
Progress in Informatics, No. 3, pp.19–30, (2006) 19

Research Paper

Binary spatial operations on cell complex using
incidence graph implemented at a spatial database
system Hawk Eye

Kunihiko KANEKO1, Akifumi MAKINOUCHI1
1Kyushu University

ABSTRACT
We implemented a spatial database system called Hawk Eye for three- and four-dimensional
modeling applications, such as solid modeling, computer simulation and computer vision.
Spatial query and manipulation are important system functions for retrieving and analyz-
ing spatial objects. Binary spatial operations are necessary in order to respond to spatial
queries and manipulations. Efficient processing of binary spatial operations between two
cell complexes is important with respect to a cell-complex-based spatial database because the
evaluation of these operations by previous algorithms is time-consuming. We present a new
algorithm called the Cell Splitting and Merge Algorithm (CSMA) to evaluate binary spatial
operations between two cell complexes. The new algorithm is efficient for cell complexes of
three or four dimensions. Key to the algorithm is the use of an incidence graph of the cell
complex.

KEYWORDS
Spatial database, spatial query processing, cell complex, cell splitting, cell splitting and merge
algorithm

1 Introduction

Spatial data is required in applications such as Geo-
graphic Information Systems (GIS), CAD/CAM, med-
ical information systems, image processing, robotics,
computer graphics, computer vision, and computer
simulation. In many applications, the spatial dimen-
sion is either three or four. To represent spatial objects
in three-dimensional or four-dimensional space, several
types of spatial data models have been proposed, in-
cluding surface models, three-dimensional solid mod-
els, and cell-based models. Among these models, cell-
based models are advantageous in that they can be used
to represent spatial objects of various dimensions from
0 to d in d-dimensional space (d = 2, 3, 4 or higher)
uniformly.

Spatial objects can be classified into two types, man-
ifold objects and non-manifold objects, based on the
topological structure. [8] A spatial object is manifold

Received February 23, 2006; Revised April 7, 2006; Accepted May 12, 2006.
1)kaneko@is.kyushu-u.ac.jp
2)akifumi@is.kyushu-u.ac.jp

if the neighbor of every interior point of the object is
locally equivalent to an open ball, otherwise the ob-
ject is non-manifold. [8] For example, the object in
Fig. 1 (a) consists of two rectangles that intersect at
a point. Such an object is non-manifold. Many re-
searchers have pointed out that non-manifold objects
are required in various types of applications to model
the complicated topological structure of spatial ob-
jects [10], [11], [18] in solid modeling, computer vision
and computer simulation. Non-manifold boundary-
representation models [10], [11], [18] have been pro-
posed in order to describe three-dimensional objects in
the three-dimensional solid modeling area. However,
non-manifold boundary-representation models cannot
represent mixed-dimensional objects (also called non-
regular non-manifold objects [8]), although this is pos-
sible using the cell-based models.

The two cell-based models, the linear constraint
model [2], [9], [15] and the cell complex model [1], [7],
[14], [19], have already been implemented in several
spatial database systems. In both of these models, cells
are combined to form a spatial object. In the linear con-

DOI: 10.2201/NiiPi.2006.3.3

c©2006 National Instiute of Informatics

20 Progress in Informatics, No. 3, pp.19–30, (2006)

Fig. 1 Two-dimensional object example. The object in Fig. 1 (a) is represented by a cell-complex in Fig. 1 (b) and linear
constraints in Fig. 1 (c).

straint models, cells may overlap (i.e., the interiors of
two different cells may intersect). In the cell complex
model, cells do not overlap. The intersection of two
different member cells in a cell complex is disjoint, or
their boundaries intersect (not their interiors). A cell
complex includes cells that represent the intersections
of any two member cells in the cell complex (as ex-
plained in Section 2). Such cells describe the topo-
logical structure of spatial objects explicitly. However,
the linear constraint model does not contain such cells.
Thus, the model does not represent topological struc-
ture information explicitly.

We implemented a spatial database system called
Hawk Eye, in which the cell complex model is im-
plemented. The system is intended to handle spa-
tial objects of various dimensions, from 0 to d, in d-
dimensional space (d = 2, 3, 4). In the system, various
types of spatial objects, such as the point, line segment,
polygon (convex or concave), and polyhedron (convex
or concave), are represented uniformly by the cell com-
plex model, which also enables the topological struc-
ture of both manifold and non-manifold (regular non-
manifold and non-regular non-manifold) spatial objects
to be represented uniformly.

Although previous cell-based spatial database sys-
tems are able to store spatial objects in three-
dimensional space or four-dimensional space, they
cannot respond efficiently to spatial queries and ma-
nipulations in some situations. In order to respond
to spatial queries and manipulations, efficient pro-
cessing of binary spatial operations between two ob-
jects is a particularly important problem. However,
evaluation of binary spatial operations of three or
more dimensions is time-consuming when using pre-
vious algorithms. [5] In previous cell-based spatial
database systems, the binary spatial operations are not
implemented [1], [7], [14], [19] (some unary spatial op-
erations are implemented in the systems), or an algo-
rithm that works only for two dimensions [9] is imple-
mented (which enables two-dimensional objects to be

Fig. 2 Incidence graph of the cell complex in Fig. 1 (b).
The cell complex consists of two two-dimensional cells,
six one-dimensional cells, and five zero-dimensional cells.
The incidence graph represents the topological relationship
among the cells.

handled in two-dimensional or higher space), or an al-
gorithm that enables only two spatial operations, in-
tersection and union, on the linear constraint
model is implemented (which is not efficient for the cell
complex model). [2], [15]

In the present paper, we introduce a new algorithm,
called the Cell Splitting and Merge Algorithm (CSMA),
by which to evaluate binary spatial operations between
two cell complexes. We use the cell splitting algo-
rithm of Chandrajit Bajaj et al. in the CSMA so that
the CSMA will work efficiently in three and four di-
mensions. In addition, some extensions are added to
the cell splitting algorithm in order to implement the
CSMA.

The present paper is organized as follows. Section 2
presents related studies, and Section 3 explains the sys-
tem architecture of Hawk Eye. Section 4 explains the
CSMA in relation to the evaluation of the three binary
spatial operations: intersection, difference,
and union. Section 5 presents the experimental re-
sults obtained using the CSMA.

2 Related works
In this section, we explain the linear constraint, the

cell and the cell complex. In addition, we explain pre-
vious algorithms for binary spatial operations for the

Binary spatial operations on cell complex using incidence graph implemented at a spatial database system Hawk Eye 21

cell-based models.

2.1 Linear constraints and cell complex
In the present study, we use the following notation:

Ed represents a d-dimensional Euclidean space, σ rep-
resents a cell, and Γ represents a cell complex. In addi-
tion, p = (x1, x2, . . . , xd) represents a point in Ed, and
f j(p) = a j,1x1 + a j,2x2 + . . .+ a j,dxd + a j,d+1 (there exists
a j,k such that a j,k � 0) represents a linear function. A
linear function in Ed has d + 1 coefficients. A hyper-
plane h j, which is a (d−1)-dimensional linear subspace
in Ed is a set of points {p| f j(p) = 0}. We use the term
hyperplane number to refer the number j assigned to
each linear function f j(p). The three comparison oper-
ators, ≥, = and ≤ are used in linear constraints. A lin-
ear constraint term is expressed as f j(p) ≥, f j(p) = 0,
or f j(p) ≤ 0. A linear constraint is a disjunction
of a finite number of linear constraint terms, such as
Φk = fk,1(p)θk,10∧ fk,2(p)θk,20∧ . . .∧ fk,mk(p)θk,mk0 (θk,i
is comparison operator, ≥, =, or ≤ for 1 ≤ i ≤ mk).

A cell is a set of points that satisfy a linear con-
straint. We use the notation σk for the cell defined
by Φk (the subscript k indicates the cell number). We
assume that a linear constraint that defines a cell does
not contain redundant terms. A linear constraint Φk =

fk,1(p)θk,10 ∧ fk,2(p)θk,20 ∧ . . .∧ fk,mk(p)θk,mk0 does not
contain redundant terms if any term fk,i(p)θk,i0 is re-
moved from Φk. Then, the solution set is different for
any i (1 ≤ i ≤ mk). If the linear constraint Φk has n dif-
ferent linear equations (i.e., there are n equal compari-
son operators), then the dimension of the cell is d − n.
In the present paper, the dimension of σk is denoted as
dim(σk), an s-dimensional cell is also referred to as an
s-cell, and we sometimes use σs

k to refer to an s-cell for
which the cell number is k.

A cell may be bounded or unbounded. A cell σk

is said to be bounded when there exists a real number
r that is larger than the distance between any pair of
points in σk. Otherwise, σk is unbounded.

LetΦ1 andΦ2 be two linear constraints f1,1(p)θ1,10∧
f1,2(p)θ1,20 ∧ . . . ∧ f1,m1(p)θ1,m10 and f2,1(p)θ2,10 ∧
f2,2(p)θ2,20 ∧ . . . ∧ f2,m2(p)θ2,m20 (m2 ≤ m1), respec-
tively. A cell σ2 is a face of σ1 if the cell satisfies all of
the following conditions:

1. f1,i(p) = f2,i(p) for any i (1 ≤ i ≤ m2).

2. θ1,i = θ2,i or θ2,i is ‘=’ for any i (1 ≤ i ≤ m2).

3. {p| f1,i(p)θ1,i0} ⊃ {p|Φ2(p)} for any i (m2 + 1 ≤ i ≤
m1) if m2 < m1.

4. {p|Φ2(p)} is not empty.

For example, there are seven faces of cell σ2
1 in

Fig. 1 (b). They are σ2
1, σ1

3, σ1
4, σ1

5, σ0
9, σ0

10, and σ0
11.

The cells are (1) σ2
1 : f1(p) ≥ 0∧ f2(p) ≤ 0∧ f3(p) ≤ 0,

(2) σ1
3 : f1(p) = 0 ∧ f2(p) ≤ 0 ∧ f3(p) ≤ 0, (3)

σ1
4 : f1(p) ≥ 0 ∧ f2(p) = 0 ∧ f3(p) ≤ 0, (4) σ1

5 :
f1(p) ≥ 0 ∧ f2(p) ≤ 0 ∧ f3(p) = 0, (5) σ0

9 : f1(p) =
0 ∧ f3(p) = 0 (6) σ0

10 : f1(p) = 0 ∧ f2(p) = 0, and (7)
σ0

11 : f2(p) = 0∧ f3(p) = 0. A cellσk2 is a direct face of
σk2 if σk1 is a face of σk1 and dim(σk2) = dim(σk1)− 1.
For example, the direct faces of σ2

1 in Fig. 1 (b) are the
following three one-dimensional cells: σ1

3, σ1
4, and σ1

5.
A cell complex is a set of bounded cells. [12] A set

of bounded cells Γ = {σ1, σ2, . . . , σn} is a cell complex
if Γ satisfies the following two conditions. [12]

1. For any member cell σk in Γ (1 ≤ k ≤ n), any
face of σk is a member cell in Γ. For example, the
cell complex in Fig. 1 (b) includes all seven faces
of cell σ2

1 as its member cells.

2. For any two member cells σk1 and σk2 in Γ (1 ≤
k1, k2 ≤ n), the intersection of σk1 and σk2 (i.e.,
Φk1 ∧ Φk2) is a face of the two cells σk1 and σk2

if the intersection of σk1 and σk2 is not empty. For
example, the intersection of the two cells σ2

1 and
σ2

2 in Fig. 1 (b) is the member cell σ0
11. The cell

σ0
11 is the face of the two cells σ2

1 and σ2
2.

A cell complex Γ is s-dimensional if the maximum
dimension of the cells in Γ is s. A cell σ in Γ is called
a top cell if σ is not the face of any other cell in Γ. The
top cells in the cell complex in Fig. 1 (b) are σ2

1 and σ2
2.

Let a cell complex Γ have nt top cells as its member,
from σ1 to σnt, σ1, σ2, . . . , σnt. The linear constraint
of the top cell σk is denoted by Φk = fk,1(p)θk,10 ∧
fk,2(p)θk,20 ∧ . . . ∧ fk,mk(p)θk,mk0 (1 ≤ k ≤ nt, where
mk is the number of linear constraint terms in Φk). Two
linear constraints of two different top cells may contain
the same linear function (i.e., fk1,i1(p) = fk2,i2(p) and
k1 � k2). In such a case, the total number of distinct
linear functions of Γ is less than the total number of
linear constraint terms (= Σmk). We hereinafter use nc

to refer to the total number of linear constraint terms (=
Σmk) and nh to refer the total number of distinct linear
functions. The hyperplane number associated with Γ is
an integer from 1 to nh. For example, the cell complex
in Fig. 1 (b) has two top cells: σ2

1 and σ2
2. Their linear

constraints are f1(p) ≥ 0 ∧ f2(p) ≤ 0 ∧ f3(p) ≤ 0 and
f4(p) ≥ 0 ∧ f5(p) ≥ 0 ∧ f6(p) ≤ 0, respectively. In
this example, the number of top cells is nt = 2, and
nc = nh = 6. In this example, the hyperplane number is
an integer from 1 to 6.

The relationship among member cells in a cell com-
plex can be represented graphically using an incidence
graph [4], [5], [16]. In the incidence graph of a cell
complex, each node represents a cell in the cell com-

22 Progress in Informatics, No. 3, pp.19–30, (2006)

plex, and there is an arc between two cells when one
cell is a direct face of the other. The incidence graph
of the cell complex in Fig. 1 (b) is illustrated in Fig. 2.
In this example, thirteen nodes represent the member
cells, and arcs represent the direct face relationship.

2.2 Binary spatial operation for the cell-based models
Linear constraint may be either satisfiable or unsat-

isfiable. If the solution set of a linear constraint is
empty, then the linear constraint is unsatisfiable, oth-
erwise it is satisfiable. For example, the term “x ≥
1 ∧ x ≤ 0” is unsatisfiable. In order to check the sat-
isfiability, several linear constraint solving algorithms
have been proposed, including half-space intersection,
convex hull, linear programming, and integer program-
ming. The constraint solving algorithms can be used
to evaluate the binary spatial operation, intersect,
between two cells. The operation returns the true
value when two cells are not disjoint. In addition, the
constraint solving algorithms can be used to evaluate
the binary spatial operation, intersection, for the
cell-based models. Let two spatial objects represented
by a cell-based model be Φ1,1 ∨ Φ1,2 ∨ . . . ∨ Φ1,m, and
Φ2,1 ∨ Φ2,2 ∨ . . . ∨ Φ2,n. The intersection of the
two is (Φ1,1∨Φ1,2∨. . .∨Φ1,m)∧(Φ2,1∨Φ2,2∨. . .∨Φ2,n) =
(Φ1,1 ∧ Φ2,1) ∨ (Φ1,1 ∧ Φ2,2) ∨ . . . ∨ (Φ1,1 ∧ Φ2,n) ∨
. . .∨ (Φ1,m ∧Φ2,1)∨ (Φ1,m ∧Φ2,2)∨ . . .∨ (Φ1,m ∧Φ2,n),
which contains m × n linear constraints. A linear con-
straint solving algorithm is invoked m × n times to
eliminate the unsatisfiable linear constraints. The half-
space intersection algorithm works efficiently for two-
dimensional objects. However, the algorithm does not
work for three dimensions or higher. The other linear
constraint solving algorithms, convex hull, linear pro-
gramming, and integer programming work for two di-
mensions or higher. However, they are time-consuming
for three or higher dimension, and so have not been
used in spatial database systems to our knowledge. In
the DEDALE system, the half-space intersection algo-
rithm is used to evaluate intersection for the lin-
ear constraint model. [9]

The hyperplane arrangement construction algorithm
by Edelsbrunner [5] can be used to evaluate binary spa-
tial operations intersection, difference, and
union for the cell-based models. However, using
the algorithm for binary spatial operations in three or
higher dimensions is very time-consuming. For d di-
mensional space, O((n1,h + n2,h)d) cells are constructed
[5] in an intermediate hyperplane arrangement (n1,h and
n2,h are the numbers of linear functions that are used to
define the two spatial objects to be evaluated) to evalu-
ate binary spatial operations.

Chandrajit Bajaj et al. presented a cell splitting al-
gorithm by which to split a bounded cell with a hyper-

Fig. 3 System architecture of Hawk Eye.

plane. [4] Splitting a cell with a hyperplane is a spatial
operation in which a cell is split into two cells, so that
any line between any point in one cell and any point
in the other cell intersects the hyperplane. The cell
splitting algorithm can be used for binary spatial oper-
ations between cells. In the algorithm, the cost to eval-
uate binary spatial operations between cells is O((mk1+

mk2)d/2) (for d = 2, 4, . . .) or O((mk1 + mk2)(d−1)/2) (for
d = 3, 5, . . .) [5] (mk1 and mk2 are the numbers of linear
functions used to define the two cells). Nirenstein et al.
used the cell splitting algorithm for the purpose of the
from-region visibility query. [13] In their paper, the bi-
nary spatial operation difference between cells is
evaluated for the query.

In the present paper, we introduce a new efficient al-
gorithm CSMA by which to evaluate binary spatial op-
erations between two cell complexes. We use the cell
splitting algorithm in the implementation of CSMA so
that the CSMA will work efficiently in three and four
dimensions. Because the cell splitting algorithm is in-
tended to cell, some extensions are added to the cell
splitting algorithm to handle the cell complexes.

3 System architecture
Query and manipulation of spatial objects are pro-

cessed in two steps in Hawk Eye, just like other spatial
database systems (see Fig. 3). These two steps are fil-
tering and refinement [3]. In the filtering step, the spa-
tial index of spatial objects and the Minimum Bounding
Rectangle (MBR) are used. In the refinement step, the
spatial operation processor module is invoked to evalu-
ate binary geometric operations.

Two representations for the incidence graph are im-
plemented in Hawk Eye. They are the PBS and the

Binary spatial operations on cell complex using incidence graph implemented at a spatial database system Hawk Eye 23

CPVS. The CPVS is an in-disk representation, and the
PBS is an in-memory representation. When query and
manipulation of spatial objects are executed, spatial in-
dex, the MBR and the CPVS stored in a database are
used. For example, to evaluate a spatial query AREA
(X, Y) (X is a set of spatial objects, and Y is one spa-
tial object), which means “calculate the total size of the
intersection of Y and objects in X”, the spatial index and
MBRs of X are used in the filtering step. In this step,
objects in X are eliminated such that its MBR does not
intersect with Y. In the refinement step, the filtering re-
sult and Y are used. In this step, for each object xk in
the filtering result, intersection (xk, Y) is eval-
uated. To evaluate the operation, the PBS of Y is pro-
duced from the CPVS of Y on-the-fly. Then, the CPVS
of xk and the PBS of Y are used in the CSMA algo-
rithm.

3.1 CPVS
The CPVS has two parts: TopCell and Hyper-

plane. The TopCell part of the CPVS stores the lin-
ear constraints of the top cells. One tuple of TopCell
is equivalent to one linear constraint term. For a top cell
σk, there are mk tuples to store the mk linear constraint
terms fk,1(p)θk,10, fk,2(p)θk,20, . . . , and fk,mk(p)θk,mk0
of σk. In total, TopCell contains nc (= Σmk) tu-

Table 1 Example of CPVS. The TopCell part stores linear constraints of top cells. The Hyperplane part stores the
coefficients of linear functions.

(a) TopCell

Linear Constraint Attributes
Top Hyperplane Comparison

Cell Number Operator

Number

f1(p) ≥ 0 ∧ f2(p) ≤ 0 ∧ f3(p) ≤ 0 1 1 ≥
1 2 ≤
1 3 ≤

f4(p) ≥ 0 ∧ f5(p) ≥ 0 ∧ f6(p) ≤ 0 2 4 ≥
2 5 ≥
2 6 ≤

(b) Hyperplane

Linear Attributes
constraint term Hyperplane Coefficients

Number a j,1 a j,2 a j,3

3x − y − 2 ≥ 0 1 3 −1 −2

x − 2y + 1 ≤ 0 2 1 −2 1

2x + y − 8 ≤ 0 3 2 1 −8

x − y − 1 ≥ 0 4 1 −1 −1

x + y − 5 ≥ 0 5 1 1 −5

3x + y − 15 ≤ 0 6 3 1 −15

ples. The tuple has three attributes, TopCellNum-
ber, HyperplaneNumber, and ComparisonOp-
erator, which store the top cell number, the hyper-
plane number, and the comparison operator, ≥, =, or
≤, respectively. For a linear constraint term fk,i(p)θk,i0
(1 ≤ k ≤ nt and 1 ≤ i ≤ mk), the tuple is <k, ‘k, i’, θk,i>.
In Table 1, there are six (= nc) tuples. The first tuple is
<1, 1,≥ >, which means that the cell having the top cell
number of 1 has the linear constraint term of f1 ≥ 0.

The Hyperplane part of the CPVS stores the hy-
perplane numbers and the coefficients of the linear
functions. A hyperplane in Ed has (d + 1) coefficients.
In the Hyperplane in Table 1, there are six (= nh)
tuples, each of which has three coefficients.

3.2 PBS
The PBS has two parts: Graph and Hyperplane.

The Hyperplane part of the PBS is the same as
that of the CPVS (see Table 1 (b)). The Graph part
of the PBS has the three attributes to store node at-
tributes of the incidence graph. They are coordinate
value, cell position vector, and pointers to represent
arcs between nodes. Only the nodes representing the
zero-dimensional cell have the coordinate values. Other
nodes do not have the coordinate values. Table 2 shows
the node attributes of the incidence graph in Fig. 2. The

24 Progress in Informatics, No. 3, pp.19–30, (2006)

Table 2 The Graph part of the PBS has three node attributes. They are coordinate value, cell position vector, and pointers
to represent arcs. The table shows the coordinate value and the cell position vector of the incidence graph in Fig. 2. Pointers
to represent arcs are omitted from this table.

Linear constraint Node Attributes
Coordinate Cell Position

Value Vector

σ2
1 f1(p) ≥ 0∧ f2(p) ≤ 0∧ f3(p) ≤ 0 [+ − − i i i]

σ2
2 f4(p) ≥ 0∧ f5(p) ≥ 0∧ f6(p) ≤ 0 [i i i + + −]
σ1

3 f1(p) = 0∧ f2(p) ≤ 0∧ f3(p) ≤ 0 [0 − − i i i]

σ1
4 f1(p) ≥ 0∧ f2(p) = 0∧ f3(p) ≤ 0 [+ 0 − i i i]

σ1
5 f1(p) ≥ 0∧ f2(p) ≤ 0∧ f3(p) = 0 [+ − 0 i i i]

σ1
6 f4(p) = 0∧ f5(p) ≥ 0∧ f6(p) ≤ 0 [i i i 0 + −]
σ1

7 f4(p) ≥ 0∧ f5(p) = 0∧ f6(p) ≤ 0 [i i i + 0 −]
σ1

8 f4(p) ≥ 0∧ f5(p) ≥ 0∧ f6(p) = 0 [i i i + + 0]

σ0
9 f1(p) = 0∧ f3(p) = 0 (2, 4) [0 i 0 i i i]

σ0
10 f1(p) = 0∧ f2(p) = 0 (1, 1) [0 0 i i i i]

σ0
11 f2(p) = 0∧ f3(p) = 0∧ f4(p) = 0 (3, 2) [i 0 0 0 0 i]

∧ f5(p) = 0

σ0
12 f4(p) = 0∧ f6(p) = 0 (4, 3) [i i i 0 i 0]

σ0
13 f5(p) = 0∧ f6(p) = 0 (5, 0) [i i i i 0 0]

zero-dimensional cells σ0
9, σ0

10, σ0
11, σ0

12 and σ0
13 have

coordinate values of (2,4), (1,1), (3,2), (4,3), and (5.0),
respectively.

The cell position vector in the PBS represents the lin-
ear constraint of a cell. For example, the cell position
vector of the top cell σ2

1 in Fig. 1 (b) is [+ − − i i
i], which represents “ f1(p) ≥ 0 ∧ f2(p) ≤ 0 ∧ f3(p) ≤
0”.

The definition of the cell position vector is as
follows. The cell position vector of a member
cell σk in Γ is an nh-length vector, such as uk =

[uk,1, uk,2, · · · , uk,nh]. The element value is +, 0, −,
or i. For a cell σk in Γ, the j-th element value uk, j

(1 ≤ j ≤ nh) is as follows:

(1) uk, j = ‘+’ if Φk contains the term f j(p) ≥ 0.

(2) uk, j = ‘0’ if Φk contains the term f j(p) = 0.

(3) uk, j = ‘−’ if Φk contains the term f j(p) ≤ 0.

(4) uk, j = ‘i’, otherwise.

For example, in Table 2, the length of the cell position
vectors is 6 (= nh). The cell σ0

9 is [0 i 0 i i i].
The second element is ‘i’ because the linear constraints
“ f1(p) = 0 ∧ f3(p) = 0” of σ0

9 do not contain the linear
function ‘ f2’.

3.3 Conversion between PBS and CPVS
The Hyperplane part of the CPVS and PBS is

same. To convert the PBS of a cell complex to its

CPVS, the Graph part of the PBS is converted to the
TopCell part of its CPVS (see Fig. 4). The conver-
sion algorithm is shown in Fig. 5. There are two steps
in the conversion.

(1) Selection of top cells
In this step, top cells are selected from the Graph
part of the PBS. The node in the Graph represent-
ing a top cell does not have upward pointers in the
node. The selection is done by checking the upward
pointers.

(2) Insertion of tuples
In this step, tuples are inserted into the TopCell
part of the CPVS. The cell position vectors of the
top cells that are selected in the previous step are
used to generate the tuples to be inserted.

To convert the CPVS of a cell complex to its PBS,
the Graph part of the PBS is generated from the Top-
Cell part and the Hyperplane part of its CPVS
(see Fig. 4). We use the extended cell splitting algo-
rithm [17] which enables to split an unbounded cell
with a hyperplane for the generation.

4 Binary geometric operation algo-
rithm

Section 4 explains the details of the CSMA with re-
spect to the evaluation of the three geometric opera-
tions: intersection, difference, and union.
The algorithm can also be used for the five binary
topological predicates [6]: intersect, disjoint,

Binary spatial operations on cell complex using incidence graph implemented at a spatial database system Hawk Eye 25

Fig. 4 Two representations of the incidence graph, in which the PBS and the CPVS are implemented in Hawk Eye. The two
representations are converted on-the-fly.

Fig. 5 Conversion from the PBS to the CPVS.

meet, contains, and equal.
We use the cell splitting algorithm of Chandrajit Ba-

jaj et al. in the CSMA. Given the PBS of a cell σ (not
a cell complex) and a hyperplane f j(p) = 0, the cell
splitting algorithm produces the new PBS of the cell
complex Γ that satisfies the following:

(1) If the hyperplane intersects the cell σ (f j(p) >
0∧σ is not empty and f j(p) < 0∧σ is not empty),

then there are two top cells in Γ, i.e., f j(p) ≥ 0∧σ
and f j(p) ≤ 0 ∧ σ.

(2) Otherwise, there is only one top cell in Γ, i.e., σ.

As a result of the cell splitting, each node of the PBS
of Γ has a new position as its node attribute. For a node
representing a cell σk, the position value vk, j of σk is +,
0, or −. This value represents the relative position of

26 Progress in Informatics, No. 3, pp.19–30, (2006)

the cell σk to the hyperplane f j(p) = 0, as follows:

(1) vk, j = ‘+’ if for any internal point in σk, f j(p) > 0.

(2) vk, j = ‘−’ if for any internal point in σ, f j(p) < 0.

(3) vk, j = ‘0’ if for any internal point in σ, f j(p) = 0.

In the CSMA algorithm, a cell is split by more than
one hyperplane. In order to split a cell with nh hyper-
planes, the cell splitting algorithm is invoked nh times
in our implementation. As a result of the invocation,
the PBS of a cell complex, which represents the split-
ting result, is obtained. Each node of the PBS has a new
position vector, which is defined as follows. The length
of the position vectors is nh. For a node of a cell σk in
the PBS, the j-th element value vk, j is +, 0, or −. This
value represents the relative position of the cell σk to
the j-th hyperplane (1 ≤ j ≤ nh) explained above.

There is a difference between the cell splitting algo-
rithm presented by Chandrajit Bajaj et al. and the algo-
rithm implemented herein. As a result of the cell split-
ting, an arc between cells occurs, which represents the
direct face relationship in the PBS. When splitting an
s-dimensional cell, the cell splitting algorithm of Chan-
drajit Bajaj et al. creates arcs between a newly cre-
ated (s− 1)-dimensional cell and newly created (s− 2)-
dimensional cells. They assumed that the number of
newly created (s − 1)-dimensional cells is one and that
all of the newly created (s−2)-dimensional cells have a
direct face relationship between with the newly created
(s − 1)-dimensional cell. This assumption holds when
the dimension s = 2 and the number of hyperplanes
is nh = 1. In our implementation, the position vec-
tor is used to check the direct face relationship between
newly created cells in the PBS.

There are four steps used to evaluate the binary spa-
tial operations between two cell complexes (see Fig. 6).
The cell splitting algorithm is applied in the third step.
There are two steps before the cell splitting and one
step after the cell splitting in order to handle the cell
complex.

(1) Conversion of the CPVS to the PBS
The first step is the conversion of the CPVS of a
cell complex to its PBS. Although there are two
operands in the operation, only one cell complex is
converted. We hereinafter use Γ1 to refer to the con-
verted cell complex, and Γ2 to refer the other cell
complex.

(2) Generation of the PBS of the top cells
In this step, the PBS obtained by the previous step is
used. The PBS of the incidence graphs of all of the
top cells in Γ1 is obtained from the PBS of Γ1.

Fig. 6 Steps of the CSMA. To evaluate a binary spatial
operation between Γ1 and Γ2, CPVS of Γ1 is converted to
the PBS. The incidence graphs represented by the PBS
are then split with the hyperplanes using the Hyperplane
part of the CPVS of Γ2. Finally, the cells that represent
the operation result are collected from the top cell splitting
result using the TopCell part of Γ2.

(3) Cell splitting
In this step, the PBS obtained by the previous step,
and the Hyperplane part of the CPVS of Γ2 are
used. Since there is hyperplane information in the
CPVS of Γ2, the CPVS does not have to be con-
verted to the PBS. The PBS of the top cells in Γ1 is
split with the hyperplanes associated with Γ2, which
is stored in the Hyperplane part of the CPVS of
Γ2. In this step, the cell splitting algorithm is ap-
plied repeatedly to split the PBS one-by-one by the
hyperplanes.

(4) Cell Selection and Merge
In this step, the cells that represent the operation re-
sult are selected from the result of the previous step.
This is done using the TopCell part of Γ2. The po-
sition vector of each node is examined one-by-one,
and the nodes that satisfy a particular condition are
selected. The way of the selection is different op-
eration by operation to be evaluated. For example,
to evaluate intersection, only the cells that are

Binary spatial operations on cell complex using incidence graph implemented at a spatial database system Hawk Eye 27

Fig. 7 CSMA for the operation intersection

contained in Γ2 are selected. Finally, the PBS of
each cell is merged into the PBS of a cell complex.
For this purpose, the nodes in the PBS of each cell
are traversed from the dimension of the top cell to
dimension zero.

As explained above, the CSMA uses the CPVSs of
the two cell complexes, one of which is converted to
the PBS. For example, to evaluate intersection
between Γ1 and Γ2, the PBS of the incidence graphs of
all top cells in Γ1 is produced from the CPVS of Γ1. The
PBS of the top cells is then split with the set of hyper-
planes associated with Γ2 in the cell splitting step. In
this step, the Hyperplane part of the CPVS of Γ2 is
used. Then, the nodes that satisfy one of the following
three conditions are obtained.

Select a cell σ in Γ2 that satisfies the following:

(1) If the j-th comparison operator θ j is ‘≥’, then j-
th value of the position vector of the node is ‘+’
or ‘0’.

(2) If the j-th comparison operator θ j is ‘0’, then j-th
value of the position vector of the node is ‘0’.

(3) If the j-th comparison operator θ j is ‘≤’, then j-
th value of the position vector of the node is ‘−’
or ‘0’.

To do the selection, the TopCell part of the CPVS of
Γ2 is used. Finally, the PBS that represents inter-
section between Γ1 and Γ2 is produced by merging
the incidence graphs. The algorithm of the inter-
section is shown in Fig. 7.

28 Progress in Informatics, No. 3, pp.19–30, (2006)

In the case of the difference operation, the algo-
rithm is same as intersection except for the man-
ner of cell selection in the fourth step. Nodes that sat-
isfy one of the following two conditions are obtained.

Find a cell σ in Γ2 that satisfies the following:

(1) If the j-th comparison operator θ j is ‘≥’, then j-
th value of the position vector of the node is ‘−’
or ‘0’.

(2) If the j-th comparison operator θ j is ‘≤’, then j-
th value of the position vector of the node is ‘+’
or ‘0’.

In the case of union, the behavior is different. The
CSMA is executed twice. In order to obtain the PBS
that represents the union of two cell complexes, Γ1 and
Γ2, the PBSs of top cells in Γ1 is first split by the hy-
perplanes associated with Γ2. Then, the PBSs of the top
cells in Γ2 are split by the hyperplanes associated with
Γ1. Finally, these two sets of PBSs are merged into one
PBS. The result represents the union of two cell com-
plexes, Γ1 and Γ2.

5 Experimental Evaluation
The purpose of the test is to measure the execu-

tion time of the spatial operation algorithm CSMA im-
plemented herein. The experiments are performed on
a SUN Microsystems Blade 100 Workstation (main
memory: 512 Mbytes, OS: Solaris 10). Applica-
tions are implemented in C and C++ (C/C++ compiler:
SUN Forte 6 Developer Update 2, Database System:
ShusseUo).

5.1 Test database
The present test uses randomly generated three-

dimensional cell complexes and four-dimensional cell
complexes. We generated random d-dimensional cell
complexes (d = 3 or 4) using the following procedure.
The procedure has two parameters n f and nt, which rep-
resent the number of (d − 1)-dimensional faces and the
number of top cells, respectively. In the present test,
n f = 10, and nt = 20, 40, 60, 80, 100, or 120.

1. Construct the incidence graph representing the
three-dimensional cube C [(−10,−10,−10)
(10, 10, 10)] or four-dimensional cube C
[(−10,−10,−10,−10) (10, 10, 10, 10)]. The
number of (d − 1)-dimensional faces of the
d-dimensional cube C is d × 2.

2. The cube C is split with (n f d × 2) random hyper-
planes using the cell splitting algorithm. Each ran-
dom hyperplane is generated by a random point
in C and a random normal vector that represents

the orientation of the hyperplane to be generated.
We use a uniformly distributed random function to
generate the point and vector.

3. To produce a random d-dimensional cell complex,
we randomly select nt d-dimensional cells as its
top cells using the incidence graph representing C.

5.2 Execution time to evaluate spatial operation
The execution time of the operation intersec-

tion using the CSMA algorithm is measured. Figure 8
shows the performance curve of the operation in-
tersection between two random three-dimensional
complexes or two random four-dimensional complexes.
The horizontal axis shows the number of top cells of
both cell complexes, and the vertical axis shows the av-
erage response time in seconds (ten random cell com-

Fig. 8 Performance curve of the binary spatial operations
intersection between two random three-dimensional
cell complexes or four-dimensional cell complexes. The
horizontal axis is the number of top cells of both cell com-
plexes, and the vertical axis is the response time in sec-
onds.

Binary spatial operations on cell complex using incidence graph implemented at a spatial database system Hawk Eye 29

plexes were used for each test).
The results of this test show that when the CSMA is

used for the operation intersection between two
three-dimensional cell complexes and four-dimensional
cell complexes, the response time is proportional to the
number of top cells in one cell complex multiplied by
the number of top cells in the other in both the three-
and four-dimensional tests. In this test, the CSMA al-
gorithm works efficiently for random cell complexes.
Theoretical analysis of the performance of the CSMA
and further performance tests of CSMA using practical
data will be performed in the future.

6 Conclusion
We implemented a new spatial database system

called Hawk Eye. The cell complex model is imple-
mented in the system to represent spatial objects. The
incidence graph is used in the new system. In addi-
tion, we presented a new algorithm, called the Cell
Splitting and Merge Algorithm (CSMA), to evaluate
binary spatial operations between two cell complexes.
The cell splitting algorithm of Bajaj Chandrajit et al. is
used, which enables cells of three or four dimensions to
be manipulated efficiently. The CSMA algorithm can
be used to produce a cell complex that represents the
evaluation results of three binary geometric operations:
intersection, difference, and union.

Further analysis of the performance of the CSMA
will be performed in the future. We plan to store a
three-dimensional CAD dataset and a medical image
dataset in Hawk Eye and carry out performance tests
of the CSMA using these datasets. There are three re-
search areas that can accelerate spatial date processing:
the development of a spatial index to manage CPVS,
the development of a technique to select the fastest exe-
cution plan, and the development of a data compression
method to reduce the disk I/O cost of CPVS.

Acknowledgements
This research was supported in part by a Grant-in-

Aid for Scientific Research (17700117) from the Japan
Society for the Promotion of Science.

References
[1] E. Birsson, “Representing Geometric Structures in d

Dimensions: Topology and Order,” Discrete Comput.
Geom., vol.9, no.4, pp.387–426, 1993.

[2] A. Brodsky, V. Segal, J. Chen, and P. Exarkhopoulo,
“The CCUBE Constraint Object-oriented Database Sys-
tems”, Proc. 1999 SIGMOD, pp.577–579, 1999.

[3] T. Brinkhoff, H.-P. Kriegel, R. Schneider, and B. Seeger,
“Multi-step Processing of Spatial Joins,” Proc. 1994
ACM SIGMOD, pp.197–208, 1993.

[4] C.L. Bajaj and V. Pascucci, Splitting a Complex of Con-
vex Polytopes In Any Dimension, ACM Press, 1996.

[5] H. Edelsbrunner, Algorithms in Combinatorial Geome-
try, Springer-Verlag, 1987.

[6] M. Egenhofer, “A Formal Definition of Binary Topo-
logical Relationships,” Proc. 3rd Intl. Conf. on Foun-
dations of Data Organization and Algorithms, pp.457–
472, 1989.

[7] L.D. Floriani and A. Hui, “a Scalable Data Structure for
Three-dimensional Non-manifold Objects,” Proceed-
ings of the Eurographics/ACM SIGGRAPH Symposium
on Geometry processing, pp.72–82, 2003.

[8] L.C. Glaser, Geometric Combinatorial Topology, Van
Nostrand Reinhold, New York, 1970.

[9] S. Grumback, P. Rigaux, and L. Segoufin, “The
DEDALE System for Complex Spatial Queries,” Proc.
ACM SIGMOD Intl. Conf. on Management of Data,
pp.213–224, 1998.

[10] E.L. Gursoz, Y. Choi, and F.B. Prinz, “Vertex-
based Representation of Non-manifold Boundaries,” In
M.J. Wozny, J.U. Turner, and K. Preiss, Ed., Geomet-
ric Modeling for Product Engineering, Elsevier Science
Publishers B.V., North Holland, pp.107–130, 1990.

[11] S.H. Lee and K. Lee, “Partial Entity Structure: a Com-
pact Non-manifold Boundary Representation based on
Partial Topological Entities,” In Proceedings Sixth ACM
Symposium on Solid Modeling and Applications. 2001.

[12] A.T. Lundell and S. Weingram, The Topology of CW
Complexes, Van Nostrand Reinhold Comp., 1969.

[13] S. Nirenstein, E. Blake, and J. Gain, “Exact From-
region Visibility Culling,” Proceedings of the 13th Eu-
rographics workshop on Rendering, 2002.

[14] A. Raza and W. Kainz, “Cell Tuple based Spatio-
temporal Data Model: an Object Approach,” Proceed-
ings of the seventh ACM international symposium on
Advances in geographic information systems, pp.20–25,
1999.

[15] P. Revez, Introduction to Constraint Databases,
Springer-Verlag, 2002.

[16] S. Skiena, Hasse Diagrams, in Implementing Discrete
Mathematics: Combinatorics and Graph Theory with
Mathematica, Addison-Wesley, 1990.

[17] M. Tanaka, K. Kaneko, Y. Lu, and A. Makinouchi,
“An Extended Cell Splitting Algorithm for Spatial
Databases,” IEEE TENCON 2004, pp.371–374, 2004.

[18] K. Weiler, The Radial Edge Data Structure: A Topo-
logical Representation for Non-manifold Geometric
Boundary Modeling, J.L. Encarnacao, M.J. Wozny,
H.W. McLaughlin, Ed., Geometric Modeling for CAD
Applications, pp.3–36. Elsevier Science Publishers B.V.
(North Holland), Amsterdam, 1988.

[19] M. Worboys, “A Unified Model for Spatial and Tem-
poral Information,” Comput. J., vol.37, no.1, pp.26–34,
1994.

30 Progress in Informatics, No. 3, pp.19–30, (2006)

Kunihiko KANEKO
received his Ph.D. degree form
Kyushu University. Since 1996, he
has been with the Graduate School
of Information Science and Electri-
cal Engineering, Kyushu University,
Japan, where he is an associate pro-

fessor. His research interests includes spatial databases,
and biomedical databases. He is a member of IPSJ, IE-
ICE, ACM, and IEEE.

Akifumi MAKINOUCHI
received his B.E. degree from Kyoto
University, Japan, in 1967, Docteur-
Ingereur degree from Univercite de
Grenoble, France, in 1970, and D.E.
degree from Kyoto University, Japan,
in 1985. Since 1989 to 2006, he was

a professor in the Graduate School of Information Sci-
ence and Electrical Engineering, Kyushu University,
Japan. Since 2006, he has been with Kurume Institute
of Technology where he is a professor. His research
interests include spatial databases, multi-dimensional
index, database systems for medical applications, and
medical data science. He is a member of IPSJ, IEICE,
ACM, and IEEE.

