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1 Introduction
Service-oriented computing [31] is an emerging 

software technology for business networks using Web 
services.[8] The concept of service-oriented comput-
ing is that business partners, each acting as a service 
provider, collaborate with each other for their custom-
ers’benefit. In addition, while a provider may offer 
distinctive services, it sometimes needs to combine 
more than one Web services into a new service.

Since the collaboration is essential for creating an 
easy-to-use service, a robust framework is needed to 
compose lots of specialized services. The essential ele-
ment is a business process description language to 
express how Web service providers collaborate 
together. Since each Web service is implemented by a 
service provider, which is a self-contained software 
system having its own threads of control, the business 
process or flow is essentially a description of collabo-
rations of distributed autonomous computing entities.

Writing correct flow descriptions, however, is not an 
easy task because the Web flow description is basi-
cally a distributed collaboration. While faulty flow 
descriptions are undesirable from the viewpoint of the 
conventional software engineering, the situation with 

the Web service flows is even worse. That is, a faulty 
description executed in the Internet environment con-
sumes publicly shared network resources. Verifying 
the Web service flow prior to its execution is essential. 
[23][24] Actually, there have been various stud-
ies on the analysis of the behavioral specifica-
tions.[4][9][10][11][16][25][28][29]

This paper proposes to use model checking tech-
niques[6] for analyzing Web service flow descriptions. 
It focuses on the BPEL (Business Process Execution 
Language) [7] as a representative language to describe 
the Web service flows, and uses the SPIN model 
checker [13] as the verification engine. The concern 
here is to identify faulty behaviors as early as possible 
in the development process and not to show the 
absence of such bugs. The techniques compose a light-
weight analysis method as in,[14] in that they consti-
tute a partial but automatic analysis technique rather 
than a complete but costly analysis method such as 
using an interactive theorem prover.

First, the behavioral specification is extracted from 
the BPEL application program in order to represent it 
in a variant of an EFA (Extended Finite-state 
Automaton). After that, the EFA model is translated 
into a Promela source program that is automatically 
analyzed by using the SPIN model checker. The pro-
posed method employs an abstraction of variables that 
affect the control aspects of the behavior and provides 
an adequate support for DPE (Dead-Path Elimination). 
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These techniques are essential to analyze all the four 
example cases in the BPEL standard document.[7]

The rest of the paper is organized as follows. 
Section 2 gives an overview of the Web service archi-
tecture and BPEL as a standardized language for 
describing Web service flows. Section 3 considers the 
problem of behavioral analysis of BPEL applications. 
Section 4 introduces the EFA used as the intermediate 
representation for the behavioral specification of the 
BPEL applications in order to describe the verification 
problem for the subject matter. Section 5 presents the 
method of conducting the behavioral analysis with the 
SPIN model checker. Section 6 discusses the proposed 
techniques and compares them with related work. 
Section 7 concludes the paper.

2 Web service flows
2.1 Web service architecture

A Web service is a building block in the sense that 
multiple existing services can be used to compose a 
new service. Fig. 1 is an illustration of the Web service 
composition.

Each Web service is given an interface description in 
t e r m s  o f  W S D L ( We b  S e r v i c e  D e s c r i p t i o n  
Language).[5] WSDL is a format to describe external 
interfaces of Web services and it uses the XML tech-
nology as its concrete representation. It is essentially 
an XML document to represent the endpoint interface 
specification of the service; that is, it contains the nec-
essary information for customers to receive the ser-
vice. Further, it sometimes needs to combine more 
than one Web services into a new composite service 
because a provider may offer a particular service only. 
And thus a robust framework to realize such composi-
tion, a description of Service Orchestration in Fig. 1, 
is desirable.

A typical example of such a composed service is a composed service is a composed
travel agency. A travel agency has a variety of business 
partners such as airline carriers, hotels, rent-a-car 
agencies, and railroad companies. The agency receives 
requests from its customers to make their itineraries 
with all the necessary reservations of hotels, flights 
etc. When regarding each of its business partner as an 

independent Web service provider that has a definite 
WSDL for the accesses from the outside, the travel 
agency actually implements a Web service flow. The 
agency thus collaborates with its partner Web service 
providers to offer a composed service to its customers.composed service to its customers.composed

Since each service provider is a self-contained 
autonomous software system, the composition needs 
an explicit notion of both control and data flow 
between Web services that faithfully reflects the causal 
structure of the component services. Although the ser-
vice composition should be done in a flexible manner, 
it is not an easy task to construct correct flow descrip-
tions. This is because service composition is basically 
a distributed collaboration of many autonomous ser-
vice providers working concurrently. The flow 
descriptions may thus show faulty behaviors such as 
deadlocks and violations of application requirements. 
Such buggy flow descriptions are obviously undesir-
able, so verifying the Web service flow description 
prior to its execution becomes essential.[23][24]

2.2 BPEL
BPEL4WS (Business Process Execution Language 

for Web Service), or BPEL for short, was proposed as 
a standard language for describing Web service flows 
that composed of more than one Web services. BPEL 
v1.0 was released in July 2002 as a language to super-
sede both WSFL [19] and XLANG.[32] BPEL 
v1.1,[7] considered in this paper, is currently being 
standardized at OASIS as WS-BPEL.

BPEL is a behavioral extension of WSDL (Web 
Service Description Language).[5] WSDL is basically 
an interface description language for Web service pro-
viders, which describes information that their clients 
are allowed to access. The client invokes a Web ser-
vice provider by using WSDL. The invocation is one-
shot, which means that WSDL does not describe the 
global states of the providers.

On the other hand, BPEL is a language for express-
ing behavioral compositions of Web service providers. 
It can express a causal relationship between multiple 
invocations by means of control and data flow links. 
BPEL employs a distributed concurrent computation 
model with variables.

Fig. 2 illustrates some of the primary language ele-
ments in BPEL. The main construct of the Web service 
flow is Process, which is a net-based concurrent 
description connecting activities with control links. 
Some of the primitive activities, in turn, include send-
ing or receiving messages to or from external Web ser-
vice providers. Each Web service provider can be seen 
as a Port instance of a particular Port Type, which 
has appropriate WSDL descriptions as its sub-ele-
ments. A Partner Link specifies which activity is 

Fig. 1     Web service flows.



Lightweight formal analysis of Web service flows 59

linked to a particular Web service provider of the 
Port.

Fig. 3 is an example of a BPEL description that 
illustrates a Process internal. The example indicates 
that BPEL represents concurrency by means of a flow
activity in addition to the sequential executions of 
basic activities. It first waits for an invocation request 
from the outside with the receive activity, and then 
initiates three concurrent threads through the flow. 
After the concurrent executions terminate, the control 
goes to the reply activity which returns a value to the 
original outside initiator as the result of the computa-
tion process. The schematic diagram also has solid 
lines (links) to indicate control dependencies 
between some of the basic activities, and they cross 
the boundary of the concurrent activities.

A program in BPEL actually consists of two sec-
tions: <definitions> and <process>. Example 
descriptions are found in Fig. 4, which is a fragment of 
the BPEL program of the example in Fig. 3.

As its full name suggests, BPEL is characterized as 
a business process description language in the Web 
service architecture, and it shares many features with 
work-flow schema languages,[36][37] because the 
concurrent aspect of BPEL (flow activity) is inherited 
from WSFL.[19] WSFL, in turn, borrows its core ideas 
from PM-Graph,[17][18] which is a model of work-
flow systems.

2.3 Formal analysis of behavior
This paper focuses on modeling and analysis of 

behavioral specifications of BPEL programs. In gen-
eral, a behavioral specification focuses on the control 
aspects of the system, and thus, how the computation 
proceeds is the main concern.

As shown in Fig. 2, a BPEL process exchanges mes-
sages with the partner Web service providers, and each 
message conforms to a particular WSDL message type 
defined in the <definitions> section. On the other 
hand, the <process> section defines how the message 
data are manipulated and how the control flow pro-

ceeds. The behavioral specification comes from the 
<process> section.

The correctness of BPEL programs is checked in 
terms of their message-type conformance and behav-
ioral specification. The message-type conformance is a 
check to see whether the type of message conforms 
with the message type expected by the port through 
which the message is sent or received. This check can 
be considered to be a variant of type-checking[22] 
sometimes found in strongly-typed programming lan-
guages. This paper will not elaborate on this aspect.

Alternatively, this paper focuses on the behavioral 
aspect of the system because the behavioral specifica-
tion plays a crucial role in distributed concurrent sys-
tems such as BPEL programs. Concurrent systems 
may have potential deadlocks. Such faulty behavior is 
not easy to uncover once a system starts executing 
because the error may occur non-deterministically. 
That is, the system exhibits such faulty behavior only 
in some situations and appears to execute correctly in 
most cases.

This paper adapts the automata-theoretic techniques 
for the behavioral analysis of BPEL programs. The 
control flow is extracted from the BPEL programs to 
construct a finite-state automaton which is then used 
to analyze how the control proceeds. This is a standard 
approach for theoretical and practical modeling and 
analysis of behavioral specifications of concurrent sys-
tems. This paper shows it to be useful for the behav-
ioral analysis of BPEL programs.

Formal analyses are expected to show the absence of 
bugs, and they rely on complete but costly methods 
such as the interactive theorem provers. Moreover, 
since a sufficiently expressive language is not decid-
able, a sound and complete analysis would be difficult 
without much human intervention.

Consequently, lightweight formal methods [14] have 
been recognized as alternatives to the conventional 
heavyweight approaches. The primary concern here is 
not to show the absence of bugs, but to detect faulty 

Fig. 3     Purchase order.
Fig. 2     Primary entities in BPEL.
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[13] is a tool to exhaust an enormous state space to 
find bugs more reliably than the conventional testing 
techniques, yet is not a tool that can prove that a 
description is bug-free. This paper has studied to what 
degrees the behavioral analysis of BPEL can be 
achieved with a model checker combined with a light-
weight abstraction technique.weight abstraction technique.weight

3 Analysis of BPEL behavior
3.1 BPEL behavioral specification
3.1.1 BPEL activities

The basic computation elements in BPEL are activi-
ties to represent atomic actions. Table 1 presents a list 
of BPEL activities. Although the list does not cover all 
the BPEL activities defined in the standard docu-
ment,[7] they are good for studying the essential fea-
tures  of  a  behavioral  specif icat ion in  BPEL.  
Particularly, they cover the features necessary for ana-
lyzing the four cases in the document.[7] The details 
will be discussed in Section 5.2.

BPEL provides three activities to exchange informa-
tion with outside Web service providers: invoke, 
receive, and reply.

The invoke activity represents an atomic action for 
invoking a Web service provider via a specific part-
ner link.
<invoke partnerLink="assessor"

portType="riskAssessmentPT"
operation="check"
inputVariable="request"
outputVariable="risk">

The receive and reply have similar attributes.
In addition to the above primitive activities, BPEL 

provides an assign activity for accessing variables. It 
also has activities to implement control flows such as 
sequence (sequential executions), switch (branch on 
conditions), while (repetitions), and flow (concur-
rency). The flow implements a flow graph that can 
represent concurrency. This graph displays the activi-

Table 1 BPEL activities.

activity function

invoke
receive
reply

invoking a service outside
waiting for a request from outside
generating the response

assign assigning a value to a variable
sequence
switch
while
flow

sequential execution
multi-way branching
loop
concurrent execution

scope serializability

Fig. 4     Purchase order (a fragment).

behavior as early as possible with the automatic analy-
sis tool. The methods are lightweight in that a partial lightweight in that a partial lightweight
rather than a complete analysis is conducted. Although 
there are some opponents who argues that the light-
weight approach is no more accurate than the conven-
tional testing, it seems practical from the viewpoint of 
software engineering. For instance, a model checker 
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ties as nodes and the links as edges representing con-
trol flows.

BPEL introduces a lexical context by a scope activ-
ity. The lexical context defines the effective scope of 
variables and various handlers such as exception. 
However, in view of determining the control flows, a 
serializable scope is important. A scope activity can 
have a serializable attribute, which specifies that 
multiple concurrent accesses to the shared resources 
are serialized. The semantics are very similar to the 
standard isolation level serializable used in the data-
base transaction.[7] It is defined in terms of the strict 
two-phase locking protocol.[35]

3.1.2 Concurrency in BPEL
Concurrency in BPEL is introduced by the flow 

activity. The idea is based on the net-oriented flow lan-
guage adapted by WSFL.[19] BPEL inherits concur-
rency primitives from WSFL.

The specification document [7] does not fully pres-
ent the operational semantics of the flow activity. This 
paper adapts ones from the book.[18] The semantics 
are based on the PM-flow [17] that has been proposed 
as a work-flow schema language. Moreover, they are 
given in a form similar to those of CPN (Colored Petri 
Nets).[15]

Naively, the operational semantics of BPEL are 
essentially rules to select activities to fire. An activity 
may have outgoing links connected to other activities. 
When the source activity completes its execution, each 
link is assigned a Boolean value, and is propagated 
downward to the connected activity. The activity is 
fired when all the values of the incoming links are def-
inite and satisfy the join condition of the destination 
activity.

The Purchase Order in Fig. 3 is a simple example 
of using a flow activity in that the naive semantics can 
account for the concurrent execution of the three 
sequence activities.

The two of the activities in the middle part,  
invoke(22) and receive(23), have an outgoing 
link connected to another activity, which is indicated 
schematically with the solid lines. Once the execution 
control enters into the flow, the three sequence
activities can execute concurrently. However, 
invoke(12) waits for its incoming link to be enabled, 
the status of which is controlled by the outgoing link 
from invoke(22). Thus, two of the concurrently exe-
cuting threads are joined at the point of the activity 
invoke(12). The flow terminates after all the con-
current executions terminate, and the control goes to 
the reply activity.

Fig. 5 is another example (Loan Approval) from 
the standard document.[7] The execution is more com-

plicated than in the case of Purchase Order. Its 
BPEL source program is found in Appendix A.1 in the 
Appendix.

The flow has five atomic activities that are executed 
concurrently and have causal dependencies specified 
with the links. The receive activity has two outgo-
ing control links, each of which is supposed to be set 
true depending on other variables. Fig. 5 uses vari-
ables such as p11 and p12 to denote the condition 
schematically. Invoke(1) on the figure’s left has two 
links and their values determined by p21 and p22. 
Two variables are introduced because the two links are 
distinct in the BPEL source program text, even though 
they are logically related.

Once the execution control is passed to the flow
activity, its internal activities start executing concur-
rently. The receive activity can be fired since no con-
dition is imposed on it. It sets the values of its outgo-
ing links depending on the values of certain variables. 
Although Fig. 5 compactly illustrates that the condi-
tions are p11 and p12, they actually refer to the tran-
sitionCondition attribute of the following code 
fragment; the former concerns p11 and the latter does 
p12.

<source linkName="receive-to-assess"
transitionCondition=

 "getVariableData(°request°,°amount°)
&lt; 10000"/>

<source linkName="receive-to-approval"
transitionCondition=

 "getVariableData(°request°,°amount°)
&ge; 10000"/>

When p11 is true, invoke(1) is chosen to fire. 
Another variable p12 is supposed to be false when 

Fig. 5     Loan approval.



Progress in Informatics, No. 2, pp. 57-76, (2005)62

p11 is true because the transitionCondition val-
ues are so specified.

Similarly, the values of two outgoing links of 
invoke(1) are determined. When p21 becomes true, 
assign is selected, after which the control finally 
goes to the reply activity at the bottom of the figure.

3.1.3 Dead-Path Elimination
The operational semantics of the flow are somewhat 

complicated by the need for DPE (Dead-Path 
Elimination). DPE provides a means to handle cases 
where an activity should be fired even when not all of 
its incoming links have been assigned values. Fig. 6, 
excerpted from the book,[18] illustrates why DPE is 
needed.

In Fig. 6, the result p of the activity A is true and the 
r of the activity B is false. Since r is false, activity C
will never be executed. Therefore, the join condition 
of activity D will also never be evaluated. Activity D, 
however, can in principle be executed because its join 
condition is OR and one of its input control link p is 
already known to be true. In a word, activity D can be 
executed logically, but its join condition will never be 
evaluated in the naive semantics.

DPE provides a means to resolve such pseudo faulty 
situations. It starts executing when a join condition 
becomes false, or when there is an activity having a 
single input link with false only. DPE traverses the 
flow model downward to eliminate the pseudo-faulty 
situations by forcing the related join condition to be 
evaluated. It uses false values when it needs a logical 
calculation in the evaluation process. DPE terminates 
the propagation process when it reaches either an 
activity having a join condition or the ultimate end.

The example in Fig. 5 requires DPE if it is to be exe-
cuted in the expected manner. When both p12 and p22
turn out to be false, the join condition of invoke(2)
activity becomes false and the activity is never exe-
cuted. Consequently, the join condition of the reply
activity, actually a logical or ( ) of the two incoming 
links, is not evaluated because one of them comes 
from invoke(2). On the other hand, since the outgo-

ing link from the assign activity becomes true, the 
reply activity is logically executable. DPE can force 
the execution of the reply activity just as expected.

3.2 Formal analysis and abstraction
In general, abstraction is essential for the analysis of 

the behavioral specification. Since the analysis is done 
in an environment that does not have actual service 
providers, no concrete value or message is available. 
The actual values coming from the external service 
provider may have much effect on the control flow of 
the BPEL program to be analyzed.

Although the analysis should be performed without 
knowing the actual values, all the values that might be 
used should be checked. This is, however, not feasible 
in most cases because the number of combinations of 
all potential values would be huge.

As explained for the example in Fig. 5, the transi-
tionCondition attribute in the <source> tag should 
be appropriately evaluated in order to have the 
expected executions. The example condition involves a 
value stored in the request  variable, which is 
assigned in the receive activity by using a message 
from an external service provider. Since the actual 
value of the request variable is not determined at the 
time the analysis is conducted, it is best to say that the 
transitionCondition would be either true or false
with equal probability. In other words, the link takes 
either value in a non-deterministic manner.

If such non-determinism is applied to all the tran-
sitionConditions independently, the two outgoing 
links of the receive activity can be either true or 
false, and both can be true at the same time in some 
cases. For example, in Fig. 5, both p11 and p12 may 
be true at the same time, which is not what is meant in 
the original BPEL application.

From the viewpoint of the formal analysis, it results 
in a false negative situation such that the detected 
faulty behavior is not an aspect of the original descrip-
tion, but one due to a poor abstraction (or lack of 
abstraction). Hence, this leads to the pseudo faulty sit-
uation. It is, however, not always easy to make a 
proper abstraction of BPEL in which no false negative
appears. Consequently, false negatives are treated as a 
matter of degree. Regarding the example here, in order 
for the flow to be analyzed to a good approximation, 
the two outgoing links should take distinct values. 
Namely, when p11 is true, p12 should be false.

The approach described in the paper is to introduce 
auxiliary predicate variables; a predicate variable for 
each conditional expression. The value of the predicate 
variable is dependent on the BPEL variables since they 
constitute the concrete expressions in the BPEL pro-
gram text.

Fig. 6     Dead-Path Elimination.
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As in Fig. 5, two predicate variables, pred1 and 
pred2, are introduced to represent the conditions on 
the two outgoing links from the receive activity as 
seen from the original BPEL source program.

pred1  request.amount <  10000
pred2  pred2  pred request.amount >= 10000

where request.amount is an abbreviation of

getVariableData(°request°,°amount°)

and the binary operators are used instead of the origi-
nal XML expression for simplicity of the presenta-
tion;it uses < and >= instead of &lt: and &ge:. The 
two satisfy the following logical relationship.

pred2  =  ¬  pred2  =  ¬  pred pred1

Furthermore, although the value of the BPEL vari-
able request is assigned in the receive activity, the 
actual value is not determined at the time of analysis. 
Thus, the receive activity should be accompanied 
with an auxiliary assignment that pred1 takes either 
true or false in a non-deterministic manner.

This discussion of the non-determinism of the con-
dition is applicable to other activities involving the 
conditional expressions (switch and while).

4 Modeling and analysis with EFA
This paper has adapted automata-theoretic tech-

niques to the behavioral analysis of BPEL programs. 
The intermediate representation has two purposes:(1) 
to formally define the behavioral specification of 
BPEL programs and (2) to clearly state the verification 
problem at hand.

4.1 Modeling with EFA
4.1.1 Extended Finite-state Automaton

The behavioral specification is essentially an 
abstract view of the system in terms of the control 
flow, and thus an automaton is a good tool for both the 
representation and analysis. BPEL, however, has lan-
guage constructs to express data flow aspects:some 
activities exchange messages with the partner service 
providers via partner links, and the incoming messages 
are stored in the variables. In addition, variables and 
links may affect the control flow: variables may 
appear in expressions of the condition in switch and 
while, and may also be used in the condition to fire 
particular links in the source element. Taking into 
account some notion of variables is essential and EFA 
would be a basis for the representation.

F o r m a l l y,  a n  E FA ( E x t e n d e d  F i n i t e - s t a t e  

Automaton) M is a 7-tuple: M is a 7-tuple: M M = M = M Q, Q, Q S,S,S V, V, V r, d, d, d q0, F .
Q : Finite Set of Location PointsQ : Finite Set of Location PointsQ
S : Alphabet including Symbols belowS : Alphabet including Symbols belowS

P ! X : Output Action Designator
P ? X : Input Action Designator
 : Internal Action Designator

V : Finite Set of VariablesV : Finite Set of VariablesV
r : Variable Map r : Variable Map r Q  2V 2V 2
d : Transition Relation d : Transition Relation d Q × Q × Q A × A × A Q

A : Transition Action A : Transition Action A S × S × S q × q × q G
q : Variable Update Functionsq : Variable Update Functionsq
G : Guard ConditionG : Guard ConditionG

q0 Q : Initial LocationQ : Initial LocationQ
F Q : Finite Set of Final LocationsQ : Finite Set of Final LocationsQ

An EFA M is basically a finite state automaton, but M is basically a finite state automaton, but M
has variables V which are assigned by the update V which are assigned by the update V
functions (q ) and used in the expressions for the input/
output action designators (S ) and the guard conditions 
(G ). The set of variables at a particular location point 
is obtained with the variable map (r).

The transition relation (d ) is a triple relating a 
source and a target location point (Q ) with a transition 
action (A ), which is also a triple consisting of an 
alphabet (S ), a variable updating function (q ) and a 
guard (G ). The operational meaning of a transition 
relation is that the current location of the source is 
changed to the target when the specified action is 
taken if the accompanied guard condition is true. The 
variable updating function is executed during the 
course of the transition, which assigns a new value to 
the specified variable in the target location point. The 
variable updating function is actually a set of simulta-
neous assignments.

Each alphabet in S may take one of the three forms. S may take one of the three forms. S
The two forms, P ! X and P ? X, are in relation to 
communications with the external environment or 
automaton, while  is an internal action. Specifically P 
? X and P ! X are respectively input and output action 
designators. Operationally, the input action is receiv-
ing a message coming from P and setting X to the 
value in the message. The output action is sending a 
message with the value of X to the communication 
channel P.

Fig. 7 diagrammatically represents a fragment of 
EFA focusing on a particular transition. This example 
shows that the transition of the interest is the one from 

Fig. 7     Diagram representation.
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the location point qi to qi+1. The label attached to the 
transition arc refers to a triple consisting of an alpha-
bet symbol (alpha), a variable assignment(V:=X), and 
a guard condition (C). Underbar (_) is used when some 
of the components in the triple are irrelevant.

An asynchronous product of two EFAs is defined in 
a standard way. Given two EFAs M1M1M  and M2M2M , the asyn-
chronous product is another EFA

M = M = M Q, Q, Q S, S, S V, V, V r, d, d, d q0, F  where
Q : the Cartesian product Q : the Cartesian product Q Q1Q1Q ×Q2Q2Q
S : the union set S : the union set S S1S1S S2S2S
V : the union set V : the union set V V1V1V V2V2V
r : the variable map r : the variable map r Q1Q1Q  × Q2Q2Q  2V1V1V V2V2V

d : the set of tuples ((d : the set of tuples ((d q1, q2), a, (p, (p, ( 1, p2)) such that
 (qi, a, pi) didid  and qjqjq  = j = j pjpjp  and j and j i j

q0 : the tuple (q10, q20)
F : the subset of those elements of F : the subset of those elements of F Q that satisfyQ that satisfyQ

the condition (q1, q2) F and F and F qi QiQiQ

As usual, two concurrent EFAs are merged by taking 
their asynchronous product. It is the same as adapting 
the interleaving semantics of concurrency.

4.1.2 EFA for BPEL
A customized version of EFA, MBPELMBPELM , is described 

below to take into account of the features specific to 
BPEL language constructs.

First, the communication channels appearing in the 
input / output designators are used to represent part-
nerLinks connected to the external service providers.

Second, the variables V are partitioned into three V are partitioned into three V
non-overlapping sets.

V : Finite Set of Variables. V : Finite Set of Variables. V VBVBV  + VLVLV  + L + L VPVPV
VBVBV  : Finite Set of BPEL Variables
VLVLV  : Finite Set of Link VariablesL : Finite Set of Link VariablesL
VPVPV  : Finite Set of Predicate Variables

rBrBr  : Q  2VBVBV

GPLGPLG  : Guard ConditionPL : Guard ConditionPL

VBVBV  denotes a set of variables appearing explicitly in 
the source BPEL program. These variables are 
extracted from the <variables> tag in the <pro-
cess> description. An additional variable map rBrBr  may 
be used to obtain a set of BPEL variables at a particu-
lar location point.

VLVLV  is a set of link variables, each of which corre-
sponds to a <link> introduced in the <links> tag in 
the flow activity. The <link> specifies the control 
flow among the concurrently executing activities in the 
flow activity. Each link can be regarded as a Boolean 
variable. It is set true when the control flow exists.

VPVPV  is a set of Boolean-valued predicate variables, 
but does not appear explicitly in the BPEL program. 
Each variable corresponds to a predicate that repre-

sents the conditional expression appearing in a 
switch ,  while ,  or transitionCondition  of 
<source>. For the example in Section 3.2, pred1 and 
pred2 are the predicate variables that are the abstrac-
tions for the conditional expressions.

So far, the domain of the data, of which the element 
value is assigned to a variable, has not been made 
explicit. The variables in VPVPV  are Boolean-valued, and 
so are those in VLVLV  if the naive semantics are adapted. 
The domain of the link variables (VLVLV ) should be 
extended for proper handling of DPE, which will be 
discussed in Section 5.1.3.

The BPEL variables in VBVBV  are application-specific 
and may have values in an infinite domain. Note that it 
is not feasible for the analysis to account for all the 
values when the domain is huge or infinite.

Thus, it is assumed in this paper that a BPEL vari-
able in VBVBV  takes on a value from a finite set consisting 
of only two elements, definite and undefined. This is 
equivalent to introducing symbolic abstractions.[6] 
Given a constant of interest c, the abstraction function 
is chosen so that

absc (x) =
definite if x = c,
undefined otherwise.

The guard condition is also customized to be GPL, 
which is actually a predicate involving variables only 
from either VLVLV  or VPVPV  , none from VBVBV . Since they are 
essentially Boolean-valued, the guard condition 
expression g is either a simple propositional expres-
sion or the equality (or the inequality) of two oper-
ands. Therefore the EFA for BPEL in this paper is 
data-independent which is known to have nice proper-
ties for verifications.[39]

4.2 Verifications
The analysis is based on a state explosion approach 

for verifying the behavioral specification of BPEL 
programs expressed in terms of the EFAs. A number 
of definitions are needed to explain the verification 
problem at hand.

The informal notion of how a BPEL program execu-
tion proceeds can be captured by considering a run. A 
run is an infinite sequence of location points that an 
EFA generates and is represented as

s w  =  w  =  w q0q1q2. . .

where qi Q. The stutter extension rule [13] is Q. The stutter extension rule [13] is Q
assumed to represent a finite run as an infinite one. 
And an accepting run is defined in a standard way as

qfqfq   •  f  •  f qfqfq   f  f   F  F  F   qfqfq   f  f swsws .
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It is a successful execution path of the BPEL program.
The first verification problem concerns reachability

and is often referred to as a check for deadlocks. It 
checks whether or not a BPEL program will stop in an 
accidental manner. Specifically, the check is whether 
there is a run that is not an accepting one.

The second verification problem is related to proper-
ties expressed in terms of LTL (Linear Temporal 
Logic), and the standard model checking algorithm 
can be used in the analysis. The LTL formula f can f can f
have the temporal operators [] (always), <> (eventu-
ally), and U (strong until), in addition to the standard 
logical connectives ( , , ¬, ). The semantics of the 
temporal operator are given in terms of the run in a 
standard manner.

|= []f1f1f   s w |= w |= w f1f1f
|= <>f<>f<> 1f1f   k 0, s k |= k |= k f1f1f
|= f1f1f U f2f2f   k 0 • s k |= k |= k f2f2f  and

0 jj k • k • k s j |= j |= j f1f1f

Here, a finite prefix of a run of the length k is repre-
sented as

s k = k = k q0q1q2. . .qk-1.

The LTL formula takes an atomic proposition P, 
which is a boolean expression formed by using infor-
mation at each location point. The expression may 
refer to BPEL variables since the EFA has a variable 
map rB in its definition making it possible to obtain 
BPEL variables at each location point. The properties 
that can be expressed, however, concern only reach-
ability of the data tokens because the data domain is 
abstracted.

Another property of interest is to specify which 
location point the execution goes through. This can be 
expressed by using an atomic proposition asking 
whether a run contains a specific qi defined for each 
location point.

A simple LTL formula for a process starting with 
receive and eventually reaching reply can be writ-
ten as below

[]((receive) -> <>(reply)),

which the examples in Fig. 3 and 5 satisfy.

4.3 BPEL to EFA
This section describes a scheme for translating from 

a BPEL activity to an EFA fragment. The diagram-
matic representation shown in Fig. 7 is used since it is 
more intuitive than the presentation in text.

4.3.1 Atomic activities
The translations of atomic activities are mostly 

straight forward. Since an EFA already has notions of 
send-receive channel communications and variables, 
activities involving communications with external ser-
vice providers (reply, receive, and invoke) and 
variable assignments (assign) are easily translated 
into an appropriate EFA fragment.

• receive
<receive partnerLink=L portType=T

operation=Op variable=V>

The receive activity is essentially for receiving 
an appropriate message from a communication 
channel. The channel is specified by the partner-
Link, and the message is constructed from the 
o p e r a t i o n  a n d  v a r i a b l e  a s  O p ( V ) .  
Operationally, the transition is enabled when a 
message of the form Op(A) is transmitted through 
channel L, and the value A embedded in the mes-
sage is assigned to the variable V.

• reply
<reply partnerLink=L portType=T

operation=Op variable=V>

The reply activity is interpreted similarly. The 
transition is enabled when a message Op(V) is sent 
through L.

• invoke
<invoke partnerLink=L portType=T

operation=Op inputVariable=IV
outputVariable=OV>

The invoke activity takes two forms; the first one 
shown above is similar to a remote-procedure call. 
Since it is meant for a synchronous communica-
tions and is roughly said to be a combination of a 
message send and a receive. The EFA fragment 



Progress in Informatics, No. 2, pp. 57-76, (2005)66

consists of two consecutive transitions. The transi-
tion corresponding to the receive expects a mes-
sage of the form Return(X).
The constant symbol Return denotes that the 
incoming message contains a return value of the 
invocation.
The second invoke activity does not use output-
Variable in a one-way communication, and is 
basically the same as reply.

• assign
<assign>
 <copy>
  <from variable=X/>
  <to variable=V/>
 </copy>
</assign>

The assign activity represents single or multiple 
variable assignments. It has several variations as a 
form of the <from> tag such as a variable derefer-
ence, an expression, or a literal value.
The <to> tag may refer to a partnerLink, which 
is considered as a message send, and thus the 
translation is similar to the case of reply.

4.3.2 Control aspects
Complex activities forming control sequences may 

make use of the guard condition of an EFA.

• switch
<switch>
 <case condition=C1> ... </case>
 <case condition=C2> ... </case>
 <otherwise> ... </otherwise>
</switch>

The switch activity is a multi-way conditional 
branching control and has a otherwise branch. 
Actually, otherwise should be an appropriate 
expression such as ¬ C1  ¬ C2.

• while
<while condition=C>
...
</while>

The while activity introduces an iteration and 
requires a loop structure to represent the repetition.

4.3.3 Flow
The flow activity’s concurrent computation aspect 

should be taken into account in the translation. 
Basically, all the direct sub-activities enclosed in a 
<flow> tag are considered as concurrently executing 
entities. Each sub-activity becomes an EFA, and they 
all are composed by taking their asynchronous prod-
uct, which means that the method used here adapts the 
interleaving semantics of the concurrency. It, however, 
requires synchronization machinery to account for the 
semantics in that the flow activity terminates when all 
its enclosing sub-activities terminate.

First, the top <flow> becomes a part of a main EFA 
and each sub-activity appearing directly in the <flow>
is translated into a sub EFA. The main EFA transfers 
execution control to all the concurrently executing sub
EFAs and waits for their completions. Second, the 
EFAs are composed into one EFA by taking the asyn-
chronous product. Since the asynchronous product of 
automata is a standard operation, a sketch of translat-
ing the <flow> and its sub-activities is shown below.

For example, in Purchase Order (Fig. 3), the flow 
activity has three direct sub-activities, each of which 
becomes a sub EFA automaton. The flow is also a 
component of its enclosing <sequence> together with 
a <receive> and a <reply> as a kind of brother sub-
sidiaries (Fig.  4).  These three subsidiaries of 
<sequence> becomes the main EFA.

• BPEL source fragment
<flow>
 < -- sub-activity-1 -- >
 ...
 < -- sub-activity-N -- >
</flow>

• a main EFA fragment
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• a sub EFA fragment

• Auxiliary control variables
In order for both the main and sub EFA compo-
nents to synchronize their executions, auxiliary 
control variables must be introduced.
For each sub EFA, two boolean variables startX
and endX are defined. The variable startX is set 
true when the execution control is entered into the 
flow, which is described in the main EFA automa-
ton.
Each sub EFA automaton has an adequate guard 
condition to refer to startX and waits for it to 
become true. The sub EFA starts executing when 
startX is set true.
Upon its completion, each sub EFA sets endX true. 
The main ensures that all the sub-activities are cer-
tainly terminated by using the appropriate guard 
condition on endXs, i.e. logical-and of all endXs.

Furthermore, an atomic activity enclosed in a flow
may be synchronized in regard to its incoming links. 
An activity may also have <source> tags with the 
transitionCondition. For simplicity, the example 
below shows the case without DPE.

• synchronization of the incoming links
< -- activity -- >
  <target linkName=L1>
  <target linkName=L2>
</ -- activity -- >

The enclosing activity < -- activity -- > may 
have a particular synchronization condition as its 
joinCondition attribute. The condition is inter-
preted as a logical-or when the attribute is not 
explicitly specified. The EFA fragment above 
shows this default case of the logical-or (L1 L2).

• <source> tags with transitionCondition
(abbreviated to tC)
< -- activity -- >
  <source linkName=L1 tC=P1>
  <source linkName=L2 tC=P2>
</ -- activity -- >

The <source> tag sets its attribute linkName to 
true when tC is true, and false otherwise. This 
means that the linkName is always set to the value 
of tC, and thus everything can be taken care of 
with the variable update function.

Although the EFA with an appropriately chosen 
domain of VPVPV  can deal with DPE, its EFA fragment 
would be lengthy and not compact enough to show 
here. The discussion on how DPE is handled is post-
poned to Section 5.1.3.

4.3.4 Example translation
Below is an example translation of a BPEL activity. 

The receive activity in Fig. 5 may be represented as

where pred1 and pred2 are predicate variables as 
introduced to denote the transition conditions in an 
appropriate manner (see Section 3.2).

5 Analysis with SPIN
5.1 EFA to Promela

This section describes the method of using the SPIN 
model checker for the representation of the EFA 
model and the analysis. The basic idea is simply to 
translate an EFA into a Promela source program, the 
specification language for SPIN. Promela adapts the 
computational model of channel communicating 
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finite-state automata with variables.

5.1.1 Translation of basic features
The translation is mostly straight-forward since 

Promela is expressive enough to represent control 
structures, channel communications, and variables as 
well as automata. The translation is achieved as fol-
lows.

• An EFA automaton M becomes a Promela process.M becomes a Promela process.M

• The communication channel P appearing in the 
input or output action designator is translated into 
a Promela channel. Since P denotes a partner-
Link in BPEL, the name of the Promela channel 
name  is taken from the name  attribute. The 
Promela channel declaration takes into account the 
type of message exchanged.

chan name = [0] of {mtype, short};

where mtype is an enumeration type describing the 
operation and the second argument carries the 
data value, actually a data token.

• The variable V is translated into a (global) vari-V is translated into a (global) vari-V
able in Promela. Specifically, predicate variables 
VPVPV  are boolean Promela variables initialized as 
false.

bool name = false;

Link variables VLVLV  are also basically boolean, but a 
slightly different encoding is used in order to deal 
with DPE. Section 5.1.3 describes in detail how 
DPE is handled.

• Encoding the transition relation d is the most inter-d is the most inter-d
esting part of the translation.

- The control aspect is directly encoded with the 
Promela control language constructs:an uncondi-
tional transition is represented as a Promela 
sequencing operator (;).

action1 ;
action2 ;
...

Conditional branching in EFA, making use of the 
guard condition G, turns into the following.

if
  ::cond1->...

  ::cond2->...
  ...
  ::else->...
fi;

Repetitions are easy to represent in Promela since 
the language provides the loop construct.

do
 :: condition ->...
 :: else -> break
od;

- Input or output action designators are Promela 
channel operations. Both P ? X and P ! X are 
translated into Promela counterparts. The chan-
nel P is defined as a Promela channel as dis-
cussed above.

channelName ? Op(variableName);

and

channelName ! Op(variableName);

- The variable update function q denotes a set of q denotes a set of q
simultaneous assignments of multiple variables. 
Atomicity is introduced in its Promela transla-
tion.

atomic{

     variableName = newValue ;
...
}

Two more remarks would be appropriate here. First, 
in regard to the EFA representation of the flow activi-
ties, Section 4.3.3 indicated that the concurrency 
aspects are understood in terms of interleaving seman-
tics and that the component EFA automata are merged 
by the asynchronous product operation. However, the 

Fig. 8     Tool architecture.
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product operation is not needed to perform at the EFA 
level. Each component automaton is independently 
translated into a Promela process description, and the 
SPIN tool is responsible for the merging.

Second, in order to analyze the behavior, the 
Promela model should be closed. A closed model has 
Promela processes to simulate the environment in 
which the target BPEL process is supposed to execute. 
Actually the environment contains all the service pro-
viders with which the BPEL process has communica-
tion via the appropriate partner links.

  However, defining the environment is not as diffi-
cult as it seems to be. When the partner BPEL process 
source program is available, the environment model 
for the analysis can be obtained by means of the 
method described in this paper. When it is not avail-
able, the environment Promela process is such that it is 
only concerned with the externally visible sequence of 
exchanged messages.

5.1.2 Abstraction and static analysis
As discussed in Section 3.2, abstraction is necessary 

to obtain an EFA from a BPEL program. Static analy-
sis is needed in order to introduce appropriate predi-
cate variables (VPVPV  ). As briefly presented by using the 
example in Section 3.2, the analysis is basically a 
define-use chain (du-chain) of variables having effects 
on the control flow. Furthermore, a single predicate 
variable is introduced for each conditional expression. 
The proposed analysis tool has four steps as shown in 
Fig. 8: Parsing, Static Analysis, EFA Synthesis and 
Translation into Promela.

Although the example in Fig. 5 is simple, the trans-
lation of the receive activity might be illustrative. It 
requires two predicate variables to be logically related. 
The fragment relevant to the discussion here is shown 
below. It uses abbreviations such as < and >= instead 
of &lt: and &ge:.

1: <receive partnerLink="customer"
  operation="request"
  variable="request">
2: <source linkName="receive-to-assess"
  tC="request.amount < 10000"/>
3: <source linkName="receive-to-approval"
  tC="request.amount >=10000"/>
  </receive>

The Promela code fragment looks like,

Customer? Request(request);
if::pred1 = true::pred1 = false fi;
pred2 = ! pred1;
receiveToAssess = pred1;

receiveToApproval = pred2;

The variable pred1 denotes the expression

request.amount < 10000,

and the variable pred2 is chosen so as to correspond 
to

request.amount >= 10000.

Both predicate variables depend on the variable 
request.

The location where pred1 takes a new value (a def-
location)is at the receive activity (line number 1:) 
where it is assigned a new value. In addition, the loca-
tion where it is accessed (a use-location) is at the first 
<source> tag with "receive-to-assess" (at 2:), 
in which request.amount is accessed to determine 
the value of the link. The def-location of pred2 is the 
same as that of pred1 (at 1:), while its use-location is 
at the second <source> tag with "receive-to-
approval" (at 2:).

The next thing is to determine the value of pred1; 
note it is best to say that the variable pred1 would be 
either true or false because the request value is 
undefined at the time of analysis. A code fragment to 
set the variable pred1 either one non-deterministically 
is inserted at the def-location. Once the value of 
pred1 is determined, the search algorithm used in the 
model checking method can explore all the possible 
combinations.

A standard technique of static program analysis for 
the def-use chain can determine both the def-location 
and use-location. However, it requires additional 
machinery to conclude that the two predicate variables 
are related as

pred2 = ! pred1.

Currently, a simple syntactic pattern matching is 
employed to derive such logical relationships between 
the predicate variables. Such a syntactic matching 
method sacrifices the completeness but requires less 
computation to find appropriate relationships. If the 
BPEL program has expressions requiring more com-
plicated logical inference, the current method does not 
derive correct logical relationships and leaves all the 
predicate variables as if they are independent. This 
implies that such an analysis may have false negatives, 
which is the limitation of the lightweight analysis 
technique adapted in this paper.

Most of the translation of the last step is presented 
in Section 5.1.1, however, special care should be taken 
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in regard to DPE (Section 3.1.3) and the scope with 
the serializable flag true.

5.1.3 Handling DPE in Promela
In order to handle DPE properly, the logical values 

should be extended to have forced in the domain of 
VLVLV . The value is used as an indicator that DPE has 
activated.

The forced value is generated and flows downward forced value is generated and flows downward forced
exactly when the DPE starts. If the activity has a join 
condition, the forced value is interpreted as forced value is interpreted as forced false in the 
evaluation of the condition. If the activity does not 
have a join condition, the forced value ensures that the forced value ensures that the forced
activity is not executed but is instead flowed down 
along the output control link of the activity.

The Promela program first changes the forced value forced value forced
to be false and then the join condition is checked. The 
activity body is executed if the condition is satisfied, 
and is skipped otherwise. Furthermore, new link val-
ues are generated. The new values are determined by 
the tC in the <source> tag if the activity is executed 
normally, and are set as forced in the case of DPE. A forced in the case of DPE. A forced
Promela fragment might look like below.

 link IncomingLinks •
link = ((link == forced) forced) forced -> false : link);

if
:: joinCondition (IncomingLinks) ->skip
:: else -> goto SkipBody

fi;

activity body ;

 link OutgoingLinks • link = tC ;
goto EndOfActivity ;
SkipBody:

 link OutgoingLinks • link = forced ;
EndOfActivity: skip ;

5.1.4 Serializable scope
A serializable scope specifies that multiple concur-

rent accesses to the variables inside the scope are seri-
alized. An access sequence, i.e. a schedule, is gener-
ated with the strict two-phase locking protocol.[7] The 
following describes a simple scheme to use a mutex 
lock for the behavioral analysis of the BPEL program 
with a serializable scope.

The Promela program introduces a mutex for each 
such serializable scope for mutually exclusive accesses 
to the variables in the critical region. According to the 
standard coding style, the Promela code fragment to 
make accesses to shared variables looks like

atomic{mutex == free -> mutex = busy};

critical region to access variables
atomic{mutex = free}

Although it seems to work well with an adequate 
interpretation of the serializable scope, a simple exam-
ple resulting in a deadlock situation can be con-
structed. Actually, BPEL provides more than one 
means to express serialization of accesses to shared 
resources or shared variables. Thus a careless combi-
nation may lead to faulty behavior.

Fig. 9 is one such example of a BPEL program frag-
ment, which uses both the serializable scope and the 
link to control accesses. In the example, both assign
activities have write accesses to the variable shared. 
A deadlock appears when the second scope precedes 
the first one to obtain the mutex. The empty having an 
incoming link waits for it to be enabled. The link, 
however, is never enabled by the source in the first 
scope, which cannot be executed because the mutex is 
held by the second one.

Although it is not difficult to remove the deadlock, 
the example indicates the importance of behavioral 
analysis for a BPEL program using a serializable 
scope.

5.2 Four analysis cases
Table 2 summarizes the experiment to test for dead-

locks. The examples used in the experiment were 
taken from the standardization document.[7] In each 
case, an appropriate environment Promela description environment Promela description environment
was introduced as closed. The environment process 
was manually constructed so that it would not have 
much effects on the size of the state space.

Fig. 9    Deadlocked serializable scopes.
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Although its exact value is not significant, the size 
of the state space (#States) roughly shows how com-
plicated the analysis will be. As discussed in Section 
5, because the translation makes full use of the 
Promela language constructs, the state space is small 
in most example. The third example, Loan Approval, 
contains five activities to be executed concurrently, 
and its state space is the largest of the examples due to 
the interleaving semantics of the concurrency. The 
experiment used the latest version of the SPIN tool 
executed under Windows/XP operating on a recent 
laptop computer. All the analysis terminated almost 
instantaneously, which shows that the translated 
Promela program did not have any trouble from the 
viewpoint of runtime cost.

Purchase Order Purchase Order is the initial exam-
ple in Section 6.1 of the document [7] to illustrate the 
most basic structures and some of the fundamental 

concepts of the BPEL language. Fig. 3 schematically 
shows the overall structure of the control flow, and 
Fig. 4 shows a fragment of the BPEL program. 
Al though  the  example  has  th ree  concur ren t  
sequences, the control is simple: each of the three 
activities executes sequentially and there are only two 
s imple  uncondi t iona l  cont ro l  dependencies .  
Consequently, the state space is not large.

Shipping Service Shipping Service is an abstract 
process to describe a rudimentary shipping service. 
Fig. 10 shows an outline of the Shipping Service pro-
cess. It uses switch and while activities to imple-
ment adequate controls with variables such as “items-
Shipped” and “itemsTotal”. Since their values are not 
determined, abstraction is needed for the analysis. The 
technique with the predicate variable (or P-variable) is 
used so that the branch conditions are chosen non-
deterministically. All the possible conditional branch 
paths are explored.

Fig. 11 is an abstraction of Fig. 10. It introduced two 
predicate variables p1 and p2; p1 represented “ship-
Complete” and p2 stood for “items-Shipped < items 
Total”. Note that a code fragment describing the 
assignment of the predicate variable was inserted 
where the original variables related to the predicate 
variable were updated. In this particular example, the 
abstraction was successful, which meant that no false 
negatives were reported.

Loan Approval Loan Approval makes use of BPEL 
concurrency with the flow activity. As shown in Fig. 5 
and the Appendix, all the activities are contained 
within a flow activity, and their potentially concurrent 
behavior is staged according to the dependencies 
expressed by the corresponding links. The transition 
conditions attached to the source elements of the 
links use variables to decide which outgoing links 
should be activated. DPE is essential to propagate the 
information indicating that some of the activities are 
not fired and thus skipped. This example also requires 
that the variables affecting the evaluation of the transi-
tion conditions to be abstracted.

Some other interesting characteristics of the exam-
ple may be expressed as an LTL formula. The property 
that either assign or invoke, not both, is executed 
can be checked.

Table 2 Four cases.

Name BPEL Features States Analysis Methods

1
2
3
4

Purchase Order
Shipping Service
Loan Approval
Auction Service

variable, flow
switch, while
flow
multiple start

249
     21
3,516
     57

basic technique
P-Variables
P-Variables, DPE
basic technique

Fig. 11     Shipping service abstraction.

Fig. 10     Shipping service outline.
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[](receive ->
(<>assign && []!invoke(2)
|| <>invoke(2) && []!assign))

which reads such that the process starting with 
receive eventually reaches assign (or invoke(2)) 
and there is no invoke(2) (or assign) activity at all. 
The number of states to explore was 16,518;the SPIN 
model checker analyzed the model almost instanta-
neously.

Auction Service Auction Service is an example with 
multiple start activities in which more than one 
receive activities exist in a flow. It has no new fea-
ture to be analyzed. A manual translation, however, 
can reduce the size of the state space to about 25%. 
This is because a Promela fragment to represent the 
multiple starts can be better optimized than the general 
t r ans la t ion  scheme  d i scussed  in  th i s  paper.  
Unfortunately, mechanical optimization does not seem 
easy since it requires annotations to the BPEL pro-
gram to indicate the existence of multiple starts.

6 Discussions
6.1 EFA as a representation

This research adapted the automata-theoretic tech-
niques for the behavioral analysis of BPEL programs, 
and introduced an EFA as the intermediate representa-
tion. The EFA has two purposes: (1) to define the 
behavioral specification of BPEL programs and (2) to 
clarify the verification problem at hand.

Direct translation from a BPEL program to generate 
Promela source text might be possible in principle. 
Since Promela is very expressive and can even 
describe an automaton with an infinite state space, it 
may blur the definition of the behavioral specification 
of the BPEL application program. A precise intermedi-
ate formalization is necessary.

Furthermore, with the intermediate representation, 
the translation of the BPEL program into Promela pro-
gram can be staged. It is often the case that the cor-
rectness of the translation is hard to confirm. By using 
the staged approach, the gap between the source and 
target representation can be made as small as possible, 
which aids inspection of the translation process.

The behavioral specification is essentially an 
abstract view of the system in terms of the control 
flow, and thus a finite-state automaton is a good tool 
for both representation and analysis. BPEL, however, 
has variables, and their values have an effect on the 
behavioral specification. The automaton should be 
augmented with a notion of variables. Consequently, 
EFA was adapted as described in Section 4.1.  
Moreover, the EFA for BPEL is basically data-inde-
pendent,[39] and the definition is mostly borrowed 

from the formulation in.[30] Although a number of 
variables are involved, data-independent automaton 
can be finite, which is amenable to state explosion 
techniques. It is thus important to know that a behav-
ioral specification generated by a certain non-trivial 
subset of BPEL can be represented with a data-inde-
pendent automaton.

However, the work reported here is not unique in its 
adaptation of EFA. Using such a model would be a 
standard approach for the behavioral analysis. Fu et al. 
[11] use guarded automata for representing the behav-
ioral specification of BPEL. Their guarded automaton 
model seems essentially the same as the EFA in the 
present paper. Both can use variables, and the transi-
tion may have guard conditions. However, Fu et al. do 
not discuss the relationship between the guarded 
automata and other formalisms such as the data-inde-
pendent automaton. Wombacher et al. [38] use an 
Annotated DFA to represent the message interaction 
sequences extracted from a BPEL program. Their 
motivation is to use the automaton for service recovery 
queries, and the model is less expressive than EFA or 
guarded automata.

6.2 Lightweight method for abstraction
The abstraction in this paper refers to the technique 

using a static analysis of a BPEL program to extract 
the control structure of with an adequate level of preci-
sion.

The analysis of the Shipping Service and Loan 
Approval examples need abstractions to obtain proper 
results. In general, the abstraction, or approximation, 
is important for the formal analysis with model check-
ing techniques.[6] This paper adapted an abstraction 
method using the predicate variable (P-variable) as 
discussed in Section 3.2. All conditional branchings 
depend on the equality check (inequality check) of the 
P-variables, which is consistent with the choice of the 
data-independent EFA as the intermediate representa-
tion.

Since BPEL is basically a language for distributed 
collaboration of concurrent processes, it is not surpris-
ing that several researchers on BPEL analysis employ 
a process algebra formalism such as CCS or CSP. 
However, the works to use the process algebra study 
neither abstraction nor DPE. For example, a condi-
tional branch is simply translated as a non-determinis-
tic choice. This is basically the same as the case that 
both p11 and p12 take true at the same time, which is 
discussed in Section 3.2’s example of an inadequate 
situation. As a result, an analysis embodying a process 
algebra formalism may have more false negatives than 
the analysis in this paper.

An abstraction technique often used with model 
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checking is predicate abstraction.[12] When more 
than one variable is involved in an expression to deter-
mine control flows, all the variable values should be 
considered, which may result in a combinatorial 
explosion. The predicate abstraction technique intro-
duces a predicate or a boolean variable for each condi-
tional expression. The P-variable of this paper falls 
into this category.

Although predicate abstraction provides a system-
atic way of obtaining a good approximation of the 
control flow, choosing the appropriate predicates is not 
easy.[34] This is because the choice requires the 
knowledge of both the description to be verified and 
the property to check.

In order to obtain a set of appropriate predicates 
automatically, SLAM [1] adapts an iterative method to 
refine and obtain predicates that can discriminate exe-
cution paths in enough detail. SLAM aims to analyze 
programs written in C, and incorporates a symbolic 
evaluator for C programs, which is used in the refine-
ment process. SLAM further re-constructs the state 
machine whenever it introduces new predicates. It 
employs a theorem prover for checking the validity of 
the constructed state machine. This sometimes results 
in a drastic change in the structure of the state-
machine so that the description is hard to trace back to 
the original program.

Modex [13] takes a modest approach that has less 
automation, but allows a translated program to be 
structurepreserving. Since the traceability between the 
original program and the description for the analysis is 
good, it is not difficult to extract from the analysis 
results the information to debug.

The P-variable approach of this paper is also meant 
to be structure-preserving. As shown in Fig. 8, the 
translation starts from BPEL program, which is mod-
eled as EFA after an appropriate static analysis, and 
results in a Promela description. The P-variable is 
introduced at a control location point, which causes 
the structure of the generated Promela to reflect the 
structure of the original BPEL program faithfully.

The current method to handle the P-variables is not 
complete in that it sometimes fails to derive their cor-
rect logical relationships. Instead of introducing the 
adequate relationships between them, it regards them 
as if they are independent. Such P-variables will result 
in false negatives.

However, such an inadequacy is, in some sense, a 
compromise between the degree of precision and com-
putational cost, which should always be considered in 
the case of the lightweight formal methods. Since the 
four examples can be precisely analyzed, the approach 
presented here seem satisfactory, although higher 
approximation would be always desirable.

6.3 Coverage of BPEL
Although it covers most of the interesting features of 

behavioral specifications, the approach of this paper is 
not complete for the formal analysis of BPEL applica-
tion programs.

First, this paper has focused on the language con-
structs in Table 1 only: while <empty> and <termi-
nate> are easy to introduce. Among the other con-
structs, <pick> would not be difficult to introduce. 
This paper, however, did not consider <pick> because 
its semantics are problematic when combined with 
DPE.[3]

Second, this paper focused on the behavioral specifi-
cation and did not consider the data aspect of BPEL 
programs. It is important to have some notion of type 
conformance checking such as port type and message 
type, and there is research on this topic.[11][22]

Third, BPEL is a large language that has more fea-
tures than those covered in this paper. These include 
correlation sets, various error handlers (compensation 
handlers, fault handlers, event handlers). This paper 
ignored these features though they are used in the 
BPEL application programs.

The handlers may affect much of the behavioral 
specifications of BPEL applications that deal with 
exceptional cases, and the analysis method should 
include such features. Unfortunately, as discussed in 
the literature,[21] the semantics of BPEL handlers are 
not yet completed and a clear and precise definition is 
lacking. Its inclusion in the analysis method will be an 
important future work.

6.4 Related work
The earliest work on the formal verification of Web 

service flows can be traced back to the paper by S. 
Narayanan and S.A. Mcllraith who employ Petri-net 
for the automatic analysis.[28] They, however, do not 
address languages relating to the Web service stan-
dardization activities.

The first proposals that aim at standardization are 
WSFL and XLANG in May 2001. And S. Nakajima 
mentions the basic idea of using model checking tech-
niques for the analysis of WSFL.[23][24] Since WSFL 
provides a kind of general-purpose activity and is 
based solely on flows and links to represent control 
aspects, it is not easy to have Promela descriptions that 
lead to a state space small enough for an analysis to be 
practical. A simple example in [19] reached almost a 
million states.[25]

Although WSFL is obsolete, the basic technique to 
deal with concurrency including DPE is still applica-
ble to BPEL.[27] The research of this paper employs 
the same technique to handle DPE for the case of 
BPEL, and deals with the other techniques that would 
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be needed to analyze BPEL application programs by 
using a model checker. Thanks to the various advanced 
BPEL language constructs, the analysis model repre-
sented as a Promela program can be of a reasonable 
size. The largest one in Table 2 is manageable. 
Moreover, the abstraction technique turns out to be 
essential for reducing false negatives.

Most of the work on formal analysis of BPEL 
employs a formalism based on the process algebra. H. 
Foster et al. use FSP and the LTSA model checker[20] 
for modeling and analysis of BPEL programs.[9] M. 
K o s h k i n a  a n d  F.  v a n  B r e u g e l  u s e  C C S  a n d  
Concurrency Workbench (CWB-NC).[16] G. Salaun et 
al. also use CWB-NC for the behavioral analysis of 
BPEL.[29]

As for DPE, F. van Breugel and M. Koshkina [3] 
give an interesting analysis that some execution results 
may vary depending on whether DPE is introduced or 
not. They use CCS for the formal modeling and analy-
sis and point out that DPE may introduce unintentional 
side effects.

X. Fu et al. [11] deal with the data-aspect of BPEL 
as well as the behavioral specification and use the 
SPIN model checker. They handle XML-based data 
manipulations by allowing the XPath expression as the 
guard condition of the guarded automata.

Furthermore, techniques similar to the one for the 
analysis of BPEL orchestration are employed in chore-
ography languages such as WSCI (Web Service 
Choreography Interface). A. Brogi et al. work on the 
formalization and analysis of WSCI.[4] They use CCS 
for the analysis of the behavioral compatibility. H. 
Foster et al. use FSP and the LTSA for the prob-
lem.[10] Formal analysis of the relation between cho-
reography and orchestration is also an interesting 
research direction.

7 Conclusion
This paper reports a successful analysis of all four 

examples in the Business Process Execution Language 
for Web Services Version 1.1 document.[7] The pro-
posed method takes into account such interesting fea-
tures as DPE and the abstraction of control variables.

The proposed method and the tool discussed in the 
paper uses the SPIN as its back-end engine. This 
method could be combined with the method described 
in [26] for the analysis of the potential information 
leaks in BPEL application programs. Since the Web 
technology is an open-network environment, the secu-
rity aspect [2] would be an important issue to pursue.
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Appendix  A.1 is the BPEL source program for Loan Approval taken from the standard document.[7] Its schematic illustra-Loan Approval taken from the standard document.[7] Its schematic illustra-Loan Approval
tion of the process flow is shown in Fig.5.


