ryan, Hans-Dieter Ehrich, Ed. Springer-Verlag, Berlin
Heidelberg. pp. 26–44, 2004.

[17] M. Calder, M. Kolberg, E. Magill, and S. Reiff-
Marganiec, “Feature interaction: A critical review and
considered forecast.” Comput. Networks, vol. 41, no. 1,
pp. 115–141, 2003.

[18] M. Calder, and E. Magill, Feature Interactions in
Telecommunications and Software Systems VI. Amster-
dam, The Netherlands, IOS Press. 2000.

[19] M. Calder and A. Miller, “Feature interaction detection
by pairwise analysis of LTL properties: a case study.”
Formal Methods in System Design, vol. 28, no. 3, pp.
213–261, 2006.

[20] M. Calder, and A. Miller, “Using SPIN for Feature In-
teraction Analysis - A Case Study.” in Proceedings of
the 8th international SPIN workshop on Model checking
of software. Toronto, Ontario, Canada, Springer-Verlag
New York, Inc. 2001.

[21] E.J. Cameron, N. Griffeth, Y.-J. Lin, M.E. Nilson, W.K.
Schnure, and H. Velthuijsen, “A feature-interaction
benchmark for IN and beyond.” IEEE Communications
Magazine, vol. 31, no 3, pp. 64-69, 1993.

[22] E.J. Cameron and H. Velthuijsen, “Feature interac-
tions in telecommunications systems.” IEEE Communi-
cations Magazine, vol. 31, no. 8, pp. 18–23, 1993.

[23] A. Charfi and M. Mezini, “Using aspects for security
engineering of Web service compositions.” in Web Ser-
vices, 2005. ICWS 2005. Proceedings. 2005 IEEE Inter-
national Conference on. 2005.



Feature interaction: the security threat from within software systems 87

[24] C. Chi and R. Hao, “Test generation for interaction de-
tection in feature-rich communication systems.” Journal
of Computer Networks: Special Issue on Feature Inter-
action, vol. 51, no. 2, pp. 426–438, 2007.

[25] C. Damas, B. Lambeau, P. Dupont, and A. van Lam-
sweerde, “Generating annotated behavior models from
end-user scenarios.” IEEE Trans. Softw. Eng., vol. 31,
no. 12, pp. 1056–1073, 2005.

[26] P. Dini, A. Clemm, T. Gray, F.J. Lin, L. Logrippo, and
S. Reiff-Marganiec, “Policy-enabled mechanisms for
feature interactions: reality, expectations, challenges.”
Comput. Networks, vol. 45, no. 5, pp. 585–603, 2004.

[27] C.D. Elfe, E.C. Freuder, and D. Lesaint, “Dynamic con-
straint satisfaction for feature interaction.” BT Technol-
ogy Journal, vol. 16, no 3, 1998.

[28] A.P. Felty and K.S. Namjoshi, “Feature specification
and automated conflict detection.” ACM Transactions
on Software Engineering and Methodology (TOSEM),
vol. 12, no. 1, pp. 3–27, 2003.

[29] Q. Fu, P. Harnois, L. Logrippo, and J. Sincennes, “Fea-
ture interaction detection: a LOTOS-based approach.”
Comput. Networks, vol. 32, no. 4, pp. 433–448, 2000.

[30] M. Gelfond and V. Lifschitz, “Representing action and
change by logic programs.” The Journal of Logic Pro-
gramming, vol. 17, no. 2–4, pp. 301–321, 1993.

[31] D. Giannakopoulou and J. Magee, “Fluent model check-
ing for event-based systems,” in Proceedings of the
9th European software engineering conference held
jointly with 11th ACM SIGSOFT international sympo-
sium on Foundations of software engineering. ACM
Press, Helsinki, Finland. pp. 257–266, 2003.

[32] J.C. Godskesen, “A Formal Framework for Feature In-
teraction with Emphasis on Testing,” in Feature Inter-
actions in Telecommunications Systems III, K.E. Cheng
and T. Ohta, Editors. IOS Press. pp. 21–30, 1995.

[33] N. Gorse, L. Logrippo, and J. Sincennes, “Formal De-
tection of Feature Interactions with Logic Programming
and LOTOS.” Jornal of Software and Systems Modeling,
vol. 5, no. 2, p. 135, 2006.

[34] C.B. Haley, J.D. Moffett, R. Laney, and B. Nuseibeh,
“A framework for security requirements engineering,”
in Proceedings of the 2006 international workshop on
Software engineering for secure systems. ACM, Shang-
hai, China. pp. 35–42, 2006.

[35] R.J. Hall, “Feature combination and interaction detec-
tion via foreground/background models.” Comput. Net-
works, vol. 32, no. 4, pp. 449–469, 2000.

[36] R.J. Hall, Feature Interaction in Electronic Mail, in Fea-
ture Interactions in Telecommunications and Software
Systems VI, M. Calder and E.H. Magill, Editors. IOS
Press, Glasgow, Scotland, UK, 2000.

[37] R.J. Hall, “Fundamental Nonmodularity in Electronic
Mail.” Autom. Softw. Eng., vol. 12, vol. 1, pp. 41–79,
2005.

[38] H. Hamed and E. Al-Shaer, “Taxonomy of conflicts in
network security policies.” Communications Magazine,
IEEE, vol. 44, no. 3, pp. 134–141, 2006.

[39] J.D. Hay and A.J. M., “Composing Features and Re-
solving Interactions.” ACM SIGSOFT Software Engi-
neering Notes, vol. 25, Issue 6, pp. 110–119, 2000.

[40] M. Jackson, Problem frames : analysing and structur-
ing software development problems. ACM Press. 2001,
Harlow, Addison-Wesley, 2001.

[41] M. Jackson and P. Zave, “Distributed Feature Com-
position: A Virtual Architecture for Telecommunica-
tions Services.” Software Engineering, IEEE Transac-
tions on, vol. 24, no. 10, pp. 831–847, 1998.

[42] N. Jianwei, J.M. Atlee, and N.A. Day, “Template se-
mantics for model-based notations.” IEEE Transactions
on Software Engineering, vol. 29, no. 10, pp. 866–882,
2003.

[43] H. Kaindl, “A scenario-based approach for requirements
engineering: Experience in a telecommunication soft-
ware development project.” Systems Engineering, vol.
8, no. 3, pp. 197–210, 2005.

[44] D.O. Keck and P.J. Kuehn, “The Feature and Service
Interaction Problem in Telecommunications Systems: A
Survey.” IEEE Trans. on Softw. Eng., vol. 24, no. 10, pp.
779–796, 1998.

[45] M. Kolberg and E.H. Magill, “Managing feature inter-
actions between distributed SIP call control services.”
Journal of Computer Networks: Special Issue on Fea-
ture Interaction, vol. 51, no. 2, pp. 536–557, 2007.

[46] M. Kolberg, E.H. Magill, and M. Wilson, “Compatibil-
ity Issues between Services Supporting Networked Ap-
pliances.” IEEE Commun. Mag., vol. 41, no. 11, pp.
136–147, 2003.

[47] S.L. Kryvyi and L.Y. Matveyeva, “Formal Methods of
Analysis of System Properties.” Journal of Cybernetics
and Systems Analysis, vol.39, no. 2, pp. 174 –191, 2003.

[48] R., Laney, M. Jackson, and B. Nuseibeh, Composing
Problems: Deriving specifications from inconsistent re-
quirements. The Open University: Milton Keynes, U.K.,
2005.

[49] R. Laney, T.T. Tun, M. Jackson, and B. Nuseibeh, Com-
posing Features by Managing Inconsistent Require-
ments. in 9th International Conference on Feature In-
teractions in Software and Communication Systems.
Grenoble, France, 2007.

[50] X. Liu, H. Yang, and H. Zedan, “Formal methods for the
re-engineering of computing systems: a comparison.” in
Computer Software and Applications Conference, 1997.
COMPSAC ’97. Proceedings., The Twenty-First Annual
International. 1997.

[51] L. Logrippo, “Special issue on feature interactions in
telecommunications software.” Comput. Networks and
ISDN Systems, vol. 30, no. 15, 1998.



88 Progress in Informatics, No. 5, pp.75–89, (2008)

[52] L. Lorentsen, A.-P. Tuovinen, and J. Xu, “Modelling
Feature Interaction Patterns in Nokia Mobila Phones us-
ing Coloured Petri Nets,” in 23th International Confer-
ence on Application and Theory of Petri Nets. Adelaide,
Australia, Springer-Verlag Berlin Heidelberg, 2002.

[53] Y. Lu, G. Wei, and T.-Y. Cheung, “Managing feature
interactions in telecommunications systems by Tempo-
ral Colored Petri nets.” in Proceedings of the Seventh
IEEE International Conference on Engineering of Com-
plex Computer Systems, 2001. Skovde, Sweden, 2001.

[54] A. Metzger, “Feature interactions in embedded control
systems.” Computer Networks, vol. 45, no. 5, pp. 625–
644, 2004.

[55] A. Metzger and C. Webel, “Feature Interaction Detec-
tion in Building Control Systems by Means of a Formal
Product Model.” in Feature Interactions in Telecommu-
nications and Software Systems VII. Ottawa, Canada, IO
Press, 2003.

[56] E.T. Mueller, “Event calculus and temporal action log-
ics compared.” Artificial Intelligence, vol. 170, no. 11,
pp. 1017–1029, 2006.

[57] M. Nakamura, H. Igaki, and K.-i. Matsumoto, “Fea-
ture Interactions in Integrated Services of Networked
Home Appliances: An Object Oriented Approach.” in
8th International Conference on Feature Interactions in
Telecommunications and Software Systems. Leicester,
UK, 2004.

[58] M. Nakamura, T. Kikuno, J. Hassine, and L.
Logrippo, “Feature Interaction Filtering with Use Case
Maps at Requirements Stage,” in Feature Interactions
in Telecommunications and Software Systems VI, M.
Calder and E. Magill, Editors. IOS Press, 2000.

[59] M. Nakamura, P. Leelaprute, and T. Kikuno, “Deriving
Interaction-Prone Scenarios in Feature Interaction Fil-
tering with Use Case Maps.” in Proceedings of the Sev-
enth IEEE International Workshop on Object-Oriented
Real-Time Dependable Systems (WORDS’02). 2002.

[60] S.R. Palmer and J.M. Felsing, A Practical Guide to
Feature-Driven Development. Pearson Education, 2002.

[61] C. Phillips and L. Swiler, “A graph-based system
for network-vulnerability analysis.” Proceedings of the
1998 workshop on New security paradigms, pp. 71–79,
1998.

[62] K.P. Pomakis and J.M. Atlee, “Reachability analysis of
feature interactions: a progress report.” in Proceedings
of the 1996 ACM SIGSOFT international symposium on
Software testing and analysis. San Diego, California,
United States: ACM Press New York, NY, USA. 1996.

[63] C. Ramakrishnan and R. Sekar, Model-based analysis of
configuration vulnerabilities. Intrusion Detection, 2002.

[64] S. Reiff-Marganiec, “Policies: Giving Users Control
over Calls,” in Agents, Objects and Features, M.D.
Ryan, J.-J.C. Meyer, and H.-D. Ehrlich, Ed. Springer
Verlag, Berlin. pp. 189–208, 2004.

[65] S. Reiff-Marganiec and M.D. Ryan, Feature Interac-
tions in Telecommunications and Software Systems VIII.
Amsterdam, The Netherlands, IOS Press, 2005.

[66] S. Reiff-Marganiec and M.D. Ryan, “Guest Editorial.”
Journal of Computer Networks: Special Issue on Fea-
ture Interaction, vol. 51, no. 2, pp. 357–358, 2007.

[67] S. Reiff-Marganiec and K.J. Turner, “Feature Interac-
tion in Policies.” Comput. Networks: The International
Journal of Computer and Telecommunications Network-
ing, vol. 45, no. 5, pp. 569–584, 2004.

[68] W.N. Robinson, S.D. Pawlowski, and V. Volkov, “Re-
quirements Interaction Management.” ACM Computi.
Surv., vol. 35, no. 2, pp. 132–190, 2003.

[69] M. Shanahan, “The Event Calculus Explained,” in Lec-
ture Notes in Computer Science. Springer: Berlin / Hei-
delberg. p. 409, 1999.

[70] M. Shehata, A. Eberlein, and A.O. Fapojuwo, “A taxon-
omy for identifying requirement interactions in software
systems.” Journal of Computer Networks: Special Is-
sue on Feature Interaction, vol. 51, no. 2, pp. 398–425,
2007.

[71] S. Siddiqi and J.M. Atlee, “A hybrid model for speci-
fying features and detecting interactions.” Comput. Net-
works, vol. 32, no. 4, pp. 471–485, 2000.

[72] G. Sindre and A.L. Opdahl, “Eliciting security require-
ments with misuse cases.” Journal of Requirements En-
gineering, vo. 10, no. 1, pp. 34–44, 2005.

[73] G. Spanoudakis and K. Mahbub, “Non Intrusive Moni-
toring of Service Based Systems.” International Journal
of Cooperative Information Systems, vol. 15, no. 3, pp.
325–358, 2006.

[74] R. Telang and S. Wattal, “An Empirical Analysis of the
Impact of Software Vulnerability Announcements on
Firm Stock Price.” Software Engineering, IEEE Trans-
actions on, vol. 33, no. 8, pp. 544–557, 2007.

[75] S. Thiel, S. Ferber, T. Fischer, A. Hein, and M. Schlick,
“A Case Study in Applying a Product Line Approach for
Car Periphery Supervision Systems,” in Proceedings of
In-Vehicle Software 2001 (SP-1587). Detroit, Michigan,
USA. 2001.

[76] C.R. Turner, A. Fuggetta, L. Lavazza, and A.L. Wolf, “A
Conceptual basis for feature engineering.” The Journal
of Systems and Software, vol. 49, no. 1, pp. 3–15, 1999.

[77] K.J. Turner, “Formalising the Chisel Feature Notation,”
in Proceedings of the Feature Interactions in Telecom-
munications Networks VI, M.H. Calder and E.H. Magill,
Ed. IOS Press Amsterdam, Amsterdam. pp. 241–256,
2000.

[78] K.J. Turner and L. Blair, “Policies and conflicts in call
control.” Journal of Computer Networks: Special Is-
sue on Feature Interaction, vol.51, no. 2, pp. 496–514,
2007.

[79] K.J. Turner, E.H. Magill, and D.J. Marples, Service Pro-
vision. Wiley Series in Communications Networking &



Feature interaction: the security threat from within software systems 89

Distributed Systems, ed. D. Hutchison. John Wiley &
Sons, Ltd. 2004.

[80] S. Uchitel and M. Chechik, “Merging Partial Be-
havioural Models.” in ACM International Symposium on
Foundations of Software Engineering (FSE’04). New-
port Beach, 2004.

[81] M. Weiss, Detecting Feature Interactions in Web Ser-
vices. 2003, Carleton University, Ottawa, Canada.

[82] M. Weiss, “Feature Interactions in Web Services.” in
Feature Interactions in Telecommunications and Soft-
ware Systems VII, June 11-13, 2003. Ottawa, 2003.

[83] M. Weiss, B. Esfandiari, and Y. Luo, “Towards a
Classification of Web Service Feature Interactions.” in
Proceedings Third International Conference Service-
Oriented Computing - ICSOC 2005.Amsterdam, The
Netherlands: Springer Berlin/Heidelberg. 2005.

[84] M., Weiss, B. Esfandiari, and Y. Luo, “Towards a classi-
fication of web service feature interactions.” Journal of
Computer Networks: Special Issue on Feature Interac-
tion, vol. 51, no. 2, pp. 359–381, 2007.

[85] X. Wu and H. Schulzrinne, “Handling feature interac-
tions in the language for end system services.” Journal
of Computer Networks: Special Issue on Feature Inter-
action, vol. 51, no. 2, pp. 515–535, 2007.

[86] T. Yokogawa, T. Tsuchiya, M. Nakamura, and T.
Kikuno, “Feature Interaction Detection by Bounded
Model Checking.” IEICE Transactions on Information
and Systems 2003, vol. E86-D, no. 12, pp. 2579–2587,
2003.

[87] P.S. Yu and D.M. Dias, “Performance analysis of con-
currency control using locking with deferred blocking.”
Software Engineering, IEEE Transactions on, vol. 19,
no. 10, pp. 982–996, 1993.

[88] P. Zave, “Requirements for Evolving Systems: A
Telecommunications Perspective.” in Fifth IEEE Inter-
national Symposium on Requirements Engineering (RE
’01), 2001. IEEE Computer Society, 2001.

[89] P. Zave and M. Jackson, “Conjunction as composi-
tion.” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 2, no. 4, pp. 379–411,
1993.

[90] P. Zave and M. Jackson, “Four dark corners of require-
ments engineering.” ACM Trans. Softw. Eng. Methodol.
(TOSEM), vol. 6, no. 1, pp. 1–30, 1997.

Armstrong NHLABATSI
Armstrong NHLABATSI is a PhD
student at The Open University.
His research interests include feature
composition and managing require-
ments inconsistency in feature-based
applications. His PhD is focussed on

the run-time management of feature interactions. He
holds an MSc in Software Engineering from the Uni-
versity of the West of England and a B. Eng in Elec-
tronic Engineering from the University of Swaziland.

Robin LANEY
Robin LANEY is a Senior Lecturer in the Depart-

ment of Computing at the Open University. His re-
search interests include requirements engineering, flex-
ible approaches to software architecture, and music
computing. His research mission is to focus on activ-
ities that bridge the gap between theoretical advances
and the experience and problems of working software
practitioners, in both directions. He has industrial ex-
perience as a software engineer working on program-
ming language technology and graphics. He holds a
First Class Honours BSc in Microcomputers and Appli-
cations from Westfield College, University of London,
and a PhD in Computing from King’s College, Univer-
sity of London.

Bashar NUSEIBEH
Bashar NUSEIBEH is Professor and
Director of Research in Computing at
The Open University, and a Visiting
Professor at Imperial College London
and the National Institute of Infor-
matics, Japan. He received his PhD

degree in Software Engineering from Imperial College
London in 1994. His research interests are in soft-
ware requirements engineering and design, particularly
applied to the development of dependable, mission-
critical systems. Professor Nuseibeh is Editor-in-Chief
of the Automated Software Engineering Journal, Chair
of IFIP Working Group 2.9 on Requirements Engineer-
ing, and Chair of the Steering Committee of the Inter-
national Conference on Software Engineering. He re-
ceived a number of research and service awards, and is
an Automated Software Engineering Fellow, a Fellow
of the British Computer Society and the Institution of
Engineering and Technology, and is a Chartered Engi-
neer.


