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1    Introduction
Permutative conversions transform a proof with a disjunction or existential quantification elimination rule fol-

lowed by an elimination rule into a proof with the second rule in the minor deduction of the first rule [14, 21]. 
Permutative conversions are indispensable for normalizing a proof in a natural deduction system with disjunction 
or existential quantification. Without permutative conversions, a normal proof fails to have the subformula property, 
because there may exist an introduction rule of a logical symbol in a minor deduction of a disjunction or existential 
quantification elimination rule followed by the elimination rule of the same logical symbol, which may break the 
subformula property.

Strong normalization property is important. First it implies weak normalization property, which proves the sub-
formula property and consistency [14, 21]. In particular, weak normalization of a second order system has been 
often proved through showing its strong normalization [5, 6]. Secondly, when we consider proof normalization as 
computation by the proofs-as-programs paradigm [8], strong normalization guarantees termination of programs. 
Thirdly, it is itself an interesting combinatorial problem in mathematics.

Several papers have studied strong normalization of systems with or without permutative conversions. We sum-
marize them in Table 1. Strong normalization of second order natural deduction with disjunction, existential quanti-
fication, and their commutative conversions is proved in [15, 12]. Strong normalization of second order natural 
deduction with disjunction, first-order existential quantification, and their commutative conversions is proved in 
[19]. Strong normalization of second order natural deduction with disjunction and existential quantification without 
their commutative conversions is proved in [5, 6]. Strong normalization of the negative fragment of second order 
natural deduction is discussed in [4, 7, 11, 20, 21]. Strong normalization of first order natural deduction with dis-
junction, existential quantification, and their commutative conversions is proved in [10, 20]. Strong normalization 
of a type theory with P types, S types, and their weak permutative conversions is proved in [18]. Strong normaliza-
tion of propositional natural deduction with disjunction and commutative conversions is proved in [3, 2, 9].

We will prove strong normalization of second order intuitionistic natural deduction with permutative conversions 
by using Prawitz’s strong validity. This paper completes Prawitz’s original proof given in [15].

By Curry-Howard isomorphism [8], a second order logical system corresponds to a functional programming lan-
guage with polymorphic types and abstract data types. Second order universal quantification gives polymorphic 
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types [16]. Second order existential quantification gives abstract data types [13]. Disjunction gives if-then-else 
statements. Then permutative conversions gives program transformation for if-then-else statements and abstract 
data types. Strong normalization of a second order system with permutative conversions gives termination of pro-
grams written in those programming languages.

In the opinion of one of the leading authorities on normalization, [15] described a correct proof which however 
needed some supplementary details in order to be complete. Moreover, we will give counterexamples to Theorem 
2. 2. 1 in Page 302 of [15], which is a key of his proof. [15] also gave a proof of strong normalization for first order 
natural deduction with permutative conversions. Several proofs [10, 20, 21] have been written to complete his proof 
for a first order system. Nonetheless, we have not seen any paper written to complete his proof for a second order 
system. Until very recently the proof in [12] was written with a completely different idea using inductive defini-
tions of strongly normalizable terms, the proof for a second order system with permutative conversions had been 
only that given in [15]. The main contribution of this paper is completing Prawitz’s original proof for a second 
order system.

Section 2 gives the definition of second order natural deduction with permutative conversions. Counterexamples 
to Prawitz’s original proof are discussed in Section 3. Section 4 proves the strong normalization by using Prawitz’s 
strong validity.

2    Second order natural deduction NJ 2

In this paper, we call the second order intuitionistic natural deduction with permutative conversions the system 
NJ 2. It has disjunction, first-order and second-order existential quantification and their permutative conversions. We 
will give the definition of the system NJ2NJ2NJ .

Below we will give the list of axioms and inference rules for NJ2NJ2NJ  together with a standard assignment of the sec-
ond order l-terms by Curry-Howard isomorphism. The system of reductions is also standard and includes permuta-
tive conversions for , $, $2.

Definition 2.1 (Language)  We have the following symbols:
First order variables x, y, z,...,
Function symbols f, f, f g,...,
Predicate variables X, Y,...,Y,...,Y
Predicate symbols q, r,....
We suppose each of function symbols, predicate variables, and predicate symbols has a fixed arity. We will some-

times write X n to denote the arity n of X. A sequence e1,..., en of expressions is often written as e.
First order terms, formulas, and abstraction terms are defined as follows:
First order terms t, s,... :: = x| f tf tf t ,
Formulas A, B, C, D,... :: = ^|qtqtqt |XtXtXt |A Æ B|A & B| xAxA|AB|$xA| XAXA|$XA,
Abstraction terms T ::= T ::= T X|q|l x.A.
Each abstraction term has a fixed arity. The arity of lxlxl 1...xn. A is n.
We have term variables uA, vB, wC,... where uA and uB are distinct when A is not B.
We will also call a formula a type.

Table 1  Strong Normalization Results for Permutative Conversions.

Logical systems Permutative Conversions Techniques and references
second order , $, $2 strong validity [15]

inductive definitions [12]
second order ,  $ saturated sets [19]
second order no reducibility [5, 6]
first order , $ strong validity [10, 20]
type theory ITT0ITT0ITT S (weak permutative conversions) (ad hoc) [18]
first order  CPS translation [3]

inductive definitions [2, 9]
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Definition 2.2 (Substitution)  Substitutions s [x := t], A [x := t], T [T [T x := t], A [X := X := X T ], and T1 [X := X := X T ] are 
defined in a familiar way. Simultaneous substitutions such as s [x1 := t1,..., xn := tn] are also defined in a standard 
way. They will be sometimes written using the vector notation such as s [x := ttt].

We suppose that for a formula A, (lxlxl . A) ttt  is identical to A [x := ttt]. Note that for a term M, (M, (M lxlxl . M) M) M ttt  will not be 
identical to M [M [M x := ttt].

Terms and their typing rules are defined as follows.

Definition 2.3 (Terms and typing rules)
Assumption

uA : A
Inference rules

[uA : A]
: 
:

M : M : M B
—
luA. M : A Æ B

 (ÆI )
M : M : M A Æ B      N : B      N : B      N A
—

MN : MN : MN B
 (ÆE )

M : M : M A      N : A      N : A      N B
—
M, NM, NM, N  : A & B

  (&I )
M : M : M A & B 
—

Mp0 : A
 (&E1)

M : M : M A & B 
—

Mp1 : B
 (&E2)

M : M : M A
—
lxlxl .M : M : M xAxA

 ( I )
M : M : M xA xA 
—
Mt : Mt : Mt A [x := x := x t]

  ( E )

[uA : A]
  

[vB : B]
: 
:

:                :
M : M : M A

—
0, MMM AB : AB

 (I1)
M : M : M B 

—
1, MMM AB : AB

 (I2)I2)I
M : M : M AB      N : B      N : B      N C         L : C         L : C         L C 
——

(M, N, L)uA, vB : C
(E)

[uA : A] 
: 
:

M : M : M A [x := x := x t] 
—

t, MMM $xA : $xA
  ($I )

M : M : M $xA    N : N : N C
—

(M, M, M N)N)N x, uA : C
  ($E )

M : M : M ^
—
MpA : A

(^E )

M : M : M A
—

lXlXl .M : M : M XAXA
  ( 2I)I)I

M : M : M XAXA
—

MT : MT : MT A [X := X := X T ]
  ( 2E)

[uA : A]
: 
:

M : M : M A [X := X := X T] T] T
—
T, T, T MMM $XA : $XA

($2I )
M : M : M $XA      N : XA      N : XA      N C
—  

(M, M, M N)N)N X, uA : C
  ($2E )

The rules ( I), (I), (I $E), ( 2I), and (I), and (I $2 E) have a standard condition for variables.
Type superscripts in uA, 0, MMM AB, 1, MMM AB, t, MMM $xA, and T, T, T MMM $XA will be sometimes omitted to save notation.
We will use M, N, L, K, P, Q to denote terms.

Substitutions M [M [M x := x := x t], M [M [M uA := N] and N] and N M [M [M X := X := X T] and their simultaneous substitutions are defined in a standard T] and their simultaneous substitutions are defined in a standard T
way.

Definition 2.4 (Reductions)      We define the relation M Æ N for terms N for terms N M and M and M N in the following way.N in the following way.N
b conversions:b conversions:b

(b Æ ) (la.M)M)M R Æ M [M [M a := a := a R]           (a is a is a x, uA, or X, and R is t, N, or T respectively. )T respectively. )T
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(b&1) b&1) b M, M, M NNN pp 0 Æ M
(b &2) M, M, M NNN pp 1 Æ N
(b 1)  (0, MMM , N, L)uA, vB Æ N [N [N uA := M]M]M
(b 2) (1, MMM , N, L)uA, vB Æ L [L [L vB := M]M]M
(b $)  (R, MMM , N)N)N a, uA Æ N [N [N a := a := a R, uA := M]           (M]           (M a is a is a x or x or x X, and R is t or t or t T respectively.)T respectively.)T

 Permutative conversions:
(p $) (M, M, M N)N)N a, uA R Æ (M, M, M NR)a, uA          (R is t, L, T, T, T p0, p1, or pC. )
(p $$) ((M, M, M N)N)N a, uA, L)b, vB Æ (M, (M, (M N, L)b,vB)a, uA

(p $)  ((M, M, M N)N)N a, uA, L1, L2)u1
B, u2

C Æ (M, (M, (M N, L1, L2 )u1
B, u2

C)a, uA

(p ) (M, M, M N, L)uA, vB R Æ (M, M, M NR, LR)uA, vB         (R is t, L, T, T, T p0, p1, or pC. )
(p $)  ((M, M, M N, L)u1

A, u2
B, K)K)K a, vC Æ (M, (M, (M N, K)K)K a, vC, (L, K)K)K a, vC)u1

A, u2
B

(p )  ((M, M, M N, L)n1
A, n2n2n B, K1, K2K2K )u1

C, u2
D Æ (M, (M, (M N, K1, K2K2K )u1

C, u2
D, (L, K1, K2K2K )u1

C, u2
D)n1

A, n2n2n B

where a is a is a x or x or x X and X and X b is b is b y or Y.Y.Y
Congruence.
(congr) M Æ M´

if N is a subterm of N is a subterm of N M, M, M N Æ N´ holds, and M´ is obtained from M by replacing one occurrence of M by replacing one occurrence of M N by N by N N´.
We will say that M reduces to M reduces to M N if N if N M Æ N holds. The relation N holds. The relation N Æ * is defined as the reflexive transitive closure of 

the relation Æ . We will write M Æ p N if N if N M reduces to M reduces to M N by using only the permutative conversions and the con-N by using only the permutative conversions and the con-N
gruence. The relation Æ *

p is the reflexive transitive closure of the relation Æ p.

Remark. (1) Subject reduction property and Church Rosser property hold.
(2) We will not treat ^ reductions according to [15].
A term M is strongly normalizable if there is no infinite reduction sequenceM is strongly normalizable if there is no infinite reduction sequenceM

M Æ M1M1M Æ M2M2M Æ ...
beginning with M.M.M

Theorem 2.5 (Strong normalization)  Every term of the system NJ2Every term of the system NJ2Every term of the system NJ  is strongly normalizable.
Section 4 will prove this theorem by using Prawitz’s strong validity [15].

3    Counterexamples
The notions such as reducibility [5, 6], saturated sets [1, 17], and strong validity [15], which are defined by 

induction on types for first order systems, have difficulty when we try to extend them to a second order system in a 
naive way. Reducibility candidates technique used in [5, 6] solved this kind of problem by using an assignment to 
second order variables.

In [15], first the notion of strong validity was defined for a first order system, then he tried to extend it to a sec-
ond order system by using the notion of the assignment defined in Page 300. This would be a key to treat a second 
order system. However, this notion cannot work because Theorem 2.2.1 in Page 302 of the paper has the counterex-
amples we will give later in this section.

Page 300 of [15] defines N as an assignment that assigns a regular set to an occurrence of a second order term in N as an assignment that assigns a regular set to an occurrence of a second order term in N
a formula. It says that different occurrences of the same second order term may be assigned different sets, and this 
is emphasized by the additional explanation given in the footnote. Page 301 defines the notion: a derivation P is 
strongly valid relative N. To define it, the definition N. To define it, the definition N A.3.2.1 of strong validity given for the first order system is 
extended to the notion of strong validity relative an assignment for the second order system. The introduction rule 
consists of the conclusion A and some assumptions of immediate subformulas of A. When the definitions A.3.2.1.1
—3 of strong validity for the introduction rules are extended to the second order system, to define a strongly valid 
derivation of the conclusion A relative N, he uses strongly valid derivations of immediate subformulas of N, he uses strongly valid derivations of immediate subformulas of N A relative 
N ´ where N ´ is obtained from N by stating that N by stating that N N ´ is to assign to an occurrence of a second order term in the 
immediate subformulas of A in question the same value that N  assigns to the corresponding occurrence in N  assigns to the corresponding occurrence in N A. 
However, this feature causes the following counterexample to the theorem 2.2.1.

Let SN be the set of strongly normalizing derivations. Note that SN is regular.
We summarize facts on his definitions of strong validity. We will use only those from his definitions to construct 

counterexamples. This interpretation of his book is plausible since at least these facts are clearly stated there, 
though other parts of his discussions may be ambiguous.
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Facts.   (1) (By A.3.2.1.2 and Page 301 in [15]) Suppose P is of the form
    [A]
     : 

:    P1

B
–
A Æ B

  (ÆI )

Then P is strongly valid relative N, if and only if for any derivation N, if and only if for any derivation N S of A which is strongly valid relative N1N1N , the 
derivation

: 
: S
A
: 
:   P1
B

is strongly valid relative N2N2N , where the assignment N1N1N  is defined as an assignment that maps an occurrence of a 
second order term T in T in T A to a regular set N when N when N N maps the corresponding occurrence of N maps the corresponding occurrence of N T in T in T A Æ B to N, and the 
assignment N2N2N  is defined as an assignment that maps an occurrence of a second order term T in T in T B to a regular set N
when N maps the corresponding occurrence of N maps the corresponding occurrence of N T in T in T A Æ B to N.

(2) (By A.2.1.2.1 in [15]) Suppose P is of the form
: 
:

A [x := x := x t] 
–
(lx. A)t

  (lIlIl )

and the occurrence of the second order term lxlxl .A is in the domain of N. Then N. Then N P is strongly valid relative N, if and N, if and N
only if P is in N (N (N lxlxl . A).

Proposition 3.1  Let P be a 0-place predicate constant. Let P be the derivation
[P] 
–

P Æ P
Let N be the assignment that maps the first occurrence of P in P N be the assignment that maps the first occurrence of P in P N Æ P to SN and the second occurrence of P in P Æ
P to the empty set. Then P is not strongly valid relative N.N.N

Proof. By the definition of strong validity given in Pages 291 and 301, the claim that P is strongly valid relative 
N is equivalent to the claim that for every derivation N is equivalent to the claim that for every derivation N S of P that is strongly valid relative N1N1N , the derivation S is 
strongly valid relative N2N2N . By the definition given in Page 301 extending the definition A.3.2.1.2 to the second order 
system, N1N1N  maps the conclusion P of S to SN since this occurrence of P comes from the first occurrence of P in P
Æ P, while N2N2N  maps the conclusion P of S to the empty set since this occurrence of P comes from the second 
occurrence of P in P Æ P. Hence the claim that P is strongly valid relative N is equivalent to the claim that for N is equivalent to the claim that for N
every derivation S of P in SN, the derivation S is in the empty set. The latter claim does not hold, so P is not 
strongly valid relative N.   N.   N

Counterexample 1.  Apply the theorem 2.1.1 in [15] to the derivation P and the assignment N given in N given in N
Proposition 3.1. We do not have any individual variables, second order parameters, nor open assumptions in P. P
should be strongly valid rela tive N according to that theorem. On the other hand, N according to that theorem. On the other hand, N P is not strongly valid relative N
by Proposition 3.1. Hence the theorem 2.1.1 does not hold.   

Page 300 of [15] defines an assignment as a mapping that maps not only a second order variable but also a sec-
ond order term to a regular set. According to this definition, the second order term lxlxl .A can be assigned some regu-
lar set independent of A. This feature causes another counterexample as follows.

Proposition 3.2  Let P be a 1-place predicate constant, 0 be an individual constant, x be an individual variable, 
and P be the derivation

[P0]  
–
(lx.Pxlx.Pxl )0 
—
P0 Æ (lx.Pxlx.Pxl )0
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Let the assignment N be the mapping that maps P to SN and N be the mapping that maps P to SN and N lx.Px to the empty set. Then lx.Px to the empty set. Then l P is not strongly valid 
relative N.N.N

Proof. By the definition of strong validity given in Pages 291 and 301, the claim that P is strongly valid relative 
N is equivalent to the claim that for every derivation N is equivalent to the claim that for every derivation N S of P0 that is strongly valid relative N, the derivation N, the derivation N P´

S
—
P0—

(lxlxl .Px)0

is strongly valid relative N. Hence the claim that N. Hence the claim that N P is strongly valid relative N is equivalent to the claim that for N is equivalent to the claim that for N
every derivation S of P0 in SN,the derivation P´ is in the empty set. The latter claim does not hold, so P is not 
strongly valid relative N .   

Counterexample 2.  Apply the theorem 2.1.1 in [15] to the derivation P and the assignment N given in N given in N
Proposition 3.2. We do not have any individual variables, second order parameters, nor open assumptions in P. P
should be strongly valid relative N according to that theorem. On the other hand, N according to that theorem. On the other hand, N P is not strongly valid relative N
by Proposition 3.2. Hence the theorem 2.1.1 does not hold.   

His proof of strong normalization consists of the theorems 2.2.1 and 2.2.2 in Page 302. The theorem 2.2.1 is one 
of the two main theorems, and his proof of strong normalization does not work without the theorem 2.2.1.

He also gave a proof of strong normalization for a first order system in [15] and several proofs have been written 
to complete his proof for the first order system. Until now we do not know any paper that completes his proof for 
the second order system. In the next section, we will complete his proof for the second order system.

4    Strong normalization
Definition 4.1  For a type A, SNASNASN  is defined as the set of strongly normalizable terms of type A. SN is defined as SN is defined as SN
the set of strongly normalizable terms of any type.

For a set S of terms of type S of terms of type S A, S is called regularS is called regularS A is called regularA is called regular  if
(1) S



SNASNASN ,
(2) If M Œ S and M Æ N, then N Œ S.
For an abstraction term T of arity T of arity T n, a regularT set function is a function that maps a sequence T set function is a function that maps a sequence T t1... tntnt  of first order 

terms to a regularTt1...tntnt
 set. A set valuation s is a mapping which maps a predicate variable s is a mapping which maps a predicate variable s XnXnX  to (T, F) where T is an T is an T

abstraction term of arity n and F is a regularF is a regularF T set function. The valuation T set function. The valuation T s [s [s X := (X := (X T, F)] is defined by (s  [ X := (X := (X T, 
F)])(X))])(X))])(  = (T, F) and (s [s [s X := (X := (X T, F)])(Y) =Y) =Y s (Y) for Y) for Y XY.Y.Y

For a formula A and a set valuation s, s, s As is defined as s is defined as s A [X:=X:=X T ] where the free predicate variables of A are X, X, X
and s (X(X( iXiX )=(TiTiT , Fi). Substitutions ts, s, s Ts, and s, and s MsMsM  are defined in the same way. Note that s are defined in the same way. Note that s ts is always s is always s t.

Lemma 4.2  SNASNASN  is regularA is regularA is regular .
Proof. The clauses (1) and (2) in the definition of regular sets hold trivially for SNASNASN .   

Definition 4.3  For an abstraction term T, the regularT, the regularT T set function T set function T SNTSNTSN  is defined by T is defined by T SNTSNTSN (t(t(t ) = SNTtSNTtSN .

Definition 4.4 (Strong validity)  For a type A and a set valuation s, we will define the set s, we will define the set s svs
A of terms of type 

As inductively by using strictly positive inductive definition of s inductively by using strictly positive inductive definition of s svs
A inside induction on the construction of A.

• (Var) uAs  svs
A.

• (Var2) M  svs
XtXtXt if  if  s(s(s X(X( )=(X)=(X T, T, T F) and M  F(ttt ).

• (ÆI) I) I luAs. M  svs
AÆB if for every N  svs

A, M [M [M uAs := s := s N] N] N  svs
B.

• (ÆE) MN  svs
A if for every L, MN Æ L implies L implies L L  svs

A and MN : MN : MN As.s.s
• (&I) I) I M, M, M NNN  svs

A&B if M  svs
A and N  svs

B.
• (&E) Mpi  svs

A if every L, Mpi Æ L implies L implies L L  svs
A and Mpi : As  (s  (s i=0,1).

• ( I)   I)   I lx.Mlx.Ml  svs
xAxA if for every first order term t, M [M [M x := x := x t]  svs

A [x := x := x t].
• ( E) Mt  svs

A if for every L, Mt Æ L implies L implies L L  svs
A and Mt : Mt : Mt As.s.s

• (I1)   0, MMM (AB)s  svs
AB if M  svs

A.



Second order permutative conversions with Prawitz’s strong validity 47

• (I2) I2) I 1, MMM (AB)s  svs
AB if M  svs

B.
• (E) (M, M, M N, L)uA, vB  svs

C ifC ifC
- M  SNASNASN B,
- N, L  svs

C,
- for every P, M Æ * C [0, PAB] implies N [ N [ N uA := P] Œ svs

C,
- for every P, M Æ * C [1, PAB] implies L [ L [ L vB := P] Œ svs

C.
• ($I) I) I t, MMM ($xA)s Œ svs

$xA if M Œ svs
A[x := x := x t].

• ($E) (M, M, M N)N)N x, uA Œ svs
C if C if C M Œ SN$SN$SN xA, N Œ svs

C, and M Æ * C [t, P$xA] implies N [N [N x :=t, uA := P] Œ svs
C for every C for every C P

and every t.
• ( 2I) I) I lXlXl nXnX .M Œ svs

XXnXnX A if for every abstraction term T of arity T of arity T n and every regularT set function T set function T F, M [M [M X := X := X T] T] T Œ
svA

s  [ X := (X := (X T, T, T F)].
• ( 2E) MT Œ svs

A if for every L, MT Æ L implies L implies L L Œ svs
A and MT : MT : MT As.s.s

• ($2I) I) I T, T, T MMM ($XA)s Œ svs
$XA if M Œ svA

s  [ X := (X := (X T, T, T F) ]  for some regularT set function T set function T F.
• ($2E) (M, N)N)N X, uA Œ svs

C if M Œ SN$SN$SN XA, N Œ svs
C, and M Æ * C [T, P$XA] implies N [N [N X := X := X T, uA := P] Œ svs

C for 
every term P and every abstraction term T.T.T

In the rules (E), ($E), and ($2E), the segment C [·] is defined by
    C [·] ::= ·|(M, M, M C [·], N)N)N uA, vB |(M, M, M N, C [·])uA, vB |(M, M, M C [·])x, uA |(M, M, M C [·])X, uA

If M is in M is in M svs
A, we will say that M is strongly valid with respect to M is strongly valid with respect to M s. We call s. We call s svs

A strong validity, which will be 
sometimes abbreviated to sv.

Remark. In this definition, svs
A is defined by induction on A. Inside each definition for A, we can assume svs

B is 
already defined for B smaller than A, and moreover we use strictly positive inductive definition of svs

A. This kind of 
definition is discussed in detail in [20] and it has shown that the inductive definition for the first order system can 
be reduced to arithmetical inductive definitions.

Definition 4.5  For M Œ SN, |M| is defined as the length of the longest reduction sequence beginning with M. #M. #M M. #M. #
is defined as the number of the symbols occurring in M.M.M

Lemma 4.6  (1) Suppose that (M, N, L)u,v is a term of type C. Assume that
• M, N, L are in SN,
• M Æ * C [0, P] implies N [implies N [implies N u := P] Œ SN for every P,
• M Æ * C [1, P] implies L [implies L [implies L v := P] Œ SN for every P.

Then (M, N, L)u ,v is in SN.
(2) Let a be x or X and R be t or T respectively. Suppose that (M, N)a be x or X and R be t or T respectively. Suppose that (M, N)a a,ua,ua  is a term of type C. Assume that
• M, N are in SN,
• M Æ * C [R, P] implies N [implies N [implies N a :=a :=a R, u := P] Œ SN for every R and every P.

Then (M, N)a, u is in SN.

Proof. We will show the claims (1) and (2) simultaneously by induction on (|M|,#M, #M, #M |N|+|L|).
(1) Assume (M, M, M N, L)u,v Æ K. We will show K Œ SN. We will consider cases according to the reduction.
Case (M, M, M N, L)u,v Æ (M´, N, L)u,v.
For i = 0, 1, M´ Æ *C [i, P] implies M Æ * C [i, P], so the second and the third assumptions hold for (M´, N, 

L)u,v. By IH for |M´| < |M|, we have (M´, N, L)u,v Œ SN.
Case (M, M, M N, L)u,v Æ (M, M, M N´, L)u,v.
N´ [u := P] Œ SN if SN if SN N [N [N u := P] Œ SN, since N[u := P] Æ N´ [u := P]. By IH for |N´| < |N|, we have (M, M, M N´, L)u,v Œ

SN.
Case (M, M, M N, L)u,v Æ (M, M, M N, L´)u,v. This case is similar to the previous case.
Case (0, MMM , N, L)u,v Æ N [N [N u := M].M].M
By letting C [·] ∫  · in the second assumption, N [N [N u := M] is in SN.M] is in SN.M
Case (1, MMM , N, L)u,v Æ L [L [L v := M]. This case is similar to the previous case.M]. This case is similar to the previous case.M
Case ((M1M1M , M2M2M , M3M3M )w1,w2

, N, L)u,v Æ (M1M1M , (M2M2M , N, L)u,v, (M3M3M , N, L)u,v)w1,w2
.
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We have M1M1M Œ SN, since (M1M1M , M2M2M , M3M3M )w1,w2
Œ SN.

We will show (M2M2M , N, L)u,v Œ SN. First we have M2M2M , N, L Œ SN. Suppose M2M2M Æ * C1 [0, P]. Then (M1M1M , M2M2M , M3M3M )w1,w2

Æ * (M1, C1 [0, P], M3M3M )w1,w2
. By letting C [·] be (M1, C1 [·], M3M3M )w1,w2

 in the second assumption, we have 
N [N [N u := P] Œ SN. Therefore M2M2M Æ * C1 [0, P] implies N [N [N u := P] Œ SN. Similarly M2M2M Æ * C1 [1, P] implies 
L [L [L v := P] Œ SN. Hence, by IH for |M2M2M | £ |M| and #M and #M and # 2M2M  < #M < #M < # , we have (M, we have (M M2M2M , N, L)u,v Œ SN.

We can prove (M3M3M , N, L)u,v Œ SN in a similar way.SN in a similar way.SN
We will show that M1M1M Æ * C1 [0, P] implies (M2M2M , N, L)u,v [w1 := P] Œ SN. Assume M1M1M Æ * C1 [0, P]. We will 

show each condition in IH for (M2M2M  [w1 := P], N, L)u,v Œ SN. We have

(M1M1M , M2M2M , M3M3M )w1,w2
Æ *   (C1 [0, P], M2M2M , M3M3M )w1,w2

Æ*
p   p   p C´1 [(0, P, M2M2M , M3M3M )w1,w2

]
Æ         C´1 [M2M2M  [w1 := P]].

By the first assumption (M1M1M , M2M2M , M3M3M )w1,w2
Œ SN, we have M2M2M  [w1 := P] Œ SN. By the first assumption, we also have 

N, L Œ SN. Suppose M2M2M  [w1 := P] Æ * C2 [0, Q]. Then we have
(M1M1M , M2M2M , M3M3M )w1,w2

Æ * C´1 [M2M2M  [w1 := P]] Æ * C´1 [C2[0,Q]].
By letting C [·] be C´1 [C2 [·]] in the second assumption, we have N [N [N u := Q] Œ SN. Hence SN. Hence SN M2M2M [w1 := P] Æ * C2 [0, Q] 
implies N [N [N u := Q] Œ SN. Similarly M2M2M  [w1 := P] Æ*C2 [1, Q] implies L [v := Q] Œ SN. By IH for |M2M2M  [w1 := P]| < 
|(M1M1M , M2M2M , M3M3M )w1,w2

|, we have (M2M2M  [w1 := P], N, L)u,v Œ SN, that is, (M2M2M , N, L)u,v [w1 := P] Œ SN.
We can prove that M1M1M Æ * C1 [1, P] implies (M3M3M , N, L)u,v [w2 := P] Œ SN in the same way.SN in the same way.SN
By IH for |M1| £ |(M1, M2M2M , M3M3M )w1,w2

| and #M1 < #(M1, M2M2M , M3M3M )w1,w2
, we can conclude (M1, (M2M2M , N, L)u,v, (M3M3M , N, 

L)u,v) w1,w2 Œ SN.
Case ((M1M1M , M2M2M )a,w, N, L)u,v Æ (M1M1M , (M2M2M , N, L)u,v)a,w where a is a is a x or x or x X.
We have M1M1M Œ SN, since (M1M1M , M2M2M )a,w Œ SN.
We will show (M2M2M , N, L)u,v Œ SN. First we have M2M2M , N, L Œ SN from the first assumption. Suppose SN from the first assumption. Suppose SN M2M2M Æ * C1 [0, 

P]. Then (M1M1M , M2M2M )a,w Æ * (M1M1M , C1 [0, P])a,w. By letting C [·] be (M1M1M , C1 [·])a,w in the second assumption, we have N[
u := P] Œ SN. Therefore M2M2M Æ * C1 [0, P] implies N [N [N u := P] Œ SN. Similarly M2M2M Æ * C1 [1, P] implies L [v := P] 
Œ SN. Hence, by IH for |M2M2M | £ |M| and #M and #M and # 2M2M  < #M < #M < # , we have (M, we have (M M2M2M , N, L)u,v Œ SN.

We will show that M1M1M Æ * C1 [R, P] implies (M2M2M , N, L)u,v [a := a := a R, w := P] Œ SN, where R is t if t if t a is a is a x and R is T
if a is a is a X. Assume M1M1M Æ * C1 [R, P]. We will show each condition in IH for (M2M2M  [a := a := a R, w := P], N, L)u,v Œ SN. We 
have

(M1M1M , M2M2M )a,w Æ*    (C1 [R, P], M2M2M )a,w
Æ*

p    C´1 [(R, P, M2M2M )a,w]
Æ   C´1 [M2M2M  [a := a := a R, w := P]].

By the first assumption (M1M1M , M2M2M )a,w Œ SN, we have M2M2M  [a := a := a R, w := P] Œ SN. By the first assumption, we also have 
N, L Œ SN. Suppose M2M2M  [a := a := a R, w := P] Æ * C2 [0, Q]. Then we have

(M1M1M , M2M2M )a,w Æ * C´1 [M2M2M  [a := a := a R, w := P]] Æ * C´1 [C2 [0, Q]].
By letting C [·] be C´1 [C2 [·]] in the second assumption, we have N [N [N u := Q] Œ SN. Hence M2M2M  [a := a := a R, w := P] Æ *

C2 [0, Q] implies N [N [N u := Q] Œ SN. Similarly M2M2M  [a := a := a R, w := P] Æ * C2 [1, Q] implies L [v := Q] Œ SN. By IH 
for |M2M2M  [a := a := a R, w := P]| < |(M1M1M , M2M2M )a,w|, we have (M2M2M  [a := a := a R, w:= P], N, L)u,v Œ SN, that is, (M2M2M , N, L)u,v [a := a := a R, 
w :=P] Œ SN.

By IH (2) for |M1M1M | £ |(M1M1M , M2M2M )a,w| and #M and #M and # 1M1M  < # (M1M1M , M2M2M )a,w, we can conclude (M1M1M , (M2M2M , N, L)u,v)a,w Œ SN.
(2) These claims are proved in a similar way to the claim (1).   

Proposition 4.7  svs
A



SNASNASN s holds.
Proof. We will use induction on the definition of M Œ svs

A to prove that M Œ SN.
We will list cases according to the definition of M Œ svs

A.
Case (Var). uAs Œ SN.
Case (Var2). By the clause (1) in the definition of regular sets.
Case (ÆI). By (Var), I). By (Var), I uAs Œ svs

A. By letting N be N be N u in the definition of lu.M Œ svs
A Æ B, we have M Œ svs

B. By IH, 
M is in SN. Hence M is in SN. Hence M lu.M is in SN.u.M is in SN.u.M

Case (ÆE). We will show MN Œ SN. Assume MN Æ L and we will show L and we will show L L Œ SN. By the definition of MN Œ svs
A, 
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we have L Œ svs
A. By IH, we have L Œ SN.

Case (&I). By the definition of I). By the definition of I M,M,M  N N N Œ svs
A&B, we have M Œ svs

A and N Œ svs
B. By IH, M,M,M  N are in SN. Hence  N are in SN. Hence  N

M,M,M  N N N  is in SN.
Case (&E). This case is similar to the case (ÆE).
Case ( I). By letting I). By letting I t be t be t x in the definition of lx.Mlx.Ml Œ svs

xAxA, we have M Œ svs
A. By IH, M is in SN. Hence M is in SN. Hence M l x.Ml x.Ml

is in SN.
Case ( E). This case is similar to the case (ÆE).
Case (I). This case is similar to the case (&I). This case is similar to the case (&I I).I).I
Case (E). By IH, we have the following : M,M,M  N, L Œ SN, M Æ *C [ 0, P] implies N [ N [ N u : = P] Œ SN for every  SN for every  SN P,

and M Æ * C [1, P] implies L [L [L v : = P] Œ SN for every  SN for every  SN P. By Lemma 4.6 (1), we have (M,M,M  N, L)u, v Œ SN.
Case ($I). By IH for I). By IH for I M Œ svs

A [x : =x : =x  t], M is in SN. Hence M is in SN. Hence M t, M M M  is in SN.
Case ($E). By IH, we have the following : M,M,M  N Œ SN, and M Æ * C [t, P] implies N [N [N x : = t, u : = P] Œ SN for SN for SN

every t and every t and every t P. By Lemma 4.6 (2), (M,M,M  N) N) N x, u is in SN.
Case ( 2I). By letting I). By letting I T be T be T X and X and X F be F be F SNXSNXSN  in the definition of X in the definition of X lX.MlX.Ml Œ svs

XAXA, we have M Œ svs
A

 [X : = (X : = (X X, SNX SNX SN )]X)]X . By IH, 
M is in SN. ThenM is in SN. ThenM  lX.M lX.M l  is in SN.X.M is in SN.X.M

Case ( 2E). This case is similarly proved to the case (ÆE).
Case ($2I). By IH for I). By IH for I M Œ svs

A
[X : = (T, (T, (T  F)], M is in SN. Hence M is in SN. Hence M T,T,T  M M M  is in SN.

Case ($2E). By IH, we have the following : M,M,M  N Œ SN, and M Æ *C [T,T,T  P] implies N [N [N X : = X : = X T,T,T  u : = P] Œ SN for SN for SN
every T and every T and every T P. From Lemma 4.6 (2), we have (M,M,M  N) N) N X, u Œ SN.

Consequently svs
A



SN holds. Since SN holds. Since SN svs
A is a set of terms of type As, we have s, we have s svs

A



SNASNASN s       

Proposition 4.8  If M Œ svs
A and M Æ N hold, then N is in svs

A.
Proof. Assume M Œ svs

A and M Æ N. We will show N Œ svs
A by induction on the definition of M Œ svs

A.
We will list cases according to the definition of M Œ svs

A.
Case (Var). We do not have this case.
Case (Var2). The claim holds from the clause (2) in the definition of regular sets.
Case (ÆI). The reduction is I). The reduction is I lu.M Æ lu.M´. Assume N Œ svs

A. From the definition of lu.M Œ svs
A Æ B, M [M [M u : = N] N] N

is in svs
B. From IH and M [M [M u : = N] N] N Æ M´ [u : = N], we have N], we have N M´ [u : = N] in N] in N svs

B. Hence lu.M´ is in svs
A Æ B.

Case (ÆE). By the definition of sv, MN Æ L implies L implies L L Œ svs
A.

Case (&I). The reduction is either I). The reduction is either I M,M,M  N N N Æ M´, N N N  or M,M,M  N N N Æ M,M,M  N´. By the definition of sv, M is in M is in M svs
A and 

N is in N is in N svs
B. By IH, M´ is in svs

A and N´ is in svs
B. Hence we have M´, N N N Œ svs

A&B and M,M,M  N´ Œsvs
A&B by definition.

Case (&E). This case is similarly proved to the case (ÆE).
Case ( I). The reduction is I). The reduction is I lx.Mlx.Ml Æ lx.M lx.M l ´. By IH for M [M [M x : = t] Œ svs

A [x : = t] and M [M [M x : = t] Æ M´ [x : = t], we 
have M´ [x : = x : = x t] Œ svs

A [x : = x : = x t] for any first order term t. Hence lx.Mlx.Ml ´ is in svs
xAxA.

Case ( E). This case is similarly proved to the case (ÆE).
Case (I). This case is similar to the case (&I). This case is similar to the case (&I I).I).I
Case (E). Suppose (M,M,M  N, L)u, v Œ svs

C and (C and (C M,M,M  N, L)u, v Æ K. We will consider cases according to the reduction.
Case 1. (M,M,M  N, L)u, v Æ (M´, N, L)u, v ∫ K. M´ is in SN since M is in SN. M is in SN. M M´ Æ *C [0, P] implies N [N [N u : = P] Œ

svs
C, since M´ Æ *C [0, P] implies M Æ *C [0, P]. Similarly M´ Æ *C [ 1, P] implies L [ v : = P] Œ svs

C. Hence 
K is in K is in K svs

C by definition.C by definition.C
Case 2. (M,M,M  N, L)u, v Æ (M,M,M  N´, L)u, v ∫ K. By IH, N´ is in svs

C. If M Æ *C [0, P], we have N [N [N u : = P] Œ svs
C. Then 

we have N´ [u : = P] Œ svs
C from C from C N [N [N u : = P] Æ N´ [u : = P] and IH. Hence K is in K is in K svs

C by definition.C by definition.C
Case 3. (M,M,M  N, L)u, v Æ (M,M,M  N, L´)u, v ∫ K. This case is similar to the previous case.
Case 4. (0, P, N, L)u, v Æ N [N [N u : = P] ∫ K. By letting C [·] ∫ · in the third condition of the definition (0, P, N,

L)u, v Œ svs
C, we have N [N [N u : = P] Œ svs

C.
Case 5. (1, P, N, L)u, v Æ L [L [L v : = P] ∫ K. This case is similarly proved to the previous case.
Case 6. ((M1M1M , M2M2M , M3M3M )w1, w2

, N, L)u, v Æ (M1M1M , (M2M2M , N, L)u, v, (M3M3M , N, L)u, v)w1, w2
∫ K.

The assumption ((M1M1M , M2M2M , M3M3M )w1, w2
, N, L)u, v Œ svs

C gives us the following four conditions : (C gives us the following four conditions : (C M1M1M , M2M2M , M3M3M )w1, w2
Œ SN,

N, L Œ svs
C, (M1M1M , M2M2M , M3M3M )w1, w2

Æ *C [0, P] implies N [N [N u : = P] Œ svs
C, and (M1M1M , M2M2M , M3M3M )w1, w2

Æ *C [1, P
1

1
] implies 

L [L [L v : = P] Œ svs
C. We will show each clause in the definition (M1M1M , (M2M2M , N, L)u, v, (M3M3M , N, L)u, v)w1, w2

Œ svs
C.

First we have M1M1M Œ SN from the first condition.SN from the first condition.SN
Next we will show (M2M2M , N, L)u, v Œ svs

C. M2M2M  is in SN. From the second condition, N, L are in svs
C. Suppose M2M2M Æ*

C1 [0, P]. Then (M1M1M , M2M2M , M3M3M )w1, w2
Æ * (M1M1M , C1 [0, P], M3M3M )w1, w2

. By letting C [·] be (M1M1M , C1 [·], M3M3M )w1, w2
 in the third
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condition, we have N [N [N u : = P] Œ svs
C. Therefore M2M2M Æ *C1 [0, P] implies N [N [N u : = P] Œ svs

C. Similarly M2M2M Æ* C1 [
1, P] implies L [L [L v : = P] Œ svs

C. Hence (M2M2M , N, L)u, v is in svs
C by definition.C by definition.C

We can prove (M3M3M , N, L)u, v Œ svs
C in the same way.C in the same way.C

We will show that M1 M1 M Æ *C1 [0, P] implies (M2M2M , N, L)u, v [w1 : = P] svs
C. Assume M1 M1 M Æ *C1 [0, P]. Then we have

(M1M1M , M2M2M , M3M3M )w1, w2
Æ * (C1 [0, P], M2M2M , M3M3M )w1, w2
Æ *

p C´1 [(0, P, M2M2M , M3M3M )w1, w2
]

Æ C´1 [M2M2M  [w1 : = P]].
By the first condition, we have M2M2M  [w1 : = P] Œ SN. By the second condition, we have SN. By the second condition, we have SN N, L Œ svs

C. Suppose M2M2M  [w1 : =
P] Æ * C2 [0, Q]. Then we have

      (M1M1M , M2M2M , M3M3M )w1, w2
Æ * C´1 [M2M2M  [w1 : = P]] Æ * C´1 [C2 [0, Q]].

By letting C [·] be C´1 [C2 [·]] in the third condition, we have N [N [N u : = Q] Œ svs
C. Hence M2M2M  [w1 : = P] Æ * C1 [0, Q] 

implies N [N [N u : = Q] svs
C. Similarly we can prove that M2M2M  [w1 : = P] Æ * C1 [1, Q] implies L [v : = Q] Œ svs

C. Hence 
by definition we have (M2M2M  [w1 : = P], N, L)u, v Œ svs

C, that is, (M2M2M , N, L)u, v [w1 : = P] Œ svs
C.

We can prove that M1M1M Æ * C1 [1, P] implies (M3M3M , N, L)u, v [w2 : = P] Œ svs
C in a similar way.C in a similar way.C

Therefore we can conclude (M1M1M , (M2M2M , N, L)u, v, (M3M3M , N, L)u, v)w1, w2
Œ svs

C by definition.C by definition.C
Case ($I). The reduction is I). The reduction is I t, M M M Æ t, M´. By the definition, we have M Œ svs

A [x : = t]. By IH, we have M´ Œ
svs

A [x : = x : = x t]. Hence t, M´ is in svs
$xA.

Case ($E). This case can be proved in a similar way to the case (E).
Case ( 2I). The reduction is I). The reduction is I lXlXl nXnX .M Æ lXlXl nXnX .M´. Assume T is an abstraction term of arity T is an abstraction term of arity T n and F is a regularF is a regularF T set T set T

function. By the definition of lX.MlX.Ml Œ svs
XAXA, we have M [M [M X : = X : = X T] T] T Œ svs[s[s X : = (X : = (X T,T,T  F)]

A . By IH and M [M [M X : = X : = X T] T] T Æ M´ [X : = X : = X
T], we have T], we have T M´ [X : = X : = X T] T] T Œ svs[s[s X : = (X : = (X T,T,T  F)]

A . Hence lX.MlX.Ml ´ is in svs
XAXA.

Case ( 2E). This case is similar to the case (Æ E).
Case ($2I). The reduction is I). The reduction is I T, M M M Æ T, M´. By the definition of T, M M M Œsvs

$XA, we have M Œsvs[s[s X : = (X : = (X T,T,T  F)]
A  for 

some F. By IH, we have M´ Œ svs[s[s X : = (X : = (X T,T,T  F)]
A . Hence T,T,T  M´ is in svs

$XA.
Case ($2E). This case is proved in a similar way to the case (E). 

Theorem 4.9  svs
A is a regular As set.

Proof. Proposition 4.7 shows the clause (1) in the definition of regular sets. Proposition 4.8 proves the clause (2). 

Definition 4.10  For an abstraction term T and a set valuation T and a set valuation T s, the regular s, the regular s Ts set function s set function s svs
T is defined by T is defined by T

svs
T (tT (tT  (t (t) = svs

TtTtTt.

Lemma 4.11  (1) If svs
B (1) If svB (1) If sv [X : = (Ts,s,s  svs

T)T)T ] = svs
B [X : = T] T] T  holds for every proper subformula B of A, then M Œ sv s

A 
[X : = (Ts,s,s  svs

T)T)T ]

implies M Œ svs
A [X : = T] T] T .

(2)  If svs
B 

[X : = (Ts,s,s  svs
T)T)T ] = svs

B [X : = T] T] T  holds for every proper subformula B of A, then M Œsvs
A [X : = T] T] T  implies M Œ

svs
A svA sv [X : = (Ts,s,s  svs

T)T)T ].
(3) svs

A (3) svA (3) sv [X : = (Ts,s,s  svs
T)T)T ] = svs

A [X : = T] T] T  holds for every type A.

Proof. Let s´ be s [s [s X : = (X : = (X Ts, s, s svs
T)]. Let T)]. Let T C´ be C [C [C X : = X : = X T] for every type T] for every type T C. We will say the small type condition 

to denote the condition that svs
B [X : = (X : = (X Ts, s, s svs

T)] = T)] = T svs
B [X : = T] T] T  for every proper subformula B of A. We note A (s´) = 

A´s since the both sides are s since the both sides are s A [Y : Y : Y = T,T,T  X :  X :  X = Ts] where s] where s s (s (s YiYiY) = (TiTiT , Fi).
(1) We will use induction on the definition of M Œ svs

Á to prove M Œ svs
Á .

Cases will be listed according to the definition of svs
Á.

Case (Var). The claim holds since M ∫ uA(s´).
Case (Var2) (1) A ∫ XtXtX . The assumption is M Œ svs

X́ t. By the definition of sv, we have M Œ svs
T(t). So M Œ svs

T t
holds by the definition of svs

T. The claim M Œ svs
(Xt)t) ´ is also M Œ svs

T tTtT  by the definition of substitution. by the definition of substitution.t by the definition of substitution.t
Case (Var2) (2) A ∫ YtYtY  and  and t and t Y  X. Both of the assumption and the claim are M Œ F (F (F t) by definition where ) by definition where  s (s (s Y) Y) Y

= (T1T1T , F).
Case (ÆI) I) I lu.M Œ svs

ĆÆD. By the assumption and the definition, for every N Œ svs´C, M [M [M u : = N] is in N] is in N svs
D́. By the 

small type condition, it is equivalent to that for every N Œ svs
C´, M [M [M u : = N] is in svs

D´. Hence we have lu.M Œ
svs

(C Æ D)´.Case (ÆE). By the assumption, E). By the assumption, E MN Æ L implies L implies L L Œ svs
Á. By IH, MN Æ L implies L implies L L Œ svs

A´. Therefore MN is inMN is inMN
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svs
A´ by definition.
Case (E) (M, N, L)u, v Œ svs

Ć. By the assumption and the definition, M Œ SN, N, L Œ svs
Ć, M Æ *C [0, P] 

implies N [N [N u : = P] Œ svs
Ć for every P, and M Æ* C [1, P] implies L [v : = P] Œ svs

Ć for every P. By IH, N, L Œ
svs

C´, M Æ *C [0, P] implies N [N [N u : = P] Œ svs
C´ for every P, and M Æ *C [1, P] implies L [v : = P] Œsvs

C´ for every 
P. Hence we have (M, M, M N, L)u, v svs

C´ by definition.
Cases (&I), (&I), (&I E), (I), (I), (I I), and (I), and (I E) are similarly proved to the previous three cases.
Case ( 2I) I) I lY.M Œ svs´YA. By the assumption and the definition, for every abstraction term T1T1T  and every regularT1

set function F, M [M [M Y : = Y : = Y T1T1T ] Œ svs
Á

[Y : = (Y : = (Y T1, F)] holds. By combining this with the small type condition, we have M [M [M Y : = Y : = Y
T1T1T ] Œ svs[s[s Y : = (Y : = (Y T1, F)]

A´
[
´
[ . Hence we have lY.M Œ svs

( YA)´ by definition.
Case ( 2E) can be proved in the same way as the case (ÆE).
Case ($2I) I) I T1T1T , MMM Œ svs´YA. By the assumption and the definition, we have M Œ svs

Á
[Y : = (Y : = (Y T1, F)] for some regularT1

 set 
function F. By the small type condition, we have M Œ svs

Á´
[Y : = (Y : = (Y T1, F)]. Hence T1T1T , MMM Œ svs

($YA)´ holds by definition.
Case ($2E) (M, M, M N)N)N Y, Y, Y u Œ svs

C´. By the assumption and the definition, M is in M is in M SN, N is in N is in N svs
Ć, and M Æ *C [T1T1T , P] 

implies N [N [N Y : = Y : = Y T1, u : = P] Œ svs
Ć for every T1 and every P. By IH, N is in N is in N svs

C´, and M Æ *C [T1, P] implies N [N [N Y : = Y : = Y
T1T1T , u : = P] Œ svs

C´ for every T1T1T  and every P. Hence we have (M, M, M N)N)N Y, Y, Y u Œ svs
C´ by definition.

Cases ($I) and (I) and (I $E) can be proved similarly to the previous two cases.
 (2) We will show that if we have M Œ svs

C´ then C ∫ A [X : = X : = X T] implies T] implies T M Œsvs [s [s X : = (X : = (X Ts, s, s svs
T)]T)]T

A , by induction on the 
definition of M Œ svs

C.
Cases will be listed according to the definition of M Œ svs

C except the case (Subst).C except the case (Subst).C
Case (Subst) C ∫ TtTtT , A ∫ XtXtX , and , and  M Œ svs

C. By the definition of svs
T, we have svs

C = C = C svs
T (s (s
T (T

t). By the definition of sv, ). By the definition of sv, 
M Œ svs

X́tXtX  holds. holds.t holds.t
Case (Var2) (1) C ∫ YsYsY  [x [x [  : = x : = x t], A ∫ XtXtX , and , and  T ∫ lllxlxl .YsYsY , and M ∫ svs

C. This case is included in Case (Subst).
Case (Var2) (2) C ∫ A ∫ YtYtY , X  Y, and Y, and Y M Œ svs

C. Let s (s (s Y) = (Y) = (Y T0T0T , F). We have M Œ F (F (F t) by the definition of sv. ) by the definition of sv. 
So M Œ svs

Á holds by the definition of sv.
Case (ÆI) (1) I) (1) I C ∫ B1 [x [x [  : = t] Æ B2 [x [x [  : = t], A ∫ XtXtX , T ∫ lllxlxl .B1 Æ B2, and luB1 [x [x [  : = t]s. M Œ svs

B1 [x [x [  : = t] Æ B2 [x [x [  : = t]. This 
case is included in Case (Subst).

Case (ÆI) (2) I) (2) I C ∫ A 1́ Æ A 2́ and A ∫ A1 Æ A2, and luA´1s. M Œ svs
A´1 ÆA´2

. Assume N Œ svs
Á1

. By the small type 
condition for A1, N is in N is in N svs

A 1́
. By the definition of sv, we have M [M [M uA1́ s : = s : = s N] N] N Œ svs

A´2
. By the small type condition 

for A2, M [M [M uA´1s : = s : = s N] is in N] is in N svs
Á2

. Since A1 (s´) ∫ A 1́s, we have s, we have s M [M [M uA1s´ : = N] is in N] is in N svs
Á2. By the definition of sv, 

luA1s´. M Œ svs
Á1 ÆA2

.
Case (ÆE) MN Œ svs

A´. By the definition of sv, we have MN : MN : MN A´s, so we have s, so we have s MN : MN : MN A (s´). Assume MN Æ L. By 
the definition of sv, we have L Œ svs

A´. By IH, L is in L is in L svs
Á. By the definition of sv, we have .́ By the definition of sv, we have ´ MN Œ svs

Á.
Case ( 2I) (1) I) (1) I C ∫ Y (Y (Y B [x [x [  : = x : = x t]), A ∫ XtXtX , T ∫ lllxlxl . YB, and lY.Y.Y M Œ svs

C. This case is included in Case (Subst).
Case ( 2I) (2) I) (2) I C ∫ YB´, A ∫ YB, and lY.M Œ svs

YB´. We can suppose Y is fresh by renaming bound variables. Y is fresh by renaming bound variables. Y
By the definition of sv, M [M [M Y : = Y : = Y T1] is in svs

B´
[Y : = (Y : = (Y T1, F1)] for every abstraction term T1 and every regularT1

 set function 
F1. By the small type condition for B, M [M [M Y : = Y : = Y T1T1T ] is in svs

B́
[Y : = (Y : = (Y T1, F1)]. By the definition of sv, lY.M Œ svs

ÝB.
Case ( 2E) MT Œ svs

A´. By the definition of sv, we have MT : MT : MT A´s, so we have s, so we have s MT : MT : MT A (s´). Assume MT Æ L. By 
the definition of sv, we have L Œ svs

A´ By IH, L is in L is in L svs
Á. By the definition of sv, we have .́ By the definition of sv, we have ´ MT Œ svs

Á.
Other cases can be proved similarly.
(3) We will use induction on A to prove svs

Á = svs
A´. We will prove the claim for A. Then the induction hypothesis 

is that the claim holds for every proper subformula B of A. Suppose M Œ svs
Á. By IH and (1), we have .́ By IH and (1), we have ´ M Œ svs

A´. On 
the other hand, by IH and (2), M Œ svs

A´ implies M Œ svs
Á. Therefore we can conclude .́ Therefore we can conclude ´ svs

Á = svs
A´.        

Lemma 4.12  (1) If M is in svs
A Æ B and N is in svs

A, then MN is in svs
B.

(2) If M is in svs
A&B, then Mp0 is in svs

A and Mps and Mps 1 is in svs
B.

(3) If M is in svs
xAxA and t is a first order term, then Mt is in svs

A[x : = t].
(4) If M is in svs

XXnXnX AnAn  and T is an abstraction term of arity n, then M (Ts) is in svs) is in svs s
A[X : = T].

Proof. (1) We will use induction on (|M|, #M, #M, # , M, M |N|). Assume MN Æ L. We will show L Œ svs
B. Cases will be listed 

according to the reduction.
Case MN Æ M´N. By Proposition 4.8, M´ is in svs

A Æ B. By IH for |M´| < |M|, we have M´N Œ svs
B.

Case MN Æ MN´. This case is similar to the previous case.
Case (lu.M) u.M) u.M N Æ M [M [M u : = N]. By the definition of N]. By the definition of N lu.M Œ svs

A Æ B, we have M [M [M u : = N] N] N Œ svs
B.

Case (M1M1M , M2M2M , M3M3M )u, vNvNv Æ (M1M1M , M2M2M N2N2 , M3M3M N)N)N u, v. Let M be (M be (M M1M1M , M2M2M , M3M3M )u, v. From the assumption M Œ svs
A Æ B, the fol-
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lowing four conditions hold : M1M1M Œ SN, M2M2M , M3M3M Œ svs
A Æ B, M1M1M Æ *C [0, P] implies M2M2M  [u : = P] Œ svs

A Æ B, and M1M1M Æ* 

C [1, P] implies M3M3M  [v : = P] Œ svs
A Æ B. We will show each clause in the definition of (M1M1M , M2M2M N2N2 , M3M3M N)N)N u, v Œ svs

A Æ B.
M1M1M  is in SN by the first condition.
By the second condition, M2M2M  is in svs

A Æ B. By IH for |M2M2M |  |M| and #M and #M and # 2 M2 M < #M< #M< # , we have M, we have M M2M2M N2N2 Œ svs
B.

Similarly we have M3M3M N Œ svs
B.

Assume M1M1M Æ *C [0, P] and we will show (M2M2M N2N2 ) [N) [N u : = P] Œ svs
B. we have

    (M1M1M , M2M2M , M3M3M )u, v Æ *(C [0, P], M2M2M , M3M3M )u, v
Æ *

p C´ [(0, P, M2M2M , M3M3M )u, v]
Æ C´ [M2M2M  [u : = P]].

By Proposition 4.8, C´ [M2M2M  [u : = P]] is in svs
A Æ B. By the definition of sv, M2M2M  [u : = P] is in svs

A Æ B. From the 
above, we also have |M2M2M  [u : = P]| < |(M1M1M , M2M2M , M3M3M )u, v|. By IH for |M2M2M  [u : = P]| < |(M1M1M , M2M2M , M3M3M )u, v|, we have M2M2M  [u : = 
P] N Œ svs

B, that is, (M2M2M N2N2 ) [N) [N u : = P] Œ svs
B. Hence M1M1M Æ *C [0, P] implies (M2M2M N2N2 ) [N) [N u : = P] Œ svs

B.
Similarly M1M1M Æ *C [1, P] implies (M3M3M N) [N) [N v : = P] Œ svs

B.
Hence we have (M1M1M , M2M2M N2N2 , M3M3M N)N)N u, v Œ svs

A Æ B, since each clause in its definition has been shown.
Case (M1M1M , M2M2M )a, u N Æ (M1M1M , M2M2M N)N)N a, u where a is a is a x or X. This case can be proved in a similar manner to the previ-

ous case.
We have proved that MN Æ L implies L implies L L Œ svs

B for every L. Therefore MN Œ svs
B holds by definition.

(2) This claim can be proved similarly to the claim (1).
(3) This claim can be proved in the same way as the claim (4).
(4) We will use induction on (|M|, #M). Assume M). Assume M M (M (M Ts) s) s Æ N. We will show N Œ svs

A [X : = X : = X T ]. Cases will be listed 
according to the reduction.

Case M (M (M Ts) s) s Æ M´ (Ts). By Proposition 4.8, s). By Proposition 4.8, s M´ is in svs
XAXAX . By IH for |M´| < |M|, we have M´ (Ts) s) s Œ svs

A [X : = X : = X T]T]T .
Case (lX.MlX.Ml ) (X.M) (X.M Ts) s) s Æ M [M [M X : = X : = X Ts]. By letting s]. By letting s T be T be T Ts and s and s F be F be F svs

T in the definition of T in the definition of T lX.MlX.Ml Œ svs
XXAXAX , we have M [ M [ M

X : = X : = X Ts] s] s Œ svs [s [s X : = (X : = (X Ts, s, s svs
T)]T)]T

A . By Lemma 4.11 (3), we have M [M [M X : = X : = X Ts] s] s Œ svs
A [X : = X : = X T]T]T .

Case (M1M1M , M2M2M , M3M3M )u, v (Ts) s) s Æ (M1M1M , M2M2M  (Ts), s), s M3M3M  (Ts))s))s u, v. From the definition of (M1M1M , M2M2M , M3M3M )u, v Œ svs
XXAXAX , the fol-

lowing four conditions hold : M1M1M  is in SN, M2M2M , M3M3M  are in svs
XXAXAX , M1M1M Æ *C [0, P] implies M2M2M  [u : = P] Œ svs

XXAXAX , and 
M1 Æ *C [1, P] implies M3M3M  [v : = P] Œ svs

XXA. We will show each clause in the definition of (M1, M2M2M  (Ts), s), s
M3M3M  (Ts))s))s u, v Œ svs

A [X : = X : = X T]T]T .
M1M1M  is in SN by the first condition.
M2M2M  is in svs

XXAXAX  by the second condition. By IH for A by the second condition. By IH for A |M2M2M |  |(M1M1M , M2M2M , M3M3M )u, v| and #M2M2M  < #(M1M1M , M2M2M , M3M3M )u, v, we have 
M2M2M (Ts) s) s Œ svs

A [X : = X : = X T]T]T .
Similarly we have M3M3M  (Ts) s) s Œ svs

A [X : = X : = X T]T]T .
Assume M1M1M Æ *C [0, P]. Then we have

    (M1M1M , M2M2M , M3M3M )u, v Æ *(C  [0, P], M2M2M , M3M3M )u, v
Æ *

p C´ [(0, P, M2M2M , M3M3M )u, v]
Æ C´ [M2M2M  [u : = P]].

By Proposition 4.8, we have C´ [M2M2M  [u : = P]] Œ svs
XXAXAX . By the definition of sv, we have M2M2M  [u : = P] Œ svs

XXAXAX . 
From the above, |M2M2M  [u : = P]| < |(M1, M2M2M , M3M3M )u, v| holds. By IH for M2M2M  [u : = P], we have M2M2M  [u : = P] (Ts) s) s Œ
svs

A [X : = X : = X T]T]T , that is, (M2M2M  (Ts)) [s)) [s u : = P] Œ svs
A [X : = X : = X T]T]T . Hence M1M1M Æ *C [0, P] implies (M2M2M  (Ts)) [s)) [s u : = P] Œ svs

A [X : = X : = X T]T]T .
Similarly M1M1M Æ *C [1, P] implies (M3M3M  (Ts)) [s)) [s v : = P] Œ svs

A [X : = X : = X T]T]T .
We have shown each condition in the definition, so we can conclude (M1M1M , M2M2M  (Ts), s), s M3M3M  (Ts))s))s u, v Œ svs

A [X : = X : = X T]T]T .
Case (M1M1M , M2M2M )a, u (Ts) s) s Æ (M1M1M , M2M2M  (Ts))s))s a, u where a is a is a x or X. This case can be proved in the same way as the pre-

vious case.
We have proved that M (M (M Ts) s) s Æ N implies N implies N N Œ svs

A [X : = X : = X T]T]T  for every N. Hence M (M (M Ts) is in s) is in s svs
A [X : = X : = X T]T]T  by definition. 

Definition 4.13  A first order valuation is a mapping that maps a first order variable to a first order term. A valu-
ation is a mapping that maps a term variable uA to a term of type A.

For a first order valuation t and a term t and a term t M, M, M Mt is defined as t is defined as t M [M [M x1 : = t (t (t x1),..., xn : = t (t (t xn)] where all the free first 
order variables in M are M are M x1,..., xn. For a first order term t, a formula A, and an abstraction term T, T, T tt, t, t At, and t, and t Tt are t are t
defined in the same way as for MtMtM .t.t

For a valuation r and a term r and a term r M, M, M MrMrM  is defined as r is defined as r M [M [M u1 : = r (r (r u1),..., un = r (r (r un)] where all the free term variables 
in M are M are M u1,..., un.
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For a set valuation s and a term s and a term s M, M, M Ms is defined as s is defined as s M [M [M X1 : = T1T1T ,..., XnXnX  : = TnTnT ] where the free predicate variables 
in M are M are M X1,..., XnXnX  and s (s (s X (X ( iXiX ) = (TiTiT , Fi).

The valuation r [uA : = M] is defined by (M] is defined by (M r [uA : = M]) (M]) (M uA) = M and (M and (M r [uA : = M]) (M]) (M vB) = r (vB) if uA  vB. The 
first order valuation t [t [t x : = x : = x t] is defined similarly. We will write MtsrMtsrM  to denote ((tsr to denote ((tsr MtMtM ) t) t s) s) s r. We will also use ttsr, 
Atsr, and Ttsr in a similar way. Note that tsr in a similar way. Note that tsr tsr is always sr is always sr t, Ar is always r is always r A, and TrTrT  is always r is always r T.T.T

Note that (uA) [X : = X : = X T] T] T ∫ uA [ X : = T ].

Theorem 4.14  For any set valuation s, any valuation s, any valuation s r, and any first order valuation t, if M : A is provable and t, if M : A is provable and t
r (ur (ur Bts) is in svts) is in svts s

Bt for every free term variable ut for every free term variable ut
B of M, then we have Mtsr of M, then we have Mtsr of M, then we have M  svs

At .

Proof. We will use induction on the proof of M : M : M A. We will consider cases according to the last rule used in the 
proof.

Case (Assumption). The proof is uA : A. By the assumption, we have uAtsr = tsr = tsr r (r (r uAts) ts) ts  svs
At.

Case (ÆI). The proof isI). The proof isI
       [uA : A]

: 
:

M : M : M B
—
luA. M : M : M A Æ B

Assume N  svs
At. Let r´ be r[uAts : = ts : = ts N]. By IH, we have N]. By IH, we have N Mtsr´  svs

Bt, that is, (Mtsr) [uAts : = ts : = ts N]. Then N]. Then N N 
svs

At implies (t implies (t MtsrMtsrM ) [uAts : = ts : = ts N] N] N  svs
Bt. Hence we have luAts. MtsrMtsrM  svs

At Æ Bt, that is, (luA. M) M) M tsr  svs
(A Æ B) t.

Case (ÆE). The proof is
M : M : M A Æ B   N : N : N A
—

MN : MN : MN B
By IH, we have Mtsr  svs

(A Æ B)t and t and t Ntsr  svs
At. By Lemma 4.12 (1), we have (Mtsr) (Ntsr)  svs

Bt, that is, 
(MN) MN) MN tsr  svs

Bt.
Case (&I). The proof isI). The proof isI

M : M : M A      N : N : N B
—

M, NM, NM, N  : A & B
By IH, we have Mtsr  svs

At and t and t Ntsr  svs
Bt. By the definition of sv, we have Mtsr, Ntsr  svs

At & t & t Bt, that is,
M, M, M NNN tsr  svs

(A&B)t.
Case (&E1). The proof is

M : M : M A & B
—

Mp0 : A
By IH, MtsrMtsrM  is in tsr is in tsr svs

(A&B)t. By Lemma 4.12 (2), we have (MtsrMtsrM ) p0  svs
At, that is, (Mp0) tsr  svs

At.
Case (&E2). This case is similar to the previous case.
Case ( I). The proof isI). The proof isI

M : M : M A
—

lx. Mlx. Ml  : x. M : x. M xAxA
Assume that t is a first order term. We can suppose that t is a first order term. We can suppose that t x is fresh by replacing every free occurrence of x in the 
proof by a fresh variable and renaming bound variables. Let t´ be t[t[t x : = x : = x t]. By IH, we have MtMtM ´sr  svs

A(t´), that is, 
(Mtsr) [x : = t]  svs

(At)[x : = t]t)[x : = t]t  by the variable condition. Hence ()[x : = t] by the variable condition. Hence ()[x : = t] Mtsr)[x : =t]  svs
(At) [t) [t x : = t] holds for any first order 

term t. Then by definition we have lx. Mlx. Ml tsrx. Mtsrx. M  svs
x (x (x At)t)t , that is, (lx. Mlx. Ml )x. M)x. M tsr  svs

( xA)xA)t.
Case ( E). The proof is

M : M : M xAxA
—
Mt : Mt : Mt A[x : = x : = x t]

We can suppose that x is fresh by renaming bound variables. By IH, x is fresh by renaming bound variables. By IH, x MtsrMtsrM  is in tsr is in tsr svs
( xA)xA)t. By letting t be t be t tt in Lemma t in Lemma t

4.12 (3), we have (MtsrMtsrM ) (tt) t) t  svs
(At) t) t [x : = tt]t]t , that is, (Mt)tsr  svs

A[x : = t]t.
Case (I). This case is similar to the case (&I). This case is similar to the case (&I I).I).I
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Case (E). The proof is
                       [uA : A]     [vB : B]

: 
:

: 
:

M : M : M A  B       N : N : N C         C         C L : L : L C
——

(M, M, M N, L) uA, vB : C
We will show each clause in the definition of (MtsrMtsrM , Ntsr, Ltsr) uAts, vBts  svs

Ct.
By IH, MtsrMtsrM  is in tsr is in tsr svs

(AB)t. By Proposition 4.7, MtsrMtsrM  is in SN.tsr is in SN.tsr
By IH, Ntsr and tsr and tsr Ltsr are in tsr are in tsr svs

Ct.
Assume Mtsr Æ * C [0, P]. By Proposition 4.8, C [0, P] is in svs

(AB)t. By the definition of sv, 0, P is in 
svs

(AB)t, so P is in svs
At by definition. Let t by definition. Let t r´ be r[uAts : = ts : = ts P]. Then, by IH, we have Ntsr´  svs

Ct, that is, (Ntsr) [ 
uAts : = ts : = ts P]  svs

Ct. Hence we can conclude that MtsrMtsrM Æ * C [0, P] implies (Ntsr) [uAts : = ts : = ts P]  svs
Ct.

Similarly we can prove that MtsrMtsrM Æ * C [1, P] implies (Ltsr) [vBts : = ts : = ts P]  svs
Ct.

Since we have shown each condition in the definition, we have (Mtsr, Ntsr, Ltsr) uAts, vBts  svs
Ct, that is, (M, M, M

N, L)uA, vBtsr  svs
Ct.

Case ($I). The proof isI). The proof isI
M : M : M A [x : = x : = x t]
—

t, MMM  : $xA
We can suppose that x is fresh by renaming bound variables. By IH, we have Mtsr  svs

A[x : = t]t, that is, Mtsr 
svs

(At)t)t [x : = tt]t]t . Hence we have tt, t, t MtsrMtsrM   svs
$x(At)t)t , that is, t, MMM tsr  svs

($xA)t.
Case ($E). The proof is

                    [uA : A]
: 
:

M : M : M $xA       N : N : N C
—

(M, M, M N)N)N x, uA : C
We can suppose that x and uB are fresh for any type B by replacing every occurrence of x and uB in the proof by 
fresh variables and renaming bound variables. By IH, Mtsr is in svs

($xA)t. By Proposition 4.7, Mtsr is in SN. By 
IH, Ntsr is in tsr is in tsr svs

Ct.
Assume Mtsr Æ * C [t, P]. By Proposition 4.8, C [t, P] is in svs

($xA)t. By the definition of sv, we have t, P 
svs

($xA)t. Therefore P is in svs
(At)[t)[t x : = t] by the definition of sv. Let t´ be t[x : = t] and r´ be r[u(At) [t) [t x : = t]s : = s : = s P]. By IH, 

we have Nt´sr´  svs
Ct´. From the variable condition, Nt´sr´ = Ntsr [x : = t, uAts : = ts : = ts P] and Ct´ = Ct hold. Then t hold. Then t

we have (Ntsr) [x : = x : = x t, uAts : = ts : = ts P]  svs
Ct. Hence MtsrMtsrM Æ * C [t, P] implies (Ntsr) [x : = x : = x t, uAts : = ts : = ts P]  svs

Ct.
Since we have shown each condition in the definition, we have (Mtsr, Ntsr)x, uAts  svs

Ct, that is, (M, M, M N)N)N x, uAtsr
 svs

Ct.
Case ( 2I). The proof isI). The proof isI

M : M : M A
—

lXlXl nXnX . M : . M : . M XXnXnX AnAn

Assume that T is an abstraction term of arity T is an abstraction term of arity T n and F is a regularF is a regularF T set function. We can suppose that T set function. We can suppose that T X is fresh by X is fresh by X
replacing every occurrence of X in the proof by a fresh variable and renaming bound variables. Let X in the proof by a fresh variable and renaming bound variables. Let X s´ be s [s [s X : = X : = X
(T, F)]. By IH, we have Mts´r  svs´At. By the variable condition, we have (Mtsr) [X : = X : = X T] T] T  svs´At. Hence 
(MtsrMtsrM ) [X : = X : = X T] T] T  svAt

s[s[s X : = (T, F)] holds for any T and any T and any T F. Then by definition we have lX. MlX. Ml tsrX. MtsrX. M  svs
X (AX (At)t)t , that is, 

(lX. MlX. Ml ) X. M) X. M tsr  svs
( XAXA)t.

Case ( 2E). The proof is
M : M : M XAXA

—
MT : MT : MT A [X : = X : = X T]T]T

By IH, Mtsr is in tsr is in tsr svs
( XAXA)t. By letting T be T be T Tt, t, t M be M be M Mtsr, and A be At in Lemma 4.12 (4), we have (t in Lemma 4.12 (4), we have (t Mtsr) (Tts) ts) ts

Œ svs
(At) [ t) [ t X : = X : = X Tt ] , that is, (MT)MT)MT tsr  svs

A [ X : = X : = X T ] t.
Case ($2I). The proof is I). The proof is I
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M : M : M A[X : = X : = X T]T]T
—
T, T, T MMM  : $XA

We can suppose that X is fresh by renaming bound variables. By IH, we have X is fresh by renaming bound variables. By IH, we have X Mtsr  svs
A[X : = X : = X T]T]T t, that is, Mtsr 

svs
(At)[t)[t X : = X : = X Tt ] . By Lemma 4.11 (3), we have Mtsr  svAt

s[s[s X : = (Tts, svts, svts s
Tt)]t)]t . Hence we have Tts, ts, ts Mtsr  svs

$X(At)t)t , that is, 
T, T, T MMM tsr  svs

($XA)t.
Case ($2E). The proof is

                    [uA : A]
: 
:

M : M : M $XA    N : N : N C
——

(M, M, M N)N)N X, uA : C
We can suppose that X and X and X uB are fresh for any type B by replacing every occurrence of x and uB in the proof by 
fresh variables and renaming bound variables. We will show each condition in the definition (Mtsr, Ntsr)X, uAts 
svs

Ct. By IH, MtsrMtsrM  is in tsr is in tsr svs
($XA)t. By Proposition 4.7, MtsrMtsrM  is in SN. By IH, tsr is in SN. By IH, tsr Ntsr is in tsr is in tsr svs

Ct.
Assume MtsrMtsrM Æ * C [ T, P ]. By Proposition 4.8, C [ T, P ] is in svs

($XA)t. By the definition of sv, we have T, 
P  svs

($XA)t. Therefore by the definition of sv we have P  svAt
s [X : = (T, F)] for some regularT set function T set function T F. Let s´ be 

s [s [s X : = (X : = (X T, T, T F)] and r´ be r[uAts [X : = T] : = [X : = T] : = [X : = T] P]. By IH, we have Nts´r´  svs´Ct. From the variable condition, Nts´r´
= Ntsr [X : = X : = X T, uAts : = ts : = ts P] holds and X does not occur in X does not occur in X Ct. Then we have t. Then we have t svs´Ct = t = t svs

Ct by Lemma 4.11 (3). By t by Lemma 4.11 (3). By t
combining them, we have (Ntsr) [X : = X : = X T, T, T uAts : = ts : = ts P]  svs

Ct. Hence Mtsr Æ * C [T, T, T P] implies (Ntsr) [X : = X : = X T, T, T
uAts : = ts : = ts P]  svs

Ct for every t for every t T and every T and every T P.
Since we have shown each condition in the definition, we have (MtsrMtsrM , Ntsr) X, uAts  svs

Ct, that is, (M, M, M N)N)N X, uAtsr
 svs

Ct.    

Theorem 4.15 (Strong normalization)  If M is a term of NJ2If M is a term of NJ2If M is a term of NJ , then M is strongly normalizable.
Proof. Suppose M : M : M A. Let the first order valuation t and the valuation t and the valuation t r be the identity function. Define the set 

valuation s by s by s s (s (s X) = (X) = (X X, SNXSNXSN ). Then, by Theorem 4.14, we have Mtsr  svs
At, that is, M  svs

A. By Proposition 
4.7, M is in SN.    M is in SN.    M
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