Progress in Informatics, No. 5, pp.1-4, (2008)

Special Contribution

Towards robust self-managed systems™

Jeff KRAMER' and Jeff MAGEE?

.2 Department of Computing Imperial College

Software is pervasive. It plays a part in every as-
pect of our lives, forming a significant part of every
automated system or tool that we use, from washing
machines to healthcare systems. Like the washing
machine, some of these applications are simple, self-
contained devices; however the majority are far more
complex. They are generally distributed systems which
rely on interacting, distributed subsystems of software
components to perform their function. They are ex-
pected to interact with users with changing needs and
with other systems with unreliable service provision.
The challenge is to provide these software systems in
such a way that they are robust in the presence of major
issues such as change and complexity.

Change is inherent, both in the changing needs of
users and in the changes which take place in the oper-
ational environment of the system. Hence it is essen-
tial that our systems can adapt as necessary to continue
to achieve their goals. Change is also induced by fail-
ures or the unavailability of parts of the system. It is
therefore necessary to envisage dynamically changing
configurations of software components so as to adapt
to the current situation. Dynamic change, which occurs
while the system is operational, requires that the system
evolves dynamically, and that the adaptation occurs at
run-time.

Complexity requires that we use rigorous techniques
to design, build and analyse our software and thereby
avoid unnecessary design flaws. This implies the need
for analytical techniques which cope with changing
goals and the changing compositions of adaptive soft-
ware.

Since the complexity and response times required by
the changes may not permit human intervention, we
must plan for automated management of change. The
systems themselves must be capable of determining

Received December 18, 2007.

D j.kramer@imperial.ac.uk, ® j.magee@imperial.ac.uk
*“I'This paper is based on [18]

DOI: 10.2201/NiiPi.2008.5.1

what system change is required, and in initiating and
managing the change process wherever possible. This
is the aim of self-managed systems.

What is Self-Management?

Self-managed systems are those that capable of self-
configuration, self-adaptation and self-healing, self-
monitoring and self-tuning, and so on, also referred to
as self-* or autonomic systems.

The aim of self-configuration is that the components
should either configure themselves such that they sat-
isfy the specification of the goals, properties and con-
straints that you expect your system to achieve or be ca-
pable of reporting that they cannot. If the system suffers
from changes in its requirements specification or oper-
ational environment such as changes in use, changes in
resource availability or faults in the environment or in
parts of the system itself, then the aim of self-adaptation
and self-healing is that the system should reconfigure
itself so as to again either satisfy the changed specifi-
cation and/or environment, or possibly degrade grace-
fully or report an exception. Note that the specifica-
tions should include not only functional behaviour, but
also those non-functional properties such as response
time, performance, reliability, efficiency and security,
and that satisfaction of a specification may well include
optimisation.

What research is currently being conducted?

Different research communities are engaged in rel-
evant research, investigating and proposing approaches
to various aspects of self-management for particular do-
mains. For instance, in the networking, distributed sys-
tems and services community, there has been the Au-
tonomic Computing conferences [3] and more recently,
the SelfMan Workshop 2006 [2] to discuss and anal-
yse the potential of self-+ systems for managing and
controlling networked systems and services. Dobson
et al.[11] provide a recent survey on autonomic com-

(©2008 National Instiute of Informatics

Progress in Informatics, No. 5, pp.1-4, (2008)

munications, and propose an autonomic control loop (a
phased approach) of actions collect (monitoring), anal-
yse, decide and act, a cycle which naturally appears in
many proposed approaches.

In the software engineering community, there has
been a series of workshops which started in the
distributed systems community with the CDS (Con-
figurable Distributed Systems) conferences[4],[5],
[8] and more recently with WOSS (Workshop on
Self-Healing and Self-Managed Systems) [6],[7] and
SEAMS (Software Engineering for Adaptive and Self-
Managing Systems) [1]. Other interested research com-
munities include the intelligent agent, machine learn-
ing and planning communities. Huebscher and Mc-
Cann [15] provide an excellent and comprehensive sur-
vey on autonomic computing.

However, although research has provided much that
is useful in contributing towards self-management, the
general and fundamental issues of providing a compre-
hensive and integrated approach remains.

What approach do we advocate?

We believe that an architecture-based approach of-
fers potential benefits such as generality, where the un-
derlying concepts and principles should be applicable
to a wide range of application domains, each with its
own peculiar architecture. Architectures are also de-
signed to handle issues of scalability and complexity —
by supporting abstraction and separation of concerns.

Many others also advocate the use of a component-
based architectural approach. For instance, Oreizy et
al. [21] provide a general outline of an architectural ap-
proach which includes adaptation and evolution man-
agement; Garlan and Schmerl [12] describe the use of
architecture models to support self-healing; Dashofy,
van der Hoek and Taylor propose the use of an archi-
tecture evolution manager to provide the infrastructure
for run-time adaptation and self-healing in ArchStu-
dio; [10] and Castaldi et al. [9] extend the concepts of
network management to component-based, distributed
software systems to propose an infrastructure for both
component- and application-level reconfiguration using
a hierarchy of managers.

Our own work has concentrated on the use of ADLs
(architecture description languages) for software design
and implementation from components[19], including
limited language support for dynamic change [20], a
general model for dynamic change and evolution [17],
associated analysis techniques [16] and initial steps to-
wards self-management [14].

Goal
Management
Change Plans
4 |
' v
Plan Request
Change
P1 P2
Management - -
9 Change Actions
1|‘ |
Status +

Component
Control c1 C2

Fig. 1 Three layer architecture model for self-

management.

What is the essence of our proposed architectural model
for self-management?

A self-managed software architecture is one in which
components automatically configure their interaction in
a way that is compatible with an overall architectural
specification and achieves the goals of the system. The
objective is to minimise the degree of explicit manage-
ment necessary for construction and subsequent evolu-
tion whilst preserving the architectural properties im-
plied by its specification. More details of our approach
can be found in[18], [22]; we provide a summary be-
low.

Based on work by Gat[13] in robotics, we pro-
pose the use of a three layer reference architecture (see
Fig. 1). This provides the necessary separation of con-
cerns for a rigorous engineering approach in which low-
level actions can be clearly and formally related to high-
level goals that are precisely specified.

The bottom layer is Component Control, which con-
sists of the set of interconnected components that ac-
complish the application function of the system. It in-
cludes facilities to report the current status of compo-
nents to higher layers, to adjust the operating param-
eters of components and for modification by compo-
nent creation, deletion and interconnection. An impor-
tant characteristic of this layer, is that when a situation
arises that the current configuration of components is
not designed to deal with, this layer detects this failure
and reports it to higher layers.

The middle layer is Change Management which is
responsible for effecting changes to the underlying
component architecture in response to new states re-
ported by that layer or in response to new objectives
required of the system introduced from the layer above.
It consists of a set of reactive plans, each giving an
action or sequence of actions to handle the new situ-
ation. This layer can introduce new components, recre-
ate failed components, change component interconnec-

Towards robust self-managed systems

tions and change component operating parameters. The
layer can respond quickly to new situations by execut-
ing what are in essence pre-computed plans. If a situa-
tion is reported for which a plan does not exist then this
layer must invoke the services of the higher planning
layer. In addition, new goals for a system will involve
new plans being introduced into this layer.

The uppermost layer is Goal Management which is
responsible for change planning. This takes the cur-
rent state and a specification of a high-level goal and
attempts to produce a plan to achieve that goal. This
layer produces change management plans in response
to requests from the layer below and in response to the
introduction of new goals.

In addition to the separation of concerns, one of the
criteria for placing functionality in different layers in
our self managed systems architecture is that of time.
Immediate feedback actions are at the lowest level and
the longest actions requiring deliberation are at the up-
permost level.

We would emphasize that we do not consider this
an implementation architecture but rather a conceptual
or reference architecture which identifies the necessary
functionality for self management. It also provides a
context for discussing some of the main research chal-
lenges which self-management poses. At the compo-
nent layer, the main challenge is to provide change
management which reconfigures the software compo-
nents, ensures application consistency and avoids un-
desirable transient behaviour. At the change manage-
ment layer, decentralized configuration management is
required which can tolerate inconsistent views of the
system state, but still converge to a satisfactory stable
state. Finally, some form of on-line (perhaps constraint
based) planning is required at the goal management
layer.

In Conclusion . . .

There has been much progress towards providing
self-managed systems, but much remains to be done
to provide an integrated and comprehensive solution,
supported by an appropriate infrastructure. In addition,
the approach must be amenable to a rigorous software
development approach and analysis, so as to ensure
preservation of desirable properties and avoid undesir-
able emergent behaviour. We believe that an architec-
tural approach offers a suitable and promising frame-
work for working on each of the relevant research is-
sues.

References
[1] 2nd IEEE Int. Workshop on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS 2007),
ICSE, Minneapolis, 2007.

2

—

3

—

[4

—

(5

—

[6

—_

[7

—

8

—_—

[9

—

(10]

(11]

[12]

(13]

(14]

[15]

[16]

[17]

2nd IEEE Int. Workshop on Self-Managed Networks,
Systems and Services (SelfMan 2006), 1EEE, Dublin,
2006.

The 3rd IEEE International Conference on Autonomic
Computing IEEE, Dublin, 2006.

Proceedings of IEE/IFIP Ist Int. Workshop on Config-
urable Distributed Systems (CDS 92), in J. Kramer, ed.,
London, May 1992.

Proceedings of IEEE 3rd International Conference
on Configurable Distributed Systems (CDS 96), in J.
Magee and K. Schwan, eds., May 1996.

Proceedings of the 1st ACM SIGSOFT workshop on
Self-managed systems, in D. Garlan, J. Kramer and A.
Wolf, eds., ACM Press, Newport Beach, California,
2004, pp. 119.

Proceedings of the first workshop on Self-healing sys-
tems, in D. Garlan, J. Kramer and A. Wolf, eds., ACM
Press, Charleston, South Carolina, 2002, pp. 120.
Proceedings. of IEEE 2nd International. Conference
on Configurable Distributed Systems, Pittsburgh, (CDS
94). in J. Kramer and J. Purtilo, eds., Pittsburgh, May
1994

M. Castaldi, A. Carzaniga, P. Inverardi and A. L. Wolf,
A light-weight infrastructure for reconfiguring applica-
tions, Proceedings of 11th Software Configuration Man-
agement Workshop (SCMO03), LNCS, Portland, Oregon,
2003.

E. M. Dashofy, A. van der Hoek and R. N. Taylor,
Towards architecture-based self-healing systems, Pro-
ceedings of the first workshop on Self-healing systems,
ACM Press, Charleston, South Carolina, 2002.

S. Dobson, S. Denazis, Fernndez, Antonio, D. Gati,
E. Gelenbe, Massacci, P. Nixon, F. Saffre, N. Schmidt
and F. Zambonelli, “A survey of autonomic communi-
cations”, ACM Trans. Auton. Adapt. Syst., vol. 1, pp.
223-259, 2006.

D. Garlan and B. Schmerl, Model-based adaptation for
self-healing systems, Proceedings of the first workshop
on Self-healing systems, ACM Press, Charleston, South
Carolina, 2002.

E. Gat, Three-layer Architectures, Artificial Intelligence
and Mobile Robots, MIT/AAAI Press, 1997.

I. Georgiadis, J. Magee and J. Kramer, Self-organising
software architectures for distributed systems, Proceed-
ings of the first workshop on Self-healing systems, ACM
Press, Charleston, South Carolina, 2002.

M. C. Huebscher and J. McCann, A survey of Autonomic
Computing—degrees, models and applications, ACM
Computing Surveys, to appear. (2008).

J. Kramer and J. Magee, Analysing dynamic change
in distributed software architectures, Software, IEE
Proceedings—, vol. 145, pp. 146-154, 1998.

J. Kramer and J. Magee, The evolving philosophers
problem: dynamic change management, Software Engi-

4

Progress in Informatics, No. 5, pp.1-4, (2008)

neering, IEEE Transactions on, vol. 16, pp. 1293-1306,
1990.

[18] J. Kramer and J. Magee, Self-Managed Systems: an Ar-
chitectural Challenge, in L. Briand and A. L. Wolf, eds.,
Future of Software Engineering 2007, IEEE-CS Press,
2007.

[19] J. Magee, N. Dulay, S. Eisenbach and J. Kramer, Spec-
ifying Distributed Software Architectures, 5th Euro-
pean Software Engineering Conference (ESEC), Sitges,
Spain, 1995.

[20] J. Magee and J. Kramer, Dynamic structure in software
architectures, Proceedings of the 4th ACM SIGSOFT
symposium on Foundations of software engineering,
ACM Press, San Francisco, California, United States,
1996.

[21] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimhigner,
G. Johnson, N. Medvidovic, A. Quilici, D. S. Rosen-
blum and A. L. Wolf, An architecture-based approach
to self-adaptive software, Intelligent Systems and Their
Applications, IEEE [see also IEEE Intelligent Systems],
vol. 14, pp. 54-62, 1999.

[22] D. Sykes, W. Heaven, J. Magee and J. Kramer, Plan-
Directed Architectural Change For Autonomous Sys-
tems, Sixth International ACM Workshop on Specifi-
cation and Verification of Component-Based Systems,
SAVCBS’07, Dubrovnik, Croatia, 2007.

Jeff KRAMER

Jeff KRAMER is Dean of the Faculty
of Engineering at Imperial College
London, and was Head of the Depart-
ment of Computing from 1999-2004.
His research interests include rigor-
, 2 ous techniques for requirements en-
gineering; software specification, design and analysis;
and software architectures, particularly as applied to
distributed and adaptive software systems. Jeff is the
Editor-in-Chief of the IEEE Transactions on Software
Engineering, and the co-recipient of the 2005 ACM
SIGSOFT Outstanding Research Award for his work in
Distributed Software Engineering. He is co-author of
a recent book on Concurrency, co-author of a previous
book on Distributed Systems and Computer Networks,
and the author of over 200 journal and conference pub-
lications. He is a Chartered Engineer, Fellow of the
IET, Fellow of the BCS and Fellow of the ACM and
Fellow of the City and Guilds of London Institute.

Jeff MAGEE

Jeff MAGEE is Head of the Depart-
ment of Computing at Imperial Col-
lege London. His research is primar-
ily concerned with the software en-
gineering of distributed systems, in-
cluding requirements, design meth-
ods, analysis techniques, operating systems, languages
and program support environments for these systems.
He is co-author of a recent book on concurrent pro-
gramming entitled “Concurrency—State models and
Java programs” and the author of too many journal and
conference publications. He was co-editor of the IEE
Proceedings on Software Engineering and is currently
a TOSEM Associate Editor. He is the co-recipient of
the 2005 ACM SIGSOFT Outstanding Research Award
for his work in Distributed Software Engineering. He
is a Chartered Engineer, Member of the IET and Fellow
of the BCS.

