
Progress in Informatics, No. 4, pp.63–78, (2007) 63

R&D Project Report

Quality Evaluation of Embedded Software in Robot
Software Design Contest

Hironori WASHIZAKI1, Yasuhide KOBAYASHI2, Hiroyuki WATANABE3,
Eiji NAKAJIMA4, Yuji HAGIWARA5, Kenji HIRANABE6 and Kazuya FUKUDA7

1National Institute of Informatics
2Afrel, Inc.
3OGIS-RI Co.
4Mamezou Co.
5CATS CO.
6Change Vision, Inc.
7Toyoko System Corp.

ABSTRACT
A robot design contest, called the “Embedded Technology (ET) Software Design Robot Con-
test,” which involves designing software to automatically control a line-trace robot, was held
in Tokyo, in 2005. The contest was intended to provide a practical opportunity to educate
young Japanese developers in the field of embedded software development. In this paper, we
give the results of the contest from the viewpoint of software quality evaluation. We created
a framework for evaluating software quality, which integrated the design model quality and
the final system performance, and we conducted an analysis using this framework. As a re-
sult of the analysis, the quantitative measurement of the structural complexity of the design
model was found to have a strong relationship to the qualitative evaluation of the design by
the contest judges. On the other hand, no strong correlation between the design model quality
evaluated by the judges and the final system performance was found. For embedded software
development, it is particularly important to estimate and verify reliability and performance
in the early stages, according to the design and analysis models. Based on the results, we con-
sider possible remedies with respect to the models submitted, the evaluation methods used,
and the contest specifications. To adequately measure several quality characteristics, includ-
ing performance, in terms of a model, it is necessary to improve the approach to developing
robot software (for example, by applying model-driven development) and to reexamine the
evaluation methods.

KEYWORDS
Software quality, product metrics, robot contest, embedded software, software design, software
model

1 Introduction
A robot design contest, called the “Embedded Tech-

nology (ET) Software Design Robot Contest” [2] (here-

Received September 21, 2006; Revised March 20, 2007; Accepted March 27,
2007.
1)washizaki@nii.ac.jp, 2)kobayashi-y0222@afrel.co.jp,
3)Watanabe@ogis-ri.co.jp, 4)eiji@mamezou.com,
5)hagiwara@zipc.com, 6)kenji.hiranabe@change-vision.com,
7)fukuda@toyoko-sys.co.jp

after, simply “the contest”), was held by the Japan Em-
bedded Systems Technology Association [3] in Tokyo,
in 2005. The contest was intended to provide two op-
portunities for young Japanese developers: a learning
opportunity in analysis and design modeling technol-
ogy in the field of embedded software development,
and an opportunity to experience the entire develop-
ment process in a short period of time.

DOI: 10.2201/NiiPi.2007.4.6

c©2007 National Instiute of Informatics



64 Progress in Informatics, No. 4, pp.63–78, (2007)

In a narrow sense, analysis and design modeling is
a technology for organizing and expressing the results
of interpreting target domains, requirements, system-
integration techniques, and implementation techniques
as models by taking an abstraction from a particular
point of view. In a broader sense, it includes the use
of models to examine particular properties, make re-
visions, or change code. The need for education on
analysis and design modeling in this broader sense has
increased, because the requirements for embedded soft-
ware have become more complex and larger scale and
have begun to include higher reliability. The contest
was planned as an opportunity to respond to this de-
mand.

The entrants participated in teams over an approxi-
mately three-month period from April to June. They
first modeled the design of embedded control software
for a line-trace robot and then implemented the soft-
ware according to the model. The robot, built with
LEGO Mindstorms blocks, [4] was required to move in-
dependently while following a dark line. On the contest
competition day in July, the participants tested the over-
all adequacy of each robot as an embedded system by
demonstrating its independent operation. As judges of
the competition, we evaluated the embedded software
designs submitted by the participants before the robot
tests. Then, the overall implementations were evalu-
ated independently of the model according to the robot
performance results, in terms of the time required to
complete the test course.

In this paper, we report the results of experiments on
quality evaluation of embedded software1).

• First, we assumed that the better the quality of the
robot design model is, the better the robot’s run-
time performance is. This assumption was based
on the well-known principle that internal qual-
ity attributes influence external quality attributes,
and the external quality attributes influence the at-
tributes of quality in use attribute (from Figure 2 in
[5]) 2). In other words, evaluating and improving
product quality is one means of improving qual-
ity in use, [5] and, appropriate internal attributes
of software are a prerequisite for achieving the re-
quired external behavior. [5] Therefore, we expect
that a value of external quality for an executable
software system can be estimated from a value of
internal quality based on non-executable artifacts,
including models. [6]

• Second, we created a framework for evaluating
1) A preliminary conference paper based on this work can be found in [1].
2) This general principle is not specific to reliability and efficiency among all
quality characteristics; however, we assumed it is applicable to those two char-
acteristics.

both the model quality and the final system perfor-
mance in a systematic way, and using this frame-
work, we carefully analyzed the relationships be-
tween these two sets of evaluation results. From
this analysis, we found that the quantitative mea-
surement of the structural complexity of the de-
sign models had a strong relationship to our quali-
tative evaluation of the design. We also found that
there was no strong correlation between the design
model quality, as judged by us, and the final sys-
tem performance.

• Finally, we considered the nature of the models
that correspond to a system’s performance and the
appropriateness of the model evaluation methods
used in the contest. We concluded that it is neces-
sary to reexamine the evaluation methods in order
to adequately measure several quality characteris-
tics, including performance, in terms of the model.
Moreover, we found the participants have to avoid
the lack of correspondence between the model and
the program code by applying model-driven devel-
opment or other techniques.

The remainder of this paper is organized as follows.
The next section gives an overview of the contest. Sec-
tion 3 describes the model and performance evaluation
methods and gives the results of the contest. Section
4 presents a quality evaluation framework integrating
both the model and performance evaluations. In sec-
tion 5, we report the results of analyzing the relations
obtained using this framework. In the last section, we
draw our conclusions and discuss future works.

2 Contest overview
2.1 Contest statistics

The contest has been held five times, once a year
from 2002 to 2006. Table 1 lists the time period, num-
ber of teams, and participants in the contest each year.

The intention of this contest is that participants learn
modeling technology, including object-oriented embed-
ded software analysis and design modeling using UML,
[7] through their participation. Modeling-technology
training sessions and workshops to discuss the models
and their performance were held, and the contest re-

Table 1 Scale of the contest.

Time Period Num. teams / participants

1st February–March 2002 24 / 110

2nd February–April 2003 21 / 110

3rd February–April 2004 41 / 210

4th April–July 2005 53 / 250

5th April–July 2006 108 / 500



Quality Evaluation of Embedded Software in Robot Software Design Contest 65

Fig. 1 Workflow of the contest process.

sults were published. It has been clear from question-
naire results after previous contests (held in 2002-2004
as “UML robot contest” [8]) that they were highly edu-
cational for the participants learning these development
technologies. [9] Because of this educational effect, the
number of participants has been increasing (as shown
in Table 1).

The 2005 contest, which we examine in this paper,
had approximately 250 participants in a total of 53
teams. Of those, we looked at the models and test re-
sults from the 47 teams that submitted entries within
the contest period.

2.2 Contest process
Fig. 1 illustrates the contest process in the form of

a UML activity diagram based on the Software Pro-
cess Engineering Metamodel (SPEM) [10] profile, with
several additional particular comments. Here, the par-
ticipating teams, the judges, and the steering com-
mittee are drawn as process participants, along with
the activities and inputs that they contribute. For ex-
ample, each participating team went through a series
of activities, including hardware implementation, do-
main/requirements analysis, system analysis, software
design, software implementation, and system integra-
tion. The hardware regulations and contest specifica-
tions were actually received from the steering commit-
tee of the contest.



66 Progress in Informatics, No. 4, pp.63–78, (2007)

2.3 Contest regulations
The hardware and software regulations and the eval-

uation methods are described below.

• Hardware: The hardware consists of a robotic ve-
hicle assembled from LEGO Mindstorms blocks.
Fig. 2 shows an overview of the robot hardware.
The robot is capable of moving forward and back-
ward and turning left or right under motor control,
and of recognizing a course indicated by a black
solid or dashed line by using a light sensor to de-
tect brightness on the running surface.

To provide an opportunity for participants to com-
pete purely on the basis of software quality, they
were not asked to design the hardware.

• Software: The participants analyzed, designed,
and implemented software to control the hardware
so that it would traverse a course indicated by a
black solid or dashed line approximately 20 me-
ters long to reach the finish. The software was re-
quired to control the hardware automatically, ad-
justing for course conditions. No communication
with the robot was permitted once it had begun the
course.

The format of the requirements, analysis, and de-
sign model was not regulated, but all models were
submitted with diagrams in various versions of
UML [7] (such as UML version 1.1, 1.5, or 2.0)

Fig. 2 Overview of the course and a robot.

and accompanying descriptions or pictures. The
software was implemented in languages capable of
controlling Mindstorms robots, including C, C++,
and Java.

• Evaluation: The judges evaluated both the submit-
ted models and the results achieved by the robots
in a running performance test.

3 Software quality evaluation in the
contest

During the contest, the models and the robot perfor-
mance were evaluated independently. The evaluation
methods and the results are described below.

3.1 Model evaluation (judging standards)
The judges qualitatively evaluated the submitted re-

quirements, analysis, and design models for both con-
tent and presentation, and they assigned a final grade for
each ranging from A (best) to D (worst). Then, from
among the models receiving an A or B grade, three
particularly excellent models received awards. The de-
tails of how content and presentation were evaluated are
given below. All of the submitted models were based
on object-oriented designs, and most were written in
UML, so an evaluation from the object-oriented/UML
perspective was also included.

• Content: The validity and correctness of the model
content were evaluated. Specifically, the following
three aspects of the model were evaluated:

– Validity: We judged the validity of each
model element and the relations/structures
among elements from an object-oriented per-
spective. For example, we considered the ad-
equacy regarding the problems of divide and
conquer, role division, role assignment, the
level of abstraction, the relations, and multi-
plicity.

– Logical correctness: We judged the feasibil-
ity of the requirements described in the mod-
els. For example, we considered the correct-
ness of the algorithm and behavior models.

– Algorithm originality: We judged the
uniqueness of the described algorithm, such
as the dynamic sensor calibration functional-
ity and the return functionality (for when the
robot breaks away from the line).

• Presentation: Apart from the correctness of the
model, we judged whether the design intention
was presented clearly. Specifically, the following
three aspects were evaluated:



Quality Evaluation of Embedded Software in Robot Software Design Contest 67

– Notational validity: We checked whether the
described models correctly and appropriately
follow the UML (or any other diagram) spec-
ifications for model representation. For ex-
ample, if the target model seemed to use a
certain version of UML, we checked its nota-
tional validity according to the same version
of UML.

– Clarity: We judged the clarity (understand-
ability) of the model by checking its ade-
quacy regarding the separation of views, lay-
out, and so forth.

– Originality and ingenuity: We judged the
uniqueness of the described model including
the accompanying descriptions/pictures.

The judges made qualitative evaluations with the fi-
nal decisions obtained by the following two-step pro-
cess. First, each of the six judges evaluated the models
individually. Second, we collected these intermediate
evaluations, and conducted a group discussion to reach
a final evaluation for each model. This process was con-
ducted to eliminate the biases of individual judges and
obtain results with high validity.

3.2 Model evaluation results
Fig. 3 shows the number of models receiving each

evaluation grade, as described above. Most of the mod-
els received B or C grades, while fewer models received
A or D grades. As examples, the structure part and the
behavior part of the model considered the best in the A
group by the judges are shown in UML form in Figs. 4
and 5, respectively.

Several trends observed in the evaluation are de-
scribed below.

• Content:

– Validity: Most of the models consisted
of a number of classes defined through
a divide-and-conquer approach; however,
some classes with too much functionality
were seen. Furthermore, models that could

Fig. 3 Model evaluation results.

determine the type of a given segment of
the course (e.g., straight line or curved)
were evaluated higher than those that sim-
ply followed the line. For example, Fig. 4
shows the abstract classes (Course type
and Drive method) for the course type
and driving method, allowing the driving ap-
proach used to be set according to the current
course conditions.

– Logical correctness: In many of the models,
the hardware control method had not been
modeled, so it was not possible to verify the
validity and correctness of the algorithm.

– Originality: Several different driving strate-
gies were described in the models, from
those that used the same control strategy to
follow both solid and dashed lines to those
that changed their control strategy depending
on the type of line. There were also mod-
els which described their development pro-
cesses in addition to the products.

• Presentation: Most of the models were correct in
terms of diagram notations because these were de-
scribed with modeling tools (such as JUDE [11]
and EclipseUML [12]) that do not allow users to
draw incorrect diagrams; however, half of the

Fig. 4 UML class diagram representing the architecture of
the winning model.

Fig. 5 UML state chart diagram representing the path
sensor’s behavior in the winning model.



68 Progress in Informatics, No. 4, pp.63–78, (2007)

Fig. 6 Times and ranks of the teams whose robots com-
pleted the course.

models used UML notation in inappropriate ways.
For example, there were UML diagrams in which
attributes or multiplicity was not given, relations
or role names were inappropriate, or the target of a
state diagram was not specified. In terms of clarity,
it was easier to read and understand the intention
of more of the models that used pictures, text, or
non-UML diagrams to explain their control plan
than of those that did not. In addition, some of the
models overused metaphor, [13], [14] with the re-
sult that the intention of their analysis and design
was obscured.

3.3 Performance evaluation
In the performance test, each team ran the robot

on the regulated course twice. The judges evaluated
the robot running performance of all the participating
teams in terms of whether the robot could complete the
course within a specified time. The teams whose robots
completed the course were also evaluated in terms of
the fastest completion time, and their ranks were based
on this time.

3.4 Running performance results
Of the 47 submissions, the robots from 15 (31.9%)

of the teams completed the course. The times and rank-
ings of these teams are shown in Fig. 6. The fastest time
was 35.4 sec, while the slowest was 112.3 sec.

4 Integration of model and perfor-
mance evaluations

To examine both the model and performance results
uniformly, a framework to integrate the two results was
needed.

From the viewpoint of software-quality measure-
ment, [5] the performance evaluation described in Fig. 1
was a kind of external measurement [15] of the software
embedded in the robot. An external measurement is an
activity that measures software quality by assigning a
quantitative value to some property of the behavior of
the system in which the final executable software is in-

stalled. In the contest, the hardware was uniform for
all teams, so any differences in performance could be
attributed to differences in the software. On the other
hand, the model evaluation was a kind of internal mea-
surement [16] of the software quality. An internal mea-
surement is an activity that measures the software qual-
ity by assigning a quantitative value to some property
of the intermediate or final software.

Using the various quality characteristics required by
the ISO 9126-1 [5] software quality model, we applied
internal and external measurements to build a system-
atic framework for software quality evaluation. This
framework is described in Table 2. The software qual-
ity characteristics used in the contest are summarized
here:

• Functionality: Although not clearly specified as a
judging standard, the software’s success in satis-
fying the functional requirements was included in
the judges’ evaluation of the model validity. Thus,
the internal measurement of the functionality was
considered to consist of the model evaluation.

• Maintainability: Software maintainability is re-
lated to clarity and notational validity. The internal
measurement of maintainability was considered to
consist of the model evaluation regarding presen-
tation.

• Reliability: Reliability was externally measured
by whether the robot could complete the test
course under the control of the software. It could
also be measured internally through an evaluation
of the model’s logical correctness, but as noted
above, we could not verify the logical correctness
of the submitted models.

• Efficiency: The course completion time and rank
of the robot under the control of the software gave
an external measurement of the quantity of time
resources that it used.

• Usability: Usability of the software by the actual
users (the contest participants) was not considered
or evaluated in the contest.

• Portability: Portability was not considered or eval-
uated because the contest participants developed
new software for a single hardware environment,
unrelated to the results of previous or future con-
tests.

The applicable scope of this framework is not limited
to the contest’s products or embedded systems; it can
be partially applied to other software systems. Since
the internal measurements in the framework depend on



Quality Evaluation of Embedded Software in Robot Software Design Contest 69

Table 2 Constructed software quality evaluation framework.

Characteristics Factor to be shown Internal measurement External measurement

(Model evaluation) (Performance evaluation)

Functionality Required functions are supported Validity of the content —

Reliability Functions behave normally under Logical correctness (∗) Whether the course was completed

all conditions

Usability Intuitiveness/usability — —

Efficiency Use of time/resources — Course time/rank

Maintainability Effort required for maintenance Presentation —

Portability Easiness of porting the target to — —

different environment — —

(∗) In the contest, the logical correctness of the submitted models could not be verified.

only models obtained as a result of software analy-
sis/design, they can be applied to any system if some
software design model corresponding to the system is
available.

On the other hand, since the external measurements
in the framework strongly depend on the contest spec-
ifications (including the robot), they would have to be
modified or replaced with other quality metrics that can
measure and evaluate corresponding external quality at-
tributes of the new target system (even if the target sys-
tem was an embedded one).

5 Analysis of relation between model
evaluation and performance evalua-
tion

In the framework described in the previous section,
we drew connections between the model and perfor-
mance evaluation results and various quality character-
istics. Note that the reliability and efficiency measure-
ments were based on the performance evaluation rather
than the model evaluation.

It is well known that many problems in software de-
velopment, not limited to embedded software, are in-
troduced during early stages such as analysis and de-
sign and that these problems exert a dominating effect
on software and system quality characteristics. There-
fore, it is expected that a value for the external quality
of executable software systems can be estimated from
a value for the internal quality based on non-executable
artifacts including models. [6] Especially for embedded
software development where real-time performance is
required, it is particularly important to estimate and ver-
ify the reliability and efficiency in the early stages by
using the model.

Below, we first confirm the validity of the qualitative

model evaluation results by comparing them against
other measurements. Then, after discussing how a cor-
relation between the model evaluation results and the
performance evaluation results should be expected, we
attempt to verify the reliability and efficiency of the
models in the contest at an early stage based on the cor-
relation between these two sets of results.

5.1 Validity of qualitative model evaluation
By looking at the relationships between the evalua-

tion results and the values obtained by applying several
quality measurement methods (i.e., product metrics) to
the models, the validity of the qualitative evaluation of
the models can be shown.

Of all possible metrics applicable to an object-
oriented model, we used the number of classes [17] and
the coupling complexity (Coupling Factor: COF [18])
among the classes as metrics for measuring structural
aspects because all of the submitted models included
a class diagram showing the overall software architec-
ture. If the model included several class diagrams, we
looked at the diagram showing the overall driving con-
trol method. On the other hand, we could not uniformly
apply any metrics for measuring behavioral aspects, be-
cause each of the submitted models used different dia-
grams (e.g., a state chart diagram, a sequence diagram,
etc.) to represent the behavior of different targets (e.g.,
whole or part).

The details of the metrics that we used are as follows.

• The number of classes indicates the scale of
object-oriented software. It was measured in terms
of the number of classes in the class diagram
showing the overall architecture.

• COF indicates the static complexity of object-



70 Progress in Informatics, No. 4, pp.63–78, (2007)

Fig. 7 COF measurement example.

oriented software according to coupling between
classes. It was measured by taking the number
of one-way relations between classes (two-way re-
lations were counted twice), not including inheri-
tance or dependency relationships (dotted arrows),
in the class diagram. This value was then normal-
ized for scale to a value from zero to one. The
complexity, COF(S ), of a set of related classes, S ,
is given by the following function where #S de-
notes the number of classes in S .

COF(S ) ::=
(Number of one-way relations excluding inheritance)

#S 2 − #S − 2(Number of subclasses)

For example, in Fig. 7, the COF values for each of
the programs S , S ′ and S ′′ built from three classes
would be 1/4, 1/3 and 6/6 (=1), respectively.
Therefore, S ′′, with a complete, bi-directional
graph formation is measured as the most complex.

The number of classes and the COF measurement
value for each of the 47 submitted models are shown
in Fig. 8. In the figure, all of the models receiving an
A grade had more than 10 classes and a COF value of
no more than 0.15. Of the B-grade models, most of
them had more than 15 classes and a COF value of no
more than 0.16. From this, we can see that for models
of a certain size, those with low complexity were evalu-
ated more highly. Conversely, most of the models with
fewer classes and a higher COF value were given a C
grade. In other words, small-scale models with higher
complexity were evaluated lower.

For example, Fig. 9 shows a UML class diagram rep-
resenting the static software structure of one of the A-
grade models3). This is not a small-scale model and its
complexity is low, because the number of classes and
the COF value are 38 and 0.04, respectively. In con-
trast, Fig. 10 shows a UML class diagram for one of
the C-grade models. This is a small-scale model and
its complexity is relatively high, because the number of
classes and the COF value are 7 and 0.33, respectively.

3) Figs. 9 and 10 are meant to roughly illustrate structural complexity; we do
not discuss the content/meaning of these figures.

Fig. 8 Number of classes and COF value for all models.

Fig. 9 UML class diagram representing the static struc-
ture of an A-grade model.

Fig. 10 UML class diagram for a C-grade model.

Since the roles of each class could not be determined
from the class diagram because of a lack of adequate
explanation, models receiving a D grade were excluded
from examining the scale and complexity of the static
structure. In addition, some models received a B grade
but had few classes and higher complexity. These mod-
els had other diagrams (e.g. a state chart diagram) that
comprehensibly represented the operation of the algo-
rithm from a dynamic perspective, so they were consid-



Quality Evaluation of Embedded Software in Robot Software Design Contest 71

ered separately from most of the other B-grade models,
which were graded according to the adequacy of the
class diagram.

In evaluating the models, we considered both the va-
lidity of the model’s details from an object-oriented
perspective and the adequacy of the presentation. The
smallest unit of structure in an object-oriented design
is a class, and the number of classes and the COF value
can be regarded as quantitative measurements of the ap-
propriateness of the class abstractions and the relation-
ships between those classes. Furthermore, having an
appropriate number of classes and COF value can be
seen as directly related to the adequacy of the presenta-
tion. For example, if the number of classes is extremely
large or small, or the COF value is very large, it is very
likely that the content and intention will be difficult to
understand.

From these observations, it can be recognized that
the scale and structural complexity as expressed by
the number of classes and the COF value were im-
plicitly considered in the qualitative evaluations by the
judges. It is well known that software maintenance
costs are significantly affected by the levels of software
complexity. [19] Especially in module-based software,
module couplings are important metrics for maintain-
ability. [20] In the contest, the judging activity can be
thought as a kind of a maintenance activity, because the
judges acted as third parties evaluating the models af-
ter their implementations. Therefore, the given quali-
tative measurements that implicitly reflect complexity
and scale can be seen as mostly valid.

We also gave some consideration to originality when
making qualitative evaluations. Since originality is not
related to the essential quality requirements of the soft-
ware, it could be argued that it must be excluded from
the discussion below regarding the correlation between
quality and the performance results. Among the models
actually submitted, however, most of those that showed
significant originality were also evaluated highly for
their content, so we can see that the consideration of
originality did not have a significant effect on the val-
ues of the final results.

5.2 Expectations for relation between model and per-
formance evaluation results

In the contest, it was our intention to encourage the
participants to perform Round-Trip Engineering (RTE
[21]), or Model-Driven Development (MDD [22]) by
requiring them to submit their model for evaluation be-
fore the performance test was held. We did not actually
investigate, however, whether the program installed in
the robot was an adequate implementation reflecting the
model submitted (though this was our hope).

• RTE is a development technique in which sev-
eral aspects of a target domain or problems are
abstracted and expressed in a model, so that the
relationship between the model and the program
code is maintained as development progresses.
By applying RTE, software quality is expected to
be high because the close relationship between
the model and its implementation means that any
problems are detected early in the abstract model.

• MDD is a development technique that extends
RTE, deriving the program code by repeatedly
transforming the model (by hand or with a com-
puter) according to some specific transformation
rules. Through the application of MDD, produc-
tivity increases in problem domains where such
transformation rules have been well verified and
accumulated. Using the fact that characteristics
of interest are inherited through transformation
steps by lower-level models from high-level ab-
stract models, functional and non-functional char-
acteristics can be verified with high precision at an
early stage of development.

As shown in Table 2, the results for the external
measurements of the software reliability and efficiency
came from the results of the performance tests. Thus,
if the participants used RTE or MDD and created a
model and program with an adequate relationship, then
the robots of the participants whose models were eval-
uated better for both reliability and efficiency would
be expected to actually complete the test course more
quickly.

5.3 Results of relationship analysis
Based on the above expectations, we examined the

relationship between the model evaluation results and
the performance results.

The evaluation method discussed in section 3.1 did
not explicitly include evaluation from an efficiency per-
spective. Neither could we determine whether the sub-
mitted models were likely to show high reliability by
evaluating their logical correctness. It might be still
possible, however, that the evaluations, which con-
sidered the validity of the model content and the ad-
equacy of presentation, reflected reliability and effi-
ciency. More specifically, it might be possible that
object-orientated evaluation of the static architecture
and dynamic behavior implicitly evaluates models as
inadequate if their designs are overly complex in terms
of scale, structure, inter-object communication, or state
transitions. This type of excess complexity can ulti-
mately lead to decreases in the reliability and efficiency
of software.



72 Progress in Informatics, No. 4, pp.63–78, (2007)

Fig. 11 COF and performance results.

Fig. 12 Number of classes and performance results.

Thus, we verified the relationship between the scale
and static complexity in the model evaluation results
and the performance results. The COF values and per-
formance ranks are shown in Fig. 11, along with the
evaluation grades, for the 47 submitted models. Sim-
ilarly, the number of classes and the performance rank
are shown in Fig. 12. The data for teams whose robots
did not complete the test course are shown under “Non-
completing.”

In Fig. 11, there is no recognizable relationship be-
tween the performance ranks of the completing teams
and the COF values. No trends in the COF values dis-
tinguishing the completing and non-completing teams
can be seen. Furthermore, more than half of the models
that received an A grade produced robots that did not
complete the course, and for those that did, the rank-
ings were low compared to others that received B or
C grades. There was also no recognizable relationship
between the performance rank or completion and non-
completion for the models receiving B, C, or D grades.
Similarly, Fig. 12 shows no recognizable relationship
between the model scale and the performance rank or
evaluation grade.

A correlation matrix for the number of classes (de-
noted as “Num. classes”), the COF value, the model
evaluation (denoted as “Eval. grade”), and the perfor-
mance rank (denoted as “Run result”) is shown in Table
3 for the 15 completing teams. To calculate the corre-
lation coefficients between grades A through D and the
other values, the grades were assigned the numbers 1
(grade A) through 4 (grade D), respectively. Regard-

Table 3 Correlation matrix for model evaluation results
and performance results for completing teams.

Num. COF Eval. Run

classes grade result

Num. classes 1

COF −0.732 1

Eval. grade −0.711 0.288 1

Run result 0.353 −0.564 0.093 1

ing the performance rank, there was a weak but positive
correlation between the performance rank and the num-
ber of classes. Moreover, there was a weak negative
correlation between the performance rank and the COF
value. These correlations might suggest that a robot
whose model was small, with high complexity, would
have run faster among the completing teams, but this
observation contradicts our expectation. There was a
very weak correlation between the COF value and the
evaluation grade, however; we attribute this to the fact
that many of the models with a low COF value (good
in terms of complexity) produced robots that did not
complete the course.

Bringing these contest results together, we can ob-
serve the following.

• The qualitative and quantitative model evaluations
did not reveal the robot reliability.

• If a robot had high reliability in terms of complet-
ing the course, the quantitative model evaluation
could somewhat reveal the robot efficiency (i.e.,
the runtime performance), in contrast to our ex-
pectation; the robots whose models were small,
with high complexity, ran faster among the com-
pleting teams.

• Teams that focused on programming and system
testing rather than modeling may have dealt with
the hardware characteristics more appropriately,
since the development period of the contest was
limited. We could not verify this assumption, how-
ever, because almost all of the participating teams
did not open their programs to the public.

Moreover, we should give some consideration to the
situational effect on the performance test results. As
mentioned in section 3.3, each team ran its robot only
twice on the competition day. It is possible that robots
based on models evaluated highly failed the perfor-
mance test by accident because of environmental fac-
tors, such as changes in the course conditions and the
room’s light intensity during the entire competition.
Thus, to confirm the validity of the results obtained
from the contest, we examined additional data obtained



Quality Evaluation of Embedded Software in Robot Software Design Contest 73

Fig. 13 COF and performance results in the post-contest
championship.

Fig. 14 Number of classes and performance results in the
post-contest championship.

Table 4 Correlation matrix for model evaluation results
and performance results for completing teams in the cham-
pionship.

Num. COF Eval. Run

classes grade result

Num. classes 1

COF −0.614 1

Eval. grade −0.833 0.458 1

Run result −0.443 0.449 0.307 1

from the post-contest championship, in addition to the
contest results.

In November 2005, a championship was held with
20 selected teams competing in terms of performance
on the same course as that of the contest (twice per
team). The steering committee selected teams whose
models were evaluated highly or whose robots success-
fully completed the course at the contest. Note that each
of the teams was allowed to refine the program but not
to modify its model from the contest.

The COF values and the performance ranks in the
championship are shown in Fig. 13, along with the eval-
uation grades for the 20 models. Similarly, the num-
ber of classes and the performance rank in the cham-
pionship are shown in Fig. 14. In addition, the corre-
lation matrix for the 12 completing teams (out of 20)
is shown in Table 4. From these figures and the ta-
ble, there was no strong correlation between the per-

formance rank and any of the other measurements. For
the completing teams, however, there was a weak nega-
tive correlation between the performance and the num-
ber of classes. On the other hand, there were weak
positive correlations between the performance and the
COF value, and between the performance and the eval-
uation grade. These correlations might suggest that the
robots whose models were large, with low complexity,
ran faster among the completing teams; this observation
meets our expectation.

Bringing these championship results together we see
the following.

• The qualitative and quantitative model evaluations
did not reveal the robot reliability.

• If the robot had high reliability in terms of com-
pleting the course, the quantitative model evalu-
ation could somewhat reveal the robot efficiency
without contradicting our expectation: the robots
whose model had a certain size, with low com-
plexity, ran faster.

• Teams that focused on modeling in the contest
could have spent more time on programming and
testing in the championship, using the same good
model. Again, we could not verify this assump-
tion.

From the above results in the contest and the champi-
onship, we can see that there was no strong relationship
between the qualitative model evaluation or structural
characteristics and the system performance results, al-
though there were some weak relationships indicating
the possibility of evaluating or estimating system ef-
ficiency in terms of the model. Thus, we conclude
that the evaluation methods and measurements of struc-
tural characteristics (number of classes and COF) of the
models do not reflect the reliability (and efficiency) of
the software, and therefore, they do not provide ade-
quate internal measurements of quality characteristics.

5.4 Reasons and remedies for lack of strong relation-
ship

We now consider the reasons why we could not
clearly measure the software reliability and efficiency
from the models by using the internal measurements
described above. We also examine possible remedies
with respect to the submitted models, the evaluation
methods, and the contest specifications. The potential
remedies can be divided into three types: (1) by partici-
pants, (2) by judges, and (3) by the steering committee.
(1) The reasons related to the submitted models and the
potential remedies by the participants are as follows.



74 Progress in Informatics, No. 4, pp.63–78, (2007)

• The dynamic models were inadequate.

Reason: In many of the submitted models, the
hardware control and the driving strategy were
not modeled, and logical correctness, which would
likely be reflected in high reliability, could not be
judged.

Remedy: Participants should enrich their behavior
models to express dynamic software behavior and
algorithms.

• There was a lack of correspondence between the
model and program.

Reason: In typical embedded software devel-
opment, efficiency is often refined by iterating
through the implementation and testing. It is pos-
sible that some contest participants adopted this
kind of approach. Without maintaining the rela-
tionship between the software implementation (the
program) and the model, however, the results of
this type of iterative work will not be reflected in
the submitted model.

Remedy: Each team should adopt RTE or MDD
as their basic development approach in order to
maintain the relationship between the model and
the program. MDD encourages deriving mod-
els whose operation can be verified at an early
stage, so simulations using the model and dynamic
quality measurements can be easily applied. This
should lead to the generation of more reliable pro-
grams.

Note that the difference between the transforma-
tion tools and rules used for the same model in
MDD-based development might lead to some dif-
ference in the program or system quality. There-
fore, it is necessary to consider such differences in
analyzing the relationship in terms of quality be-
tween the model and the program transformed by
MDD.

• Non-functional characteristics were not specified.

Reason: None of the submitted models clearly
expressed any of the non-functional characteris-
tics. Conventional standard model notation (e.g.,
UML) is effective for improving the expression or
readability of functional characteristics, but it is
not effective for expressing non-functional char-
acteristics.

Remedy: A UML performance profile [23] or an-
other performance framework [24], [25] can be ap-
plied to add special annotations regarding non-
functional characteristics into the standard mod-
els. For example, Woodside [26] proposes a tech-
nique for adding performance annotations to UML

Fig. 15 Iterative processes in terms of time and scope
(from [27]).

models and transforming them into performance
models for which performance can be verified.

• The models were not built by considering the hard-
ware and environmental characteristics.

Reason: The hardware characteristics (such as
speed and capacity), the environmental character-
istics, the control algorithm, and combinations of
them had significant effects on efficiency. Most
participants, however, did not know how to deal
with these factors or were unable to express how
to deal with them in their models.

Remedy: In embedded software development, the
hardware and environmental characteristics tend
to become obvious by testing software on the tar-
get hardware. Therefore, each team should use
some iterative development process to conduct a
cycle of modeling, implementation, and testing
on the target hardware. This should enhance the
model’s capability of dealing with the hardware
and environmental characteristics. Fig. 15 shows
a comparison of three typical process models (wa-
terfall, iterative, and agile) from the viewpoint of
time and scope [27]. The waterfall process tries
to cover the entire scope in each activity (such as
analysis and design) and contains no iteration; it
leads to a situation in which the hardware and en-
vironmental characteristics are not dealt with in
the analysis and design models. On the other hand,
the iterative and agile processes divide the entire
scope into several smaller fragments and perform
several iterations; this leads to a system built step
by step, involving the hardware and environmental
characteristics.

Moreover, each team could record some soft-
ware patterns [28], [29] (or anti-patterns [30]) that
take the hardware characteristics into considera-
tion and encapsulate knowledge gained from soft-
ware analysis and design that successfully in-
creased efficiency (or that failed to increase ef-



Quality Evaluation of Embedded Software in Robot Software Design Contest 75

ficiency). By explicitly stating which patterns
are to be applied to the model, judging the ef-
ficiency of the model would become easier, and
this should result in the generation of final soft-
ware that is more efficient. As an example, Smith
et al. has proposed performance anti-patterns and
workarounds for the problems of performance in
traditional object-oriented design. [31]

(2) The reasons related to the model evaluation method
and the potential remedies by the judges are as follows.

• The evaluation of efficiency was not emphasized
or quantified.

Reason: Efficiency was not explicitly included in
the model evaluation.

Remedy: We can emphasize efficiency evalua-
tion for models that also show dynamic aspects,
and we can, as much as possible, use quantita-
tive measurements. For example, we can evalu-
ate the efficiency annotations in the model as de-
scribed above, or we can apply dynamic metrics
that measure the complexity of the dynamic be-
havior of an object-oriented design. [32]–[34] To
do this, the dynamic aspects of all submitted mod-
els would have to be expressed fully by the same
kind of diagrams (e.g., a state chart diagram, a se-
quence diagram, etc.) for the same kind of target
(e.g., whole or part), so that they could be com-
pared in the contest.

• The evaluation factors were not varied enough.

Reason: All of the model evaluation factors evalu-
ated combinations of various aspects of the con-
tent or presentation in an integrated way. This
made it difficult to evaluate these aspects individ-
ually.

Remedy: Independent evaluation standards for
each facet of the content or presentation can be
decided ahead of time, and quantitative measure-
ments can be made based on these standards.

(3) The reason due to the competition specifications and
its potential remedy by the steering committee are as
follows.

• The requirements were so few and simple that the
participants could develop the software without
adequate modeling.

Reason: The functional and non-functional re-
quirements imposed on the software by the contest
specifications were few and simple, and the scale
of the required software was small. This suggests

that the requirements could be met through a tra-
ditional approach to development, in which imple-
mentation was attempted without adequate analy-
sis and design in terms of a model.

Remedy: The participants could be asked to de-
velop larger-scale software by adding more func-
tions or by making the driving course more com-
plex. It is necessary, though, to give adequate con-
sideration to the level of difficulty for first-time
participants, and to the scale of software that the
hardware can support.

6 Conclusion and future work
In this paper, we have presented the results of eval-

uating the embedded software models submitted to the
ET Software Design Robot Contest in 2005, and the re-
sults of evaluating the performance of the systems using
this software. We created a framework for evaluating
the software quality that integrated these two results,
and by using that framework, we examined whether
there was a relationship between them. We found that
the quantitative measurement of the structural complex-
ity of the design model had a strong relationship to the
qualitative evaluation of the design as judged by us. We
also found, however, that the qualitative evaluation and
the structural characteristics of the models had no clear
relationship with the performance of the embedded sys-
tems incorporating the software, which was expected
to be based on these models. This suggests that the
methods used in the contest to evaluate and measure
the structural characteristics of the software were inad-
equate to obtain an internal measure of its reliability or
efficiency. To adequately measure these non-functional
characteristics in terms of the model, it will be neces-
sary to reexamine the evaluation methods. Moreover,
we think that the participants have to avoid the lack
of correspondence between the model and the program
code by applying model-driven development and per-
formance patterns in developing the robot software.

In 2006, we held the contest in the same way and
obtained similar results (overall, the qualitative model
evaluations did not reveal the robots’ reliability or effi-
ciency), since the detailed analysis of the 2005 contest
presented here was conducted in parallel with running
the new contest. We are planning, however, to continue
holding similar contests in the following years. Based
on the lessons learned (including the reasons why we
could not measure software reliability and efficiency
from the models, and the corresponding remedies) from
these evaluation experiments, we will consider ways to
run the contest that will make it more practical and ed-
ucational, including obtaining an appropriate relation-
ship between the model and the actual performance, as



76 Progress in Informatics, No. 4, pp.63–78, (2007)

discussed here.
Also, by examining similar model contests and em-

bedded software/system development projects, we have
a plan to investigate the generality of the issues consid-
ered in this paper. Although the development in the
contest covers many of the common activities in em-
bedded system development (such as controlling hard-
ware devices and using external sensors), except for
designing hardware, some of the issues and lessons
learned in this paper might not apply with industrial
embedded development, because the main objective of
the contest was to provide an educational opportunity.
Not all of the participants of the contest were fully pro-
fessional developers, and the product of the contest was
not meant for practical or commercial use.

Acknowledgements
This research was partially supported by a research

grant from the Japanese Society for Quality Control.
Our thanks go to all of the staff and participants in ET
Robocon for giving us this opportunity to conduct ex-
perimental evaluations. Moreover, we thank the anony-
mous reviewers for their valuable comments.

References
[1] H. Washizaki, Y. Kobayashi, H. Watanabe, E. Nakajima,

Y. Hagiwara, K. Hiranabe and K. Fukuda, Experiments
on Quality Evaluation of Embedded Software in Japan
Robot Software Design Contest, Proc. 28th International
Conference on Software Engineering (ICSE2006), pp.
551-560, 2006.

[2] Embedded Technology (ET) Software Design Robot
Contest; http://www.etrobo.jp/

[3] Japan Embedded Systems Technology Association;
http://www.jasa.or.jp/top/en/

[4] The LEGO Group, LEGO Mindstorms;
http://mindstorms.lego.com/

[5] ISO/IEC 9126-1, Software engineering - Product Quality
- Part 1: Quality model, 2001.

[6] K. Lee and S. J. Lee, A Quantitative Software Quality
Evaluation Model for the Artifacts of Component Based
Development, Proc. 6th International Conference on
Software Engineering, Artificial Intelligence, Network-
ing and Parallel/Distributed Computing, and 1st ACIS
International Workshop on Self-Assembling Wireless Net-
works, 2005.

[7] OMG: Unified Modeling Language (UML);
http://www.uml.org/

[8] UML Robot Contest; http://www.otij.org/
event/umlforum/2003/robocon/

[9] Y. Kobayashi, T. Yamazaki, T. Futagami and H. Watan-
abe, Robot Contest as Software Engineering Educa-
tion, Proc. IPSJ/SIGSE Embedded Software Symposium
(ESS2004), 2004. (in Japanese)

[10] OMG, Software Process Engineering Metamodel Spec-
ification, Version 1.1, 2005.

[11] Change Vision, Inc., UML Modeling Tool – JUDE;
http://jude.change-vision.com/jude-
web/

[12] Omondo, EclipseUML; http://www.eclipse-
uml.com/

[13] D. West, Metaphor, Architecture, and XP; Proc. 3rd
International Conference on Extreme Programming and
Agile Processes in Software Engineering, 2002.

[14] J. Herbsleb, D. Root and J. Tomayko, The eXtreme
Programming (XP) Metaphor and Software Architecture,
CMU-CS-03-167, Carnegie Mellon University, 2003.

[15] ISO/IEC TR 9126-2, Software engineering - Product
Quality - Part 2; External metrics, 2003.

[16] ISO/IEC TR 9126-3, Software engineering - Product
Quality - Part 3: Internal metrics, 2003.

[17] M. Lorenz and J. Kidd, Object-Oriented Software Met-
rics, Prentice Hall, 1994.

[18] F.B. Abreu, M. Gonlao and R. Esteves, Toward the
Design Quality Evaluation of Object-Oriented Software
Systems; Proc. 5th International Conference on Software
Quality, 1995.

[19] R. Banker, S. Datar, C. Kemerer and D. Zweig, Software
Complexity and Maintenance Costs; Communications of
the ACM, Vol. 36, No. 11, 1993.

[20] W. P. Stevens, G. J. Myers and L. L. Constantine, Struc-
tured Design; IBM Systems Journal, Vol. 13, No. 2, 1974.

[21] A. Brown, An Introduction to Model Driven Architec-
ture; IBM developerWorks, May, 2004; http://www-
128.ibm.com/developerworks/rational/
library/3100.html

[22] B. Selic, The Pragmatics of Model-Driven Develop-
ment, IEEE Software, Vol. 20, No. 5, 2003.

[23] OMG, UML Profile for Schedulability; Performance,
and Time (version 1.1), 2005.

[24] M. Marzolla and S. Balsamo, UML-PSI: The UML Per-
formance SImulator; Proc. 1st International Conference
on the Quantitative Evaluation of Systems, 2004.

[25] S. Balsamo, A. Di Marco, P. Inverardiand and M. Sime-
oni, Model-Based Performance Prediction in Software
Development; A Survey, IEEE Transactions on Software
Engineering, Vol. 30, No. 5, 2004.

[26] M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen, T.
Israr and J. Merseguer, Performance by Unified Model
Analysis (PUMA); Proc. 5th ACM Workshop on Software
and Performance, 2005.

[27] Y. Nagase, Development methodologies and
processes, @IT, January, 2003. (in Japanese),
http://www.atmarkit.co.jp/im/carc/
serial/column/nagase02/nagase02.html

[28] T. Winn and P. Calder, Is This a Pattern?; IEEE Soft-
ware, Vol. 19, No. 1, 2002.



Quality Evaluation of Embedded Software in Robot Software Design Contest 77

[29] H. Washizaki, A. Kubo, A. Takasu and Y. Fukazawa,
Relation Analysis Among Patterns on Software Devel-
opment Process; Proc. 6th International Conference on
Product Focused Software Process Improvement, LNCS,
Vol. 3547, 2005.

[30] W. J. Brown, R. C. Malveau, H. W. McCormick and T.
J. Mowbray, AntiPatterns: Refactoring Software; Archi-
tectures, and Projects in Crisis, Wiley, 1998.

[31] C. U. Smith and L. G. Williams, Software Performance
AntiPatterns; Proc. 2nd International Workshop on Soft-
ware and Performance, 2000.

[32] B. Selic, G. Gullekson and P. Ward, Real-Time Object
Oriented Modeling, John Wiley & Sons, 1994.

[33] S. M. Yacoub, H. H. Ammar and R. Robinson, Dynamic
Metrics for Object Oriented Designs; Proc. 6th Interna-
tional Software Metrics Symposium, 1999.

[34] M. Genero, D. Miranda and M. Piattini, Defining Met-
rics for UML Statechart Diagrams in a Methodological
Way; Proc. International Workshop on Conceptual Mod-
eling Quality, 2003.

Hironori WASHIZAKI
is an assistant professor at Na-
tional Institute of Informatics, Tokyo,
Japan. He obtained his Doctor’s de-
gree in Information and Computer
Science from Waseda University in
2003. His research interests include

software reuse, quality assurance and patterns. He
has published more than 35 research papers in refer-
eed international journals and conferences. He received
SES2006 Best Paper Award from IPSJ/SIGSE, and
Takahashi Encouraging Award from JSSST in 2004. He
has served as member of program committee for several
international conferences including REP’04, ASE’06,
Profes’04-07 and APSEC’07. He is also a member of
IEEE, ACM, IEICE, JSSST, IPSJ and Hillside Group.

Yasuhide KOBAYASHI
is a president of Afrel co., Ltd.,
Fukui, Japan. He has worked on re-
search, development and provision of
software curriculums for educational
institutions and engineers. His main
research is an effective approach for

young people learning software. He has applied soft-
ware engineering to education, and practiced educa-
tional methods, based on pedagogy, with use of robot
control and contests. He has served as a chairman
on the steering committee of “ET Software Design
Robot Contest”, an international committee member of
“WRO (World Robot Olympiad)”, and a contest judge
of “MDD (Model Driven Development) Robot Chal-
lenge”. He is also a member of IPSJ/SIGCE.

Hiroyuki WATANABE
is with the Osaka Gas Information
System Research Institute Co.,Ltd.
(OGIS-RI Co.), Japan.

Eiji NAKAJIMA
is a chief editor consultant at Mame-
zou company, in Tokyo, Japan. He
obtained his bachelor’s degree in
information engineering from Toyo
University in 1987, and was active as
a software engineer at a precision in-

strument maker. He wrestled with object-oriented de-
velopment since 1995 and wrestled with productivity
improvement in software development. He has experi-
ences in supporting the improvement reform activity at
15 or more companies by using object-oriented devel-
opment, the development process improvement, and so
forth.

Hiroyuki HAGIWARA
is a manager of Software Div
of CATS Corporations, Yokohama,
Japan. He has passed through de-
velopment of a CASE tool for em-
bedded system and consultation for
design methodology, and engages in

marketing. His recent interests include Requirements
Engineering and Human Centered Design.



78 Progress in Informatics, No. 4, pp.63–78, (2007)

Kenji HIRANABE
is CEO of Change Vision, Inc.
Kenji is a Japanese software de-
velopment consultant and book
translator of Lean Software Devel-
opment, Agile Project Management,
and other Agile books. He’s also

an author of Jude, a UML and MindMap editor
software. You can read his blog at http://jude-
users.com/en/modules/weblog/index.php?user id=5.
He specializes in agile development, object-oriented
software construction and project facilitation.

Kazuya FUKUDA
is with the Toyoko System Corpora-
tion, Japan.


