
Special issue: The future of software engineering for security and privacy

Progress in Informatics, No. 5, pp.19–34, (2008) 19

Education Paper

Curriculum design and methodologies for security
requirements analysis

Kenji TAGUCHI1 and Yasuyuki TAHARA2

1,2National Institute of Informatics

ABSTRACT
Lack of security is one of the most widespread problems affecting information systems. Se-
curity breaches at companies are reported almost everyday and users of computer systems
are busy updating security of their computer system against vulnerabilities. While some of
these problems are caused by human errors and faults of physical devices but the majority of
them are due to the defects in software systems. The best way to reduce them is to find and fix
them in an early stage of the software development, especially in the requirements elicitation
and analysis phases. In this paper, we will present how we designed a security requirements
analysis course to address this issue. We will also present security requirements elicitation
methodologies based on the agent- and goal-oriented requirements analysis methodologies of
KAOS and i*.

KEYWORDS
Security, requirements analysis, KAOS, i*, RBAC, CC

1 Introduction
Lack of security is one of the most widespread prob-

lems affecting information systems. Security breaches
at companies are reported almost everyday and users of
computer systems are busy patching the vulnerabilities
of their computer systems. While some of these prob-
lems are caused by human errors and faults of physical
devices but the majority of them are due to the defects
in software systems.

Aside from security issues, one of the main issues
in software engineering is how to reduce software de-
fects. One way to reduce them is finding and fixing
them during the requirements and design phases [1].
The requirements elicitation and analysis phases are es-
pecially important in this regard.

There are a good number of computer security
courses that deal with security problems such as buffer
overflow at the code level and how to protect servers
from attackers at the network device level. However,
we have been unable to find the topic of elicitation and
analysis of security requirements in existing software
engineering courses. To help fill this vacuum in se-

Received September 28, 2007; Revised November 14, 2007; Accepted Decem-
ber 12, 2007.
1) ktaguchi@nii.ac.jp, http://honiden-lab.ex.nii.ac.jp/˜taguchi/
2)tahara@nii.ac.jp, http://honiden-lab.ex.nii.ac.jp/˜tahara/

curity education, we have developed a course teaching
practical skills for eliciting and analyzing security re-
quirements. In this paper, we discuss how we designed
this course in our education program for IT specialists
called Top SE [3] and describe what methodologies are
taught in it.

This paper is organized as follows. The next sec-
tion presents an overview the Top SE program. Sec-
tion 3 outlines the Requirements Analysis course series.
Section 4 presents the Security Requirements Analysis
course and its methodologies. Section 5 briefly touches
on future directions of this work and Section 6 is a sum-
mary of the paper .

2 Top SE
Top SE is a non-accredited course at the masters

level; it is fully funded by the Japanese government
and is operated through a close collaboration between
industry and academia at the National Institute of Infor-
matics. Table 1 lists the whole curriculum, which con-
sists of five lecture series (Requirements Analysis, Sys-
tem Architecture, Formal Specifications, Model Check-
ing and Implementation). The overview and the cur-
riculum design of the program are discussed in [2].

The program has the following distinguishing fea-
tures:

DOI: 10.2201/NiiPi.2008.5.4

c©2008 National Instiute of Informatics



20 Progress in Informatics, No. 5, pp.19–34, (2008)

Table 1 Curriculum.

Series Courses

Requirements Analysis Requirements Analysis

Security Requirements Analysis

System Architecture Component-based Development

Software Patterns

Aspect-Oriented Development

Formal Specifications Formal Specifications (Foundation)

Formal Specifications (Advanced)

Formal Specifications (Security)

Model Checking Design Verification (Foundation)

Design Verification (Advanced)

Software Model Checking

Real-time Model Checking

Modelling and Verifying Concurrent

Systems

Implementation Testing

Program Analysis

• Wide coverage of cutting-edge software engineer-
ing technologies

• Real case studies from industry

• Tool first

• Emphasis on engineering practices rather than the-
ory

The program covers a wide range of cutting-edge
software engineering technologies, e.g., software pat-
terns, aspect-oriented development and model check-
ing. We regard Top SE as a medium to transfer these
new technologies to industry. To do so, we tailor our
program to meet the educational needs of industry and
create case studies for laboratory work with our in-
dustrial partners (Hitachi, NEC, Toshiba, NTT Data,
Fujitsu, Nihon Unisys, among others). We also have
a close collaborative relationships with our academic
partners (Shinshu Univ., Tsukuba Univ., etc.) to de-
velop and deliver the courses.

As software engineering is a practical engineering
discipline, we teach good practices rather than theory in
all courses. We specifically emphasize the use of tools;
all courses are based on laboratory work in which sev-
eral tools are used.

3 Requirements analysis course series
The Requirements Analysis course series consists

of Requirements Analysis and Security Requirements
Analysis. The former is a pre-requisite of the latter.

The key learning objective of the Requirements
Analysis course is to teach skilled software engineers

how to apply the agent- and goal-oriented requirements
analysis methodologies to practical software develop-
ment. KAOS [7]–[9] and i* [24] are mainly taught in
the course. The details of the course and the student
error models are discussed in [5].

3.1 KAOS
KAOS is a goal-oriented requirements engineering

methodology developed by van Lamsweerde and his as-
sociates [7]–[9]. KAOS covers the whole requirements
elicitation process. KAOS has a two-layered architec-
ture in which the graphical layer is used for conceptual
modeling, and the assertion layer is optional and sup-
ports a first-order real-time logic to specify constraints
associated with goals for formal reasoning [10]. In our
course, we only teach the graphical layer of KAOS. We
use [11] as the reference for graphical representation of
that layer.

The KAOS graphical layer consists of a goal hier-
archy and an object model. The requirements elicita-
tion process consists of elaboration of goals in a hierar-
chy and associated objects and operations in the object
model. The elaboration of goals step may begin with
identified high-level goals, which are then refined into
sub-goals until terminal goals, which cannot be further
refined are reached. A terminal goal is either an expec-
tation or a requirement. An expectation is a terminal
goal to be achieved by an agent in the system environ-
ment and a requirement is a terminal goal to be achieved
by a software agent. Terminal goals are operationalized
to incorporate an agent with its operation and entities
that serve as input and output objects of the operation.

In [11],

The KAOS object model is compliant
with UML class diagrams in that KAOS en-
tities correspond to UML classes; and KAOS
associations correspond to UML binary asso-
ciation links or n-ary association classes.

This compliance with UML gives us freedom to use
the object model in KAOS as UML class diagrams
including extension mechanisms such as stereotypes,
which we will use to create an access control policy
model in KAOS.

3.2 i*
The i* goal-oriented requirements engineering

methodology was originally proposed by Yu [24]. Its
main feature is that it handles the social aspects of sys-
tem requirements such as the relationships of stake-
holders. The methodology is as follows.

• Before conducting a requirements analysis of the
system to be implemented, i* analyzes the as-is



Curriculum design and methodologies for security requirements analysis 21

status, that is, the social environment in which the
system is to be put.

• The as-is status analysis identifies dependency re-
lationships between actors; that is, the i* model is
a representation of the stakeholders and the sys-
tems that already exist or are going to be devel-
oped. Such dependency relationships are used to
identify trade-offs in the requirements of the future
systems.

• Two kinds of models are used in i*. Strategic
Dependency (SD) models focus on the organiza-
tional aspects of the system environments; they
consist of dependency relationships between ac-
tors. Strategic Rationale (SR) models detail the
concerns of each actor.

i* models have hard goals and soft goals. These
goals are distinguished by their definition of satisfac-
tion. A hard goal is totally satisfied or not at all. A soft
goal has a degree of satisfaction represented by a num-
ber between 0 and 1. Two other constructs are included
in i* models: tasks and resources. A task represents
a routine to satisfy goals. A resource is a physical or
informational entity used to satisfy goals or carry out
tasks. A dependency relationship between actors is in-
volved in a goal, a task, or a resource. i* models can
incorporate other relationships, such as AND-OR de-
compositions and contributions representing the influ-
ence of constructs in satisfying a soft goal. Examples
of i* models appear in the latter parts of this paper.

4 Security requirements course
The course is concerned with security issues in the

requirements analysis and elicitation phases. It intro-
duces several methodologies for security-related topics
with the aim of exposing students to more than one se-
curity methodology.

There are so many security issues and it is not wise
to assume that a single methodology can be applied to
all of them. For this reason, we chose to teach several
other methodologies such as misusecases, abusecases
and security usecases in addition to KAOS and i*.

The course consists of twelve lectures as shown in
Table 2. Most of the lecture time is devoted to labo-
ratory works using tools. We use a UML CASE tool
called JUDE for constructing usecases and K-Tool, our
original tool for KAOS and ST-Tool [4] for i*. The in-
tended learning outcomes are as follows:

• The student demonstrates an understanding of se-
curity issues

• He or she demonstrates an understanding of the

methodologies used in eliciting and analyzing se-
curity requirements

• He or she can explain and construct security-
related models in usecase variants (misusecases,
abusecases and security usecases ), KAOS and i*

• He or she can compare different approaches to se-
curity requirements analysis and elicitation

Security issues in the requirements elicitation and
analysis phases are largely ignored in industry so we
carefully chose the topics we would teach in the course.
We chose the following topics:

• Security Control Policy

• Copyright

• Common Criteria (CC)

We chose the Role-Based Access Control (RBAC)
policy, since designing and implementing secure and
robust access control policies for organizations and
computing systems has become a critical aspect of pro-
tecting the information and resources available to them.
In particular, access control policies will become very
complex in large and complex organizations such as
the Department of Homeland Security [14] and Dres-
dner Bank [13]. In the latter case, it is reported that
there are over one thousand roles. To control complex-
ity and ease the elicitation of requirements process for
the access control policies, we should adopt a well-
established requirements engineering methodology at
an early stage of the software development process;
hence we chose KAOS for this purpose.

There is a vast amount of research on models for ac-
cess control policies in general and role-based access
control (RBAC) in particular. A reference model in this
area is the proposal on RBAC by NIST [6] in the form
of ANSI INCITS 359-2004. We chose NIST RBAC as
our teaching materials on this problem.

Our course uses an example of copyright protection
for hard disk (HD)/DVD recorders. Although the copy-
right issue is not exactly a security problem, it is closely
related to various security issues and functionalities.
For example, many software products treating text or
multimedia data include access control mechanisms to
prevent the data from being copied. Most digital rights
management (DRM) mechanisms use security-related
technologies such as cryptography and digital water-
marks. For this reason, we treat this copyright problem
as a topic of security requirements analysis.

The problem is as follows.



22 Progress in Informatics, No. 5, pp.19–34, (2008)

Table 2 Course Structure.

Number Description

1 Introduction

2 Usecases for Security (1)

3 Usecases for Security (2)

4 Access Control Policies (1)

5 Access Control Policies (2)

6 Interim Presentation

7 Copyright (1)

8 Copyright (2)

9 Common Criteria (CC)

10 Lab Work on CC (1)

11 Lab Work on CC (2)

12 Final Presentation

• If a user tries to copy multimedia data recorded in
an HD recorder to a DVD recorder, she must not
violate the copyright of the TV station for the data.

• The students of this course need to identify func-
tionalities of the HD and DVD recorders and is-
sues raised by the functionalities.

Our security requirements analysis course aims at
enabling students to apply the advanced requirements
analysis techniques to their workplace. This course,
in the same way as the other courses of Top SE, treats
an international standard ISO/IEC 15408 as the frame-
work of security requirements specifications and the
catalog of security functionality requirements specifi-
cations. This standard is called “Common Criteria for
Information Technology Security Evaluation” or Com-
mon Criteria or CC for short. It is for evaluating the
security of IT systems. However, the objective of eval-
uation is not the security strength but the “level of con-
fidence that the security functionality and its assurance
measure meet the specified requirements” [20]. There-
fore, the requirements specifications are as important
as the system itself for the CC evaluation. CC specifies
the format of the requirements specifications called the
Security Target or ST for short. The course teaches stu-
dents how to write an ST efficiently through an i*-based
security requirements analysis.

4.1 Role-Based Access Control (RBAC)
Organizations and systems use Role-Based Access

Control (RBAC) to protect resources from illegal ac-
cess. Its applications include database systems, en-
terprise security administration software and program-
ming languages [15]. NIST proposed a standard in
which a basic model called Core RBAC is defined [6].
Core RBAC consists of users, roles, and permissions,

Fig. 1 Hierarchical RBAC.

which can be further divided into operations and ob-
jects. An operation is an executable command or in-
struction which uses objects as its resources. Core
RBAC is further extended to include hierarchies in roles
and role constraints.

A role plays a central part in RBAC, which is an in-
termediary between users and permissions. A user is
not granted permissions but is instead assigned to a role
that is associated with permissions. These concepts and
relations only give a flat structure to roles; most organi-
zations and systems have hierarchically structured roles
to control inheritance of permissions. Fig. 1 illustrates
their relationships, which are a many to many mapping
of a role onto a set of users (UA), a many to many map-
ping of a permission to a set of roles (PA), and the role
hierarchies (RH):

Role hierarchies control the inheritance of permis-
sions. Senior roles inherit permissions from their junior
roles in the senior-junior relation between roles.

Constrained RBAC is Core RBAC with an additional
constraint called Separation of Duties (SOD). SOD is a
basic principle on how to assign permissions to users.
Any critical operation which might breach security can-
not be assigned to a single individual.

For more details regarding RBAC, the reader is re-
ferred to references [6], [15].1)

4.1.1 RBAC-KAOS
Here, we will present how an RBAC model can be

derived from KAOS. We use the existing model ele-
ments in KAOS to model the RBAC elements of Users,
Roles and Permission (Operations and Ob jects) illus-
trated in the figure A·1 in Appendix A.

Permissions are not represented; instead, Operations
and Objects are represented by KAOS operations and

1) This paper only deals with core RBAC with general role hierarchies and
without sessions.



Curriculum design and methodologies for security requirements analysis 23

entities. Generalization/specialization relationships be-
tween agents are used for role hierarchies (RH). A map-
ping of a user to roles (UA) is represented by a directed
association. A mapping of a role to permission (PA) is
represented by a performance relation between the role
and an operation and an input relation between the op-
eration and an object.

This interpretation is very natural and does not di-
verge from their original meanings in KAOS.

In the diagram goals are represented by parallelo-
grams (e.g., Handle Payroll). A yellow line with a yel-
low circle represents a refinement of a parent goal to
child goals. An agent is a yellow box with angled cor-
ners with a stereotype 〈〈role〉〉 (e.g., Payroll clerk) to
represent a role. The agent (in fact a role) responsible
for a goal is linked by a red arrow with a red circle in the
middle of the line2). An operation is a pink oval (e.g.,
Update) that is associated with a role by a performance
link and with an entity (object) in yellow rectangle by
an input link and with a requirement by a link with a
blue circle.

This diagram exemplifies how payrolls are handled
and how exclusive tasks are separately assigned to dif-
ferent roles. It should be noted that the RBAC model
only occupies the bottom half of the diagram, but the
traceability of KAOS gives a direct link between the
requirements of security policies represented by goals
and the RBAC model. Hence, it clearly shows how the
RBAC model is derived from abstract descriptions of
goals.

In this modeling method, the agents in KAOS are
simply divided into users and roles with specific
stereotypes 〈〈user〉〉 and 〈〈role〉〉 to carry additional
meanings.

One of the difficulties of requirements elicitation
and analysis is how to find and resolve conflicts be-
tween stakeholders [12]. Conflicting goals are ones that
cannot be satisfied simultaneously. KAOS provides
a graphical representation for conflicting goals (a line
with a zig-zag symbol) so that if two agents (i.e., stake-
holders) are assigned conflicting goals, it shows that
their requirements conflict. A different kind of conflict
appears in eliciting access control policies, i.e., conflict
of interests. Separation of Duties (SOD) is used to elim-
inate conflict of interests. For example, in the Fig. A·1,
the goal Generate paychecks and Manipulate register
table should be assigned to different roles, Payroll clerk
and Cashier. These goals have conflicting interests in a
sense that giving permissions to a role to achieve those
two goals enables any user assigned to that role to com-
promise security. This is a situation in which the tra-
ditional conflict resolution method cannot be applied.

2) An agent with the stereotype 〈〈user〉〉 should not be linked with a requirement.

Our analysis for SOD is not a definitive way of elicit-
ing access control policies, but rather it combines the
use of general guidelines as to which positions should
be separated in organizations and possible scenarios to
check whether there are conflicts of interests in goals.

4.2 i*-Based security requirements analysis approach
Here, we describe the security requirements analysis

approach based on i* and risk analysis approaches [22].
Our approach combines the following techniques.

• Liu et al [21] proposed a security RE technique
based on i* that analyzes extensive constructs of
a security requirements model including vulnera-
bility, threats, attacks, and countermeasures. Our
approach is mainly based on this technique (we
call it Liu’s method hereafter).

• HazOp (HAZard and OPerability study) [23] is a
well-known risk analysis technique. Recently, it
has been applied to security risk analysis for soft-
ware. We found that HazOp can be effectively
combined with Liu’s method.

We first explain our approach and illustrate an exer-
cise using the example of HD/DVD recorders. To im-
prove readability, all the figures of i* models are put in
Appendix A.

Our approach here is to enhance Liu’s method with
risk analysis techniques. Liu’s method is as follows (see
also Fig. 2).

Usual i∗ Process The i∗ process included in Liu’s
method (called domain requirements analysis pro-
cess in [21]) is divided into the three steps: (1.1)
Actor Identification, (1.2) Goal/Task Identifica-
tion, and (1.3) Dependency Identification. (1.1)

1.1 Actor Idenitification

SD Model

1.2 Goal/Task Identification

SR Model

1.3 Dependency Identification

2.1 Attacker 
Identification

2.2 Malicious 
Intent 

Identification

2.3 Vulnerability 
Analysis

2.4 Attacking Measure 
Identification

2.5 Countermeasure 
Identification

Attacker
Model

Malicious
Intent Model

Vulnerability Model

Attacking
Measure Model

Countermeasure
Model

Usual i* Process

Fig. 2 Liu’s Method. [21]



24 Progress in Informatics, No. 5, pp.19–34, (2008)

and (1.3) transform the SD model and (1.2) trans-
forms the SR model.

2.1 Attacker Identification The main idea of this
step is to imagine that any actor could behave as
an attacker. This not only means that an unknown
attacker could behave as if he is a legitimate actor
through the masquerading attack, but also includes
the case in which the attacker makes use of intent
represented by goals, system functionalities or hu-
man behaviors represented by tasks, and resources
that are available to the attacker for carrying out
the attack.

The resulting model includes the attacker actors
and is called an attacker model. In this paper, we
distinguish model constructs involved in the at-
tacker actors such as malicious intent goals and
attacking measure tasks from others. We call a
model including such constructs an attack model,
while we call a model with no such constructs a
domain model.

2.2 Malicious Intent Identification Identify the
malicious intent of the attackers as goals of the
attacker actors. The resulting model includes such
goals and is called a malicious intent model.

2.3 Vulnerability Analysis Identify a part of the
SD model that has the possibility of being attacked
as a vulnerability. The resulting model is called a
vulnerability model.

2.4 Attacking Measure Identification Identify
the actions realizing the malicious intent as
attacking measure tasks. The resulting model is
called an attacking measure model. HazOp is
applied to this step for systematic identification.

2.5 Countermeasure Identification Identify the
countermeasures against the attacking measures as
tasks. The resulting model is called a countermea-
sure model. Note that a countermeasure model is
a domain model because the attacking measure
tasks are transformed into softgoals representing
the degree of avoidance of the attacks and other
constructs about the attacks are removed.

Our course uses the following copyright protection
problem for HD/DVD recorders:

• If a user tries to copy multimedia data recorded in
an HD recorder to a DVD recorder, she must not
violate the copyright of the TV station for the data.

• The students need to identify the functionalities of
the HD recorder and the DVD recorder as well as
the issues raised by these functionalities.

The taught process is described from 4.2.1 to 4.2.5
below.

4.2.1 Domain requirements analysis
The scenario below is the usual i* process and cre-

ate a model of environments and requirements other
than security. Because the entire model for HD/DVD
recorders would be very large, we handle only the part
of it involved in the security RE process. The scenario
is as follows.
1. Identify actors. They include not only the user and

the TV station that can be easily identified from the
problem descriptions, but also the devices such as
the HD recorder, DVD recorder, and TV set.

2. Identify the goals. Here, we identify the hard goal
“Copy Contents” of the user and the soft goal “Pro-
tect Copyright” of the TV station.

3. Analyze the “Copy Contents” goal as follows.

• Delegate the “Copy Contents” goal to the
DVD recorder; that is, identify the depen-
dency of the user to the recorder about the
goal, because the recorder is expected to
achieve the goal completely.

• Divide the goal of the DVD recorder into
two sub-goals “Receive Content” and “Record
Content to DVD”.

• Identify the goal “View Contents Later” of the
user as the super goal of the “Copy Contents”
goal.

• Proceed with analyses for each goal.

As a result, we can create the SD model of Fig. A·2 and
the SR model of Fig. A·3.

4.2.2 Attacker and malicious intent identification
We show an example case of treating the user as an

attacker. The attacker identification and malicious in-
tent identification are carried out as follows.
1. Identify the attacker actor “Attacker” and the mali-

cious goal “Violate Copyright” as the intent of the
attack.

2. Change the type of “User” actor to “Role” and cre-
ate a “Play” association between them (Fig. A·4).
The purpose of these operations is to indicate that
the user is considered to be an attacker.

3. Create an actor “User As Attacker” by putting
“User” and “Attacker” together and put their goals
into a new actor to clarify the situation in which
“Attacker” “Plays” the “User” role and proceed
with the analyses. The results of the model anal-
yses are shown in Fig. A·5.



Curriculum design and methodologies for security requirements analysis 25

4.2.3 Vulnerability identification
This step identifies the range of influence of the iden-

tified malicious goals, their subgoals, and their sub-
tasks. Fig. A·6 is an example of the result of this step in
which the “Protect Copyright” softgoal delegated from
the TV station to the user is vulnerable.

4.2.4 Attacking measure identification
This step identifies attacking measures as tasks that

must be completed to achieve the malicious goals. It
is possible to use (or misuse in this case) the domain
model constructs to carry out the attacking measures.
As the original Liu’s method does not provide specific
techniques to identify the measures, our course teaches
a technique using HazOp shown in 4.2.5. For exam-
ple, the attacking measure model shown in Fig. A·7 is
created.

4.2.5 Application of HazOp
HazOp is a risk analysis technique that helps analysts

to identify potential risks in systems. This technique
has started to be used in security analysis. Our course
applies it to increase the applicability of Liu’s method.

HazOp is based on a typical risk analysis procedure
in which (1) the targets of the analysis are identified
first, (2) then the potential risks are identified, and (3) fi-
nally the risk reducing measures are identified. HazOp
mainly focus on step (2). The security requirements
analysis described before lacks the detailed techniques
for the task corresponding to this step. Thus, we con-
sider the combination of these approaches to be very
useful.

The main feature of HazOp in step (2) is application
of guide words. A guide word is “a short word to create
the imagination of a deviation of the design/process in-
tent” [22]. A deviation and a design/process intent cor-
respond to a malicious intent goal and a domain goal of
i* models respectively. Thus HazOp is used to identify
malicious intent goals and attacking measures. Table 3
shows a typical set of guidewords and their usage in our
approach.

Table 4 shows an example of the application of Ha-
zOp to our example. Thus the initially identified ma-
licious intent goals are obtained through application of
HazOp.

4.3 CC and ST
We explain the details of CC and how we can use

our approach to create efficiently an ST document pre-
scribed in CC.

4.3.1 Organization of CC
CC consists of the following three parts.

Part 1: Introduction and general model describes
the background and the fundamental ideas of
security evaluation and specifies the general
model of assets, countermeasures, and evaluation.
In particular, the format of ST is specified here.
In addition, another type of document, called
Protection Profile, or PP for short, is specified.
A PP is a subset of ST and is used as a reusable
module for writing STs.

Part 2: Security functional components is a cata-
log of security functionalities. The functionali-
ties are divided into eleven classes such as security
audit, communication, cryptographic support, and
user data protection. It is recommended to choose
security functionalities from here when writing an
ST or a PP.

Part 3: Security assurance components is a cata-
log of inspection tasks to make sure that the se-
curity functionalities are correctly implemented.
Such tasks are divided into ten classes. This
part also specifies Evaluation Assurance Levels,
or EALs for short, which is a set of assurance re-
quirements. There are seven levels of EALs (from
EAL1 to EAL7). These levels do not represent the
security strength but the ranges of targets of in-
spection and the degrees of inspection.

4.3.2 ST Organization
In CC, an ST is defined as an implementation-

dependent statement of security needs for a specific
identified TOE (Target Of Evaluation). The organiza-
tion of ST is as follows.
1. ST introduction: describing the TOE in a narrative

way on three levels of abstraction: ST and TOE ref-
erences, TOE overview and TOE description.

2. Conformance claims: describing how the ST con-
forms with the Common Criteria itself, Protection
Profiles (if any), and Packages.

3. Security problem definition: defining the security
problem that is to be addressed.

4. Security objectives: a concise and abstract state-
ment of the intended solution to the problem de-
fined by the security problem definition.

5. Extended components definition: defining compo-
nents that are not based on those in CC Part 2 or CC
Part 3.

6. Security requirements: consists of security func-
tional requirements (SFRs) and security assurance
requirements (SARs).
SFRs are translations of the security objectives for
the TOE into a standardized language.
SARs are descriptions of how assurance is to be
gained that the TOE meets the SFRs



26 Progress in Informatics, No. 5, pp.19–34, (2008)

Table 3 Guidewords and Their Usage.

No Do not carry out a task or satisfy a goal

More Carry out a task or satisfy a goal too much by repetition,

concurrent execution, or using extreme values

Less Carry out a task or satisfy a goal too little

As well as Carry out an additional task or satisfy an additional goal

Part of Carry out a task or satisfy a goal only partially

Other than Carry out a task to satisfy an inappropriate goal or

satisfy a goal to satisfy an inappropriate supergoal

Table 4 Example of Application of HazOp.

Domain goal Guideword Malicious intent goal

Copy Contents More Copy Contents Many Times

Other than Copy Copy-Protected Contents

Record Contents Other than Record Record-Protected Contents

7. TOE summary specification: describing the general
technical mechanisms that the TOE uses to satisfy
all the SFRs.

When creating an ST using security requirements
analysis approaches, we use the correspondence be-
tween an ST and the security requirements model
shown in Fig. 3. As this table shows, the majority of
an ST can be written using security requirements anal-
ysis approaches.

To apply Liu’s method to writing an ST, we estab-
lish the mapping from the models created using Liu’s
method according to the relationships between i* and
ST. The mapping consists of the relationships between
security requirements analysis in general and ST shown
in Fig. 3 and the following ones.

• i* goals and tasks to various requirements

• In writing “3.1. Threats”,

– i* actors (attackers) as threat agents

– i* resources (to be protected) as assets

– i* tasks (of attacking) as adverse actions

• In writing Rationales (4.3., 6.3.), i* goal models
are mapped to table representations of relation-
ships between requirement items.

We should note that when writing an ST, goals or
tasks corresponding to the following sections should be
refined to the level of CC Part 2: 5. Extended compo-
nents definition and 6.1. Security functional require-
ments.

As an exercise of writing an ST, we use the following
example of a document management system.

1. ST introduction

1.1. ST reference

1.2. TOE reference

1.3. TOE overview

1.4. TOE description

2. Conformance claims

2.1. CC conformance claim

2.2. PP claim

2.3. Package claim

2.4. Conformance rationale

3. Security problem definition

3.1. Threats

3.2. Organisational security policies

3.3. Assumptions

4. Security objectives

4.1. Security objectives for the TOE

4.2. Security objectives for

the operational environment

4.3. Security objectives rationale

5. Extended components definition

6. Security requirements

6.1. Security functional requirements

6.2. Security assurance requirements

6.3. Security requirements rationale

7. TOE summary specification

Functional requirements 
(including security 
functionalities) of the 
systems and summary of 
hardware environments

Abstract security goals 
and assumptions

Attack tasks or 
misuse cases

(Nothing special are related)

Security goals or security use 
cases of the TOE

Security goals of the 
environments

Functional requirements to 
achieve the system security goals

System specifications to satisfy the 
functional requirements

Relationships with the 
security problem 
definition (goal models)

Relationships with the security 
objectives (goal models)

(Nothing special are related)

Fig. 3 Correspondence between ST and security require-
ments model.

• Users can access the documents

• The extent of users is specified for each document

• Each user can access the documents permitted to
the user

• TOE is the document management system

Other entities are considered environments.



Curriculum design and methodologies for security requirements analysis 27

Say we create the attack model shown in Fig. A·8 by
using Liu’s method.

From this model, we can write “3. Security problem
definition” of the ST as follows.

3.1. Threats

• T.UNAUTHORIZED ACCESS TO DOCUMENTS

Attacker may access documents with no access
permissions

Note that a prefix “T.”, in which “T” is the first charac-
ter of “threat”, is attached to each item of this section
to indicate that the item represents a threat. In similar
ways, each prefix below consists of an abbreviation of
the corresponding concept followed by a dot.

3.2. Organizational security policies: None
3.3. Assumptions: None
After that, we create a domain requirements model

including security countermeasures (Figure A·9). The
symbols such as FMT MSA dot 3 represents SFRs
adopted from CC Part 2. Although this SFR is denoted
as FMT MSA.3 in CC, we use “ dot ” to represent “.”
because ST-Tool cannot handle a dot.

From this model, we can write the following corre-
sponding part of the ST.

4.1. Security objectives for the TOE

• O.ACCESS CONTROL

The extent of users is specified for each document

Each user can access the documents permitted to
her

4.3. Security objectives rationale

T.UNAUTHORIZED

ACCESS TO

DOCUMENTS

O.ACCESS CONTROL x

6.1. Security functional requirements

• FDP ACC.2 Complete access control

FDP ACC.2.1: The TSF shall enforce the ACL
SFP (or any other access policy) on the users and
the documents and all operations among subjects
and objects covered by the SFP.

– The emphasized words are concrete assign-
ments to the original CC descriptions.

FDP ACC.2.2: The TSF shall ensure that all oper-
ations between any subject controlled by the TSF
and any object controlled by the TSF are covered
by an access control SFP.

• FDP ACF.1 Security attribute based access con-
trol

• FMT MSA.3 Static attribute initialization

6.3. Security requirements rationale

O.ACCESS CONTROL

FDP ACC.2 x

FDP ACF.1 x

FMT MSA.3 x

The students also work on a larger exercize using an
example of cellular phones containing contactless IC
chips with the electronic money facilities.

5 Future work
Aside from research on security policies in require-

ments engineering, there have been a number of at-
tempts at integrating RBAC into the software modelling
language UML. [16], [18], [19] A notable example is
SecureUML [16], [17] by Basin, Doser and Lodderst-
edt.

Eliciting requirements on and modeling of access
control policies are completely different issues. Class
diagrams which model security policies will lose infor-
mation on early requirements and how they are derived.
Because of this deficiency it is very hard to maintain
policies and to adapt them to even a small change in an
organization or system. Hence it is essential to link the
requirements and design phases.

Unfortunately, like any other software engineering
program, our requirements analysis courses and system
architecture courses are taught separately so that how
they are linked is only dealt with in the final projects.
We are planning to bridge this gap by developing a
methodology that will enable us to transfer a model ob-
tained in KAOS to a UML model.

There are issues regarding writing CC documents
using security requirements analyses. The first is the
treatment of PPs (protection profiles). As a PP is cre-
ated for a somewhat general purpose in an application
domain, writing one requires domain analysis. We also
need to think about how to use PPs efficiently when
writing the ST. The second issue is how to analyze
SARs (security assurance requirements). Because an
SAR is not a requirement for a system but instead is
related to security assurance activities, we need a soft-
ware process approach. Finally, considering that CC
documents are formal ones and are targets of official
inspection, their quality should be improved. A tool for
supporting the writing of such documents would thus
be useful.



28 Progress in Informatics, No. 5, pp.19–34, (2008)

6 Conclusion
As far as we are aware, there is no other educational

course besides ours on how to elicit and analyze se-
curity requirements; hence it has been a challenge to
design such a course. In this paper we presented how
we designed such a course in the Top SE program and
explained our security requirements analysis method-
ologies used in the course. We are still in the early
stage of course development, and we have not fully as-
sessed the effectiveness of the course yet. However, we
must mention that we have received positive feedback
from our students. We are improving the content of the
course based on this feedback, and our future work will
include a full assessment of the course.

Acknowledgements
We would like to thank Shinichi Honiden for his

guidance on the course design. We would also like to
thank the reviewers of the paper for their suggestions
and comments on improving the draft.

The Top SE program is fully supported by Special
Coordination Funds for Promoting Science and Tech-
nology, Fostering talent in an emerging research field
by the Ministry of Education, Culture, Sports, Science
and Technology, Japan.

References
[1] B. Boehm and V. R. Basili, “Software Defect Reduction

Top 10 List,” IEEE Computer, vol. 34, no. 1, pp. 135–
137, 2001.

[2] S. Honiden, Y. Tahara, N. Yoshioka, K. Taguchi and
H. Washizaki, “Top SE: Educating Superarchitects Who
Can Apply Software Engineering Tools to Practical De-
velopment in Japan,” Proceedings of International Con-
ference on Software Engineering (ICSE 2007), pp. 708–
718, IEEE, 2007.

[3] Top SE website, http://www.topse.jp.

[4] P. Giorgini, F. Massacci, J. Mylopoulos, A. Siena and
N. Zanneno, “ST-Tool: A CASE Tool for Modeling
and Analyisng Trust Requirements,” Proceedings of
the Third International Conference on Trust Manage-
ment (iTrust 2005), LNCS, Spinger-Verlag, pp. 415–
419, 2005.

[5] T. Tsumaki, H. Kaiya, Y. Tahara, N. Yoshioka, K.
Taguchi and S. Honiden, “Errors and Misconceptions
in Learning i*,” Proceedings of the 2nd International
Workshop on Requirements Engineering Education and
Training (REET 2007), 2007.

[6] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn and
R. Chandramouli, “Proposed NIST standard for role-
based access control.” Proceeding of the NIST-NSA
National Computer Security Conference, pp. 554–563,
1992.

[7] A. Dardenne, A. van Lamsweerde and S. Fickas, “Goal-
Directed Requirements Acquisition.” Science of Com-
puter Programming, vol. 20, pp. 3–50, 1993.

[8] A. van Lamsweerde, R. Darimont and P. Massonet,
“Goal-Directed Elaboration of Requirements for a
Meeting Scheduler: Problems and Lessons Learnt.”
Proceedings of International Conference on Require-
ments Engineering (RE 1995), pp. 194–203, IEEE,
1995.

[9] R. Darimont, E. Delor, P. Massonet and A. van Lam-
sweerde, “GRAIL/KAOS: An Environment for Goal-
Driven Requirements Engineering,” Proceedings of In-
ternational Conference on Software Engineering (ICSE
1998), pp. 612–613, IEEE, 1998.

[10] A. van Lamsweerde, “Elaborating Security Require-
ments by Construction of Intentional Anti-Models,”
Proceedings of International Conference on Software
Engineering (ICSE 2004), pp. 148–157, IEEE, 2004.

[11] A KAOS Tutorial, http://www.objectiver.com/. CEDITI
sa, 2003.

[12] I. Sommerville, Software Engineering, Addision-
Wesley, 2005.

[13] A. Schaad, J. Moffett and J. Jacob, “The Role-Based
Access Control System of a European Bank: A Case
Study and Discussion.” Proceedings of the 6th ACM
Symposium on Access Control Models and Technologies
(SACMAT 2001), pp. 3–9, ACM, 2001.

[14] J. S. Park, K. P. Costello, T. M. Neven and J. A.
Diosomite, “A Composite RBAC Approach for Large,
Complex Organizations,” Proceedings of the 9th ACM
Symposium on Access Control Models and Technologies
(SACMAT 2004), ACM, pp. 163–172, 2004.

[15] D. F. Ferraiolo, D. R. Kuhn and R. Chandramouli, Role-
Based Access Control. Artech House 2003.

[16] T. Lodderstedt, D. Basin and J. Doser, “SecureUML: A
UML-Based Modeling Language for Model-Driven Se-
curity,” Proceedings of 5th International Conference on
the Unified Modeling Language (UML 2002), Springer,
pp. 426–441, LNCS 2460, 2002.

[17] D. Basin, J. Doser and T. Lodderstedt, Proceedings
of 8th ACM Symposium on Access Control Models
and Technologies (SACMAT 2003), pp. 100-109, ACM,
2003.

[18] D-K. Kim, I. Ray, R. France and N. Li, “Modeling Role-
Based Access Control Using Parameterized UML Mod-
els,” Proceedings of Fundamental Approaches to Soft-
ware Engineering (FASE 2004), pp. 180–193, LNCS
2984, 2004.

[19] P. Epstein and R. Sandhu, “Towards A UML Based
Approach to Role Engineering,” Proceedings of 4th
ACM Symposium on Role-Based Access Control (RBAC
1999), ACM, pp. 135–143, 1999.

[20] Common criteria for information technology security
evaluation part 1: Introduction and general model.



Curriculum design and methodologies for security requirements analysis 29

http://www.commoncriteriaportal.org/public/developer/
index.php?menu=2, Sep. 2006.

[21] L. Liu, E. Yu, and J. Mylopoulos. “Security and privacy
requirements analysis within a social setting” Proceed-
ings of International Conference on Requirements En-
gineering (RE 2003), pp. 151–161, 2003.

[22] M. Rausand and A. Hφyland. System Reliability Theory;
Models, Statistical Methods and Applications (Second
Ed.) Wiley, 2004.

[23] F. Redmill, M. Chudleigh, and J. Catmur. System Safety:
HAZOP and Software HAZOP. John Wiley & Sons,
1999.

[24] E. Yu. “Towards modeling and reasoning support for
early-phase requirements engineering.” Proceedings of
the 3ed IEEE International Symposium on Require-
ments Engineering (RE 1997), pp. 226–235, 1997.

Kenji TAGUCHI
Kenji TAGUCHI is a professor (by
special appointment) at NII. He re-
ceived his PhD in Computer Science
from Uppsala University in 2001. His
has been mainly working on inte-
grations of different formal methods

such as process algebras and state-based formal speci-
fication languages, Z and Object-Z. He jointly founded
an international conference series IFM (Integrated For-
mal Methods) in 1999. He has been working for an
education program called Top SE since he joined NII in
2005.

Yasuyuki TAHARA
Yasuyuki TAHARA is an associate
professor in NII (by special appoint-
ment). He received his BSc and his
MSc in Mathematics from the Uni-
versity of Tokyo, Japan, and his PhD
in Information and Computer Science

from Waseda University, Japan, in 1989, 1991, and
2003, respectively. He joined Toshiba Corporation in
1991. He was a visiting researcher in City University
London, UK, from 1995 to 1996, and in Imperial Col-
lege London, UK, from 1996 to 1997. He left Toshiba
Corporation and joined NII in 2003. His research in-
terests include formal verification of software and re-
quirements engineering. He has been working for an
education program called Top SE since 2004. Prof.
Tahara is a member of the Information Processing So-
ciety of Japan and Japan Society for Software Science
and Technology.



30 Progress in Informatics, No. 5, pp.19–34, (2008)

Appendix A: KAOS and i* models

Fig. A·1 RBAC in KAOS.

Fig. A·2 Domain SD model.



Curriculum design and methodologies for security requirements analysis 31

Fig. A·3 Domain SR model.

Fig. A·4 Introduction of attacker actor.



32 Progress in Informatics, No. 5, pp.19–34, (2008)

Fig. A·5 Attacker model.

Fig. A·6 Vulnerability model.



Curriculum design and methodologies for security requirements analysis 33

Fig. A·7 Attacking measure model.

Fig. A·8 Attack model of document management system.



34 Progress in Informatics, No. 5, pp.19–34, (2008)

Fig. A·9 Domain requirements model of document management system.


