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ABSTRACT
This paper presents an expressive bidirectional XML transformation language and uses it
to address the problem of updating XML data through materialized XQuery views. The
transformations of this bidirectional language can be executed in two directions: in the for-
ward direction, they generate materialized views from XML source, while in the backward
direction, they update the source by reflecting back the updates on views. When XQuery is
interpreted with this bidirectional language, it can query XML in its forward execution, and
update XML source after its backward execution.

We propose the extended round-tripping property for characterizing the good behavior of
bidirectional transformations. This property is more flexible for an expressive bidirectional
transformation language. The difficulties of updating view insertions are analyzed with de-
tailed examples, and the type information is novelly used to guide backward transformation
when views include insertions. A type system with recursive regular expression types for
XML is designed for this bidirectional language. Well-typed programs preserve the source
type after backward executions. A prototype of our approach is implemented and tested on
a number of XQuery use cases.
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1 Introduction
XQuery [1] is a powerful functional language designed to query XML data. The role of XQuery to XML is just

like that of SQL to relational databases. However, XQuery still lacks an important feature that SQL has. This feature
is view update [2]–[4], which means that updates on a view can be reflected back to the underlying relational database
that makes up this view. In other words, XQuery can generate views from XML source data, but it cannot propagate
view updates back into the source data.

This paper presents a translational semantics for XQuery with a bidirectional transformation language. In this
bidirectional language, every program can be executed in two directions: in the forward direction, it produces a
materialized view from the source data; while in the backward direction, it updates the source data by reflecting back
the updates on the view. By this way, every XQuery expression can be executed in two directions, and the backward
execution will put the updates on views back into the source data.

There have been a number of bidirectional languages designed recently such as [5]–[12]. These languages show
that the method originally proposed in [5] is powerful to design bidirectional languages applicable to many domains.
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However, there is no a bidirectional language that is systematically designed and used to interpret a language as
expressive as XQuery. In [13], we designed a bidirectional language that is expressive enough to interpret XQuery
by defining the bidirectional semantics of variable binding and primitive XML processing combinators. However,
the language in [13] can only deal with modifications and deletions on views.

In this paper, we present a more expressive bidirectional language extended from [13] to interpret XQuery. This
language is designed to support three kinds of updates to XQuery views: modification, insertion, and deletion. The
insertions on views are more tricky to transform backward than modifications and deletions. This is because inserted
values do not have counterparts in the original source data. Hence, it is difficult to determine the structure of the
updated source data without the information derived from the original source data for where and how to put back
inserted values. In this work, we address this problem by exploiting the types of the sources and views to provide
guiding information for putting inserted values back in a reasonable way.

The transformations in our bidirectional language exploit types to deal with insertions. Since these transformations
are expected to be generated by automatic translation of XQuery expressions, they are always longer and harder to
understand than high-level XQuery expressions. It is not desirable to ask programmers to annotate types manually.
To increase the usability of our language, we design a type system with recursive regular expression types for this
bidirectional language. Given a transformation of this language and the type of source data, the type system can
check whether this transformation is well-typed, and if yes, it generates the corresponding view type and annotates
this transformation with appropriate type information.

Moreover, our type system annotates accurate type information to the transformation, for example, by considering
the choice of path in a conditional transformation. A view insertion may not be put back successfully if the annotated
type is not accurate enough. This type system is sound with respect to the forward semantics of the language, that
is, a well-typed program does not get stuck in its forward execution and generates the view with the correct view
type. The backward executions of well-typed programs may fail even if the updated views have correct view types
since views may include conflicting or improper updates, which cannot be detected statically by this type system.
For successful backward executions, well-typed transformations preserve the types of their source.

For an expressive bidirectional language, it is hard to define the property for characterizing the good behavior
of bidirectional transformations. The existing bidirectional languages [5]–[9], [12] mainly adopt the round-tripping
property, which is proposed in [2], [3] for relational view update. The round-tripping property says if the source is
updated with respect to an updated view, then executing the same query on the updated source should get a view
identical to the updated view. However, the round-tripping property is not suitable for our bidirectional language.
Actually, this property is also too limited to be accepted in practice by major database management systems, such
as Microsoft SQL Server and Oracle DB. This property is violated if a view includes replicas of values (i.e., the
dependency in view [14]) and one replica is updated. Value replicas are very common in views generated by joining
two tables in a database or two pieces of XML data.

In this paper, we propose the extended round-tripping property for our bidirectional language. This property does
not require the updated view and the view generated from the updated source data be identical, or does not relate the
two views in an identical relation. Instead, it relates the two views in an update-keeping relation, which requires all
updates in the two views be kept or changed in a reasonable way.

The extended round-tripping property is not as limited as the round-tripping property. However, it is still not easy
to design our bidirectional language with the extended round-tripping property satisfied. The problem lies in the
semantics of the conditional transformation, which has two transformation branches. The conditional transformation
must ensure that the same branch is executed to reflect back updates and query the original and updated source,
such that the updated view and the new view from the updated source are generated by the same transformation.
The extended round-tripping property makes sense and can be proved inductively only when two views are from
the same transformation. This same-branch requirement is hard to satisfy because a conditional transformation in
our language may refer to variables in its condition and cannot know whether the variables are updated, leading
to a changed condition and hence a changed branch selection, by other transformation executed in parallel. In this
paper, we refine the data model by tagging values with modification indicators, which are used by the conditional
transformation to indicate allowed modifications to the values in its condition, such that other transformations cannot
update such values to unexpected ones.

The main technical contributions in this paper are summarized as follows.

• We design a bidirectional language expressive enough to interpret XQuery and able to support in particular
view insertions. For this expressive bidirectional language, we propose the extended round-tripping property
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for characterizing view updating semantics. The translation from XQuery Core to the bidirectional language is
presented.

• We design a type system with recursive regular expression types for this bidirectional language. The types are
novelly used to guide the backward execution of transformations to put updates in a reasonable way. This type
system is sound with respect to the forward semantics of this language, and ensures well-typed transformations
preserve the types of their source data after backward execution.

• We have implemented our approach and applied it to some XQuery use cases from a W3C draft [15]. There are
detailed examples designed to discuss and explain the bidirectional semantics of our language, the type system,
the language property and the difficulties of processing view insertions.

The remainder of the paper is organized as follows. Section 2 gives an example to illustrate our motivation. Section
3 defines the bidirectional language without considering insertions on views and Section 4 proves the properties of
this language. Section 5 interprets XQuery with the bidirectional language. Section 6 presents the type system.
Section 7 discusses the insertion problems and revises the bidirectional semantics of the language for supporting
insertions according to the annotated types. Section 8 introduces our implementation. Section 9 and 10 give the
related work and conclusions of the paper, respectively.

2 A motivating example
We explain the motivation of this work by the XQuery expression in Figure 1, which is an example from W3C

XML Query Use Cases [15]. Suppose the file “book.xml” contains the source data in Figure 2. When executing the
query in Figure 1, we get the view in Figure 2, which can be regarded as the table-of-contents of the source data.

On this view, users may expect to do some updates, such as modifying titles or attributes, inserting or deleting
sections. For example, we change the subsection title of the first section on the view from “Audience” into “Prospec-
tive Readers”, and insert a new section after the second section. Obviously, the updated view and the source data
currently contain inconsistent information. With bidirectional interpretation of XQuery, this problem can be easily
solved. We just need to execute backward the query in Figure 1 and then the updates on the view will be reflected
back to the source file. That is, the subsection title of the first section in the file “book.xml” becomes “Prospective
Readers” and the second section is followed by a newly inserted section. This example can be found at [16].

3 The bidirectional language
In this section, we define the bidirectional language for interpreting XQuery. The backward semantics of the

language in this section does not consider insertions on views (also called target data). In Section 7, we will discuss
the problems encountered when views include insertions and revise the language semantics to support insertions.

3.1 The representation of data
Figure 3 gives the syntax of source data and target data, denoted by S or T , which is either an empty sequence () or

a sequence V of strings or XML elements. To save space, the end tags of XML elements are omitted and their contents
are enclosed by brackets. For example, the element <author>Tom</author> is represented as <author>[Tom]. This
form is borrowed from [17]. Two sequences S 1 and S 2 can be concatenated as a longer sequence, written as S 1, S 2,
or sometimes S 1, S 2 for clarity. We have (), S = S and S , () = S .

declare function local:toc($book-or-section)

{
for $section in $book-or-section/section return

<section>

{$section/@id, $section/title, local:toc($section)}
</section>

};
<toc>

{ for $s in doc("book.xml")/book return local:toc($s)}
</toc>

Fig. 1 The motivating XQuery expression.
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<book>

<title>Data on the Web</title>

<author>Serge</author>

<author>Peter</author>

<author>Dan Suciu</author>

<section id="intro" difficulty="easy">

<title>Introduction</title><p>Text ... </p>

<section>

<title>Audience</title><p>Text ... </p>

</section>

</section>

<section id="syntax" difficulty="medium">

<title>A Syntax For Data</title><p>Text ... </p>

</section>

</book>

1) The Source Data

<toc>

<section id="intro">

<title>Introduction</title>

<section><title>Audience</title></section>

</section>

<section id="syntax">

<title>A Syntax For Data</title>

</section>

</toc>

2) The View

Fig. 2 The XML source data.

S ,T ::= () | V

V ::= v, V

v ::= str(u,o) | <tag(w,o)>[S ]

u ::= ori(i) | mod | ins | del
w ::= ori | ins | del
o ::= s | c
i ::= � | ↑ | ↓ | •

Fig. 3 Syntax of data.

Strings or elements are annotated with a pair (u, o) or (w, o), in which u and w indicate their updating states, and
o denotes their origins. The origin annotation o is either s for values originating from source data or c for values
originating from code. For example, if a program outputs a hard-coded string, then this string is said to have an origin
from code. The updating annotation ins (del) are used for inserted (deleted) strings or elements. A string can be
modified and the annotation mod is for modified strings. Strings or elements in their original states are annotated by
ori(i) or ori, respectively. The modification to a string with ori(i) is instructed by the modification indicator i. The
indicator i can be �, ↑, ↓ or •, which means respectively that the annotated string can be modified to any other string,
to a bigger string, to a smaller string or to the current string (that is, no modification allowed). Strings are compared
in alphabetical order. For values with the origin c, their updating annotations can only be ori(•) or ins for strings,
or ori or ins for elements since such values come from code and hence cannot be changed. However, they still
can be inserted on views together with values from source data. This requirement is reflected in the semantics of the
bidirectional language.

In this work, after backward executions, the annotation del is propagated from values on views back to their
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X ::= xid | xconst T | xvar Var | xchild | xsetcnt X

| X1; X2 | X1‖X2 | xmap X | xif P X1 X2

| xlet Var X | xfunapp fname [X1, ..., Xn]

P ::= xeq X1 X2 | xgt X1 X2 | xlt X1 X2 | xwithtag str | xiselement
G ::= · | G, fun fname(Var1, ..., Varn) = X

Fig. 4 Syntax.

origins (called provenance in [18]) in the source data. These values can then be removed by an independent procedure
like such as the database trigger, which may take into account some application-specific constraints on the source
data to determine what values should be really removed. For example, suppose a title element in the source data
in Section 2 is annotated with del. Then it is reasonable to remove the whole section element containing this title
if the schema of the source data asks a section must include a title.

3.2 Syntax of the language
The syntax of our bidirectional language is defined in Figure 4, where Var and fname represent the variable

names and function names, respectively. Each language construct there represents a bidirectional transformation
between source data and views. The transformations xid and xconst are for identity and constant transformations,
respectively. The transformations xchild and xsetcnt are used to deconstruct or construct XML elements. The
conditional transformation is represented by xif. The transformation X1; X2 is to execute X1 and X2 sequentially
with the view of X1 as the source data of X2, while the transformation X1‖X2 executes X1 and X2 independently with
their views combined together as the final view. The transformation xmap applies its component transformation X to
each item in its source data, corresponding to the map function in functional programming. The constructs xlet and
xvar provide the mechanism for variable binding and variable reference, just like the let and variable expressions in
conventional functional languages. The function applications are represented by xfunapp and functions are declared
in G. Other language constructs, such as those to deal with element attributes or name spaces, are included in the
language implementation, but omitted in this paper for brevity.

3.3 Evaluation environments
This language has forward and backward semantics, so we need two evaluation environments, one for forward

semantics, and the other for backward semantics. The environment for forward semantics is denoted by C, which
maps variables to values; the environment for backward semantics is denoted by E, which maps variables to pairs of
values. If in the environment E a variable Var is bound to a pair (S , S ′), then S is the original value of Var, and S ′ is
the updated value of Var during backward executions.

An empty environment is represented by a period ·. We can build new environments by concatenating environ-
ments and variable bindings with the comma operator. For example, the new environment C1,Var �→ S ,C2 is the
result of concatenating the environment C1, the binding Var �→ S , and the environment C2. For clarity, this new
environment is also written as C1,Var �→ S ,C2.

For an environment E, the notation E.1 denotes an environment which maps every variable in E to the first com-
ponent of the pair bound to this variable by E. Formally, E.1 is defined as : 1) if E = ·, then E.1 = ·; and 2) if
E = E′,Var �→ (S , S ′), then E.1 = E′.1,Var �→ S . Similarly, the notation E.2 denotes an environment which maps
every variable in E to the second component of the pair mapped by E for this variable. Dom(E) (or Dom(C)) means
the domain of E (or C).

The forward and backward semantics of each language construct is defined in the following forms, respectively.

• The forward semantics: [[X]]C(S) = T , meaning that applying X to the source S generates the view T under the
environment C.

• The backward semantics: [[X]]E(S, T ′) = (S ′,E′), meaning that under the environment E, applying X to the up-
dated target data T ′ and the original source data S generates the updated source data S ′ and a new environment
E′.

The above two forms are applicable to successful forward and backward executions of X. If its executions get
stuck, X returns the special value fail.
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mg((), ()) = ()

mg(str(u,o), str(u,o)) = str(u,o)

mg(str(ori(�),s), str ′(u,s)) = str ′(u,s)

mg(str(ori(↑),s), str ′(mod,s)) = str ′(mod,s), if str ′ > str

mg(str(ori(↓),s), str ′(mod,s)) = str ′(mod,s), if str ′ < str

mg(str(ori(↑),s), str(ori(↓),s)) = str(ori(•),s)

mg(str(ori(•),s), str(ori(i),s)) = str(ori(•),s)

mg(str(del,s), str(ori(i),s)) = str(del,s)

mg(<tag(w,o)>[S1], <tag(w,o)>[S2]) = <tag(w,o)>[mg(S1, S2)]

mg(<tag(ori,s)>[S1], <tag(del,s)>[S2]) = <tag(del,s)>[mg(S1, S2)]

mg(v1, S1, v2, S2) = mg(v1, v2), mg(S1, S2)

mg(S1, S2) = mg(S2, S1), if one case above applies to mg(S2, S1)

mg(S1, S2) = fail, if no other case applies

Fig. 5 The mg operator.

3.4 Semantics of the language
We will define the forward and backward semantics for each language construct in Figure 4.

Identity transformation: This transformation keeps the (updated) source data and the (updated) view identical in
both directions. It is just the identity lens in [5] except for the evaluation environments.

[[xid]]C(S) = S
[[xid]]E(S, T) = (T,E)

Constant transformation: This transformation returns its argument Tc for any source data in the forward execution.
Tc must be (), str(ori(•),c) or <tag(ori,c)>[()]. Together with other constructs, more complex constant views can be
generated. In the backward direction, since the target data Tc is not allowed to change, this transformation just returns
the original source data and evaluation environment. The special value failmay be generated by this transformation
or other transformations defined later. One occurrence of fail will cause the whole transformation being executed
to terminate immediately with the value fail returned.

[[xconst Tc]]C(S) =

{
Tc, if Tc ∈ {(), str(ori(•),c), <tag(ori,c)>[()]}
fail, otherwise

[[xconst Tc]]E(S, T) =

{
(S ,E), if Tc = T
fail, otherwise

Variable reference: The forward execution of xvar hides the source data S and returns the value of the variable
Var as the view. In its backward execution, the source data is not changed, and instead the value of the variable Var
in E is updated. In the new environment E′, the mg operator, defined in Figure 5, is used to merge the updates within
S 2 and T ′. When merging two replicas of modified strings, the mg operator allows only one of them is modified
or both of them are modified into the same value. In addition, the change to the modified string must be consist
with the modification indicator tagged on the unmodified string. Otherwise, there is a modification conflict. Note
that S 1 is the original value of Var, which is needed at such cases as defining the backward semantics of sequential
composition and merging values that include insertions.

[[xvar Var]]C(S) =

{
T, if C = C1,Var �→ T,C2 and Var � Dom(C2)
fail, otherwise

[[xvar Var]]E(S, T ′) =

{
(S ,E′), if E = E1,Var �→ (S 1, S 2),E2 and Var � Dom(E2)
fail, otherwise

where E′ = E1,Var �→ (S 1, mg(S 2, T ′)),E2
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For view updating of XQuery, it is possible that one source value has several replicas, which
may contain different updates. The merging operator mg returns a new value that combines all
updates within two replicas if there are no conflicting updates. For example, merging elements
<title(ori,s)>[xquerie(ori(�),s)] and <title(ori,s)>[XQuery(mod,s)] will generate the element <title(ori,s)>[XQuery(mod,s)],
while merging<price(ori,s)>[30(mod,s)] and <price(ori,s)>[25(mod,s)] will cause a conflict and thus terminate the current
transformation by generating fail.

Element deconstruction: This transformation deconstructs an element and returns its contents in the forward ex-
ecution. If the source data is not an element, it will fail. In the backward execution, it replaces the contents of the
source element with the updated contents.

[[xchild]]C(S ) =

{
S ′, if S = <tag(w,o)>[S′]
fail, otherwise

[[xchild]]E(S , T ) =

{
(<tag(w,o)>[T ],E), if S = <tag(w,o)>[S′]
fail, otherwise

Element construction: The source data of this transformation is also required to be an element. In its forward
execution, the contents of the source element are transformed by the component transformation X, and then the
generated result will be used as the new contents of the source element. This procedure is reversed in the backward
execution. The backward execution of X generates the updated contents for the source element.

[[xsetcnt X]]C(S ) =

{
<tag(w,o)>[[[X]]C(S ′)], if S = <tag(w,o)>[S′]
fail, otherwise

[[xsetcnt X]]E(S , T ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(<tag(w′,o)>[S ′′],E′), if S = <tag(w,o)>[S′], T = <tag(w′ ,o)>[T ′] and

(S ′′,E′) = [[X]]E(S ′, T ′)
fail, otherwise

Sequential composition: This transformation takes two component transformations X1 and X2 and applies them
one by one. This definition is the same as that in [5] except that the definition here takes into account the evaluation
environments. The backward execution of X2 needs to invoke the forward execution of X1 under the environment
E.1 to generate the intermediate source data. For this purpose, the variables is bound to their original values by using
the operator E.1.

[[X1; X2]]C(S) = [[X2]]C([[X1]]C(S ))
[[X1; X2]]E(S, T ) = [[X1]]E′ (S , T ′),where (T ′,E′) = [[X2]]E([[X1]]E.1(S ), T )

Parallel composition: In the forward execution, this transformation applies its component transformations X1 and
X2 independently to the empty sequence (), and concatenates their views as the final view. Though their sources
are both (), X1 and X2 can get nonempty values to transform by referring to variables in the environment. In the
backward execution, the updated view is separated into two subviews for X1 and X2, respectively, according to the
lengths of the corresponding original subviews. The lengths of updated subviews and the corresponding ones are
the same since insertion is not considered in this section. The operator len returns the length of a sequence. With
the updated subviews, the backward executions of X2 and X1 is performed in sequence, with the environment E′′
generated by X2 fed into X1 for producing the final updated environment E′. Alternatively, we can choose to execute
backward X1 before X2 for this transformation. The source S is not changed by the backward execution.

[[X1||X2]]C(S) = [[X1]]C(()), [[X2]]C(())
[[X1||X2]]E(S, T ) = (S ,E′)
where

T = T1, T2, len(Ti) = len([[Xi]]E.1(())) (i ∈ {1, 2})
((),E′′) = [[X2]]E((), T2)
((),E′) = [[X1]]E′′ ((), T1)

Mapping transformation: The xmap transformation applies its argument transformation X to each string or element
in the source. If the source is (), then the view is also (). In the backward execution, we separate the updated view T
into a list of subsequences by using the split operator, each of which is the updated view for a string or an element
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split((), []) = []

split(T, l:ls) = ():split(T, ls), if l = 0

split(T, l:ls) = T1:split(T2, ls), if l > 0, T = T1, T2, and len(T1) = l

iter(X, [], (), S′, E) = (S′, E)

iter(X, T :ls, v, S, S′, E) = iter(X, ls, S, S′, v′, E ′), where [[X]]E (v, T ) = (v′, E ′)

Fig. 6 Two Operators: split and iter.

clean(S, S) = S

clean(str(ori(�),s), str(ori(i),s)) = str(ori(�),s), if i ∈ {↑, ↓, •}
clean(str(ori(↑),s), str(ori(•),s)) = str(ori(↑),s)

clean(str(ori(↓),s), str(ori(•),s)) = str(ori(↓),s)

clean(str(u,o), str ′(u
′,o)) = str ′(u

′,o), if u ∈ {ori(•), mod, del}
clean(<tag(w,o)>[S1], <tag′(w

′,o)>[S2]) = <tag′(w
′,o′)>[clean(S1, S2)]

clean(v1, S1, v2, S2) = clean(v1, v2), clean(S1, S2)

clean(S1, S2) = fail, if no other case applies

Fig. 7 The clean operator.

in the original source data. This is done by the split operator defined in Figure 6, which inputs the sequence T and
an integer list [l1, ..., ln], and divides T into a list of n subsequences Ti (1 ≤ i ≤ n), where len(Ti) = li. For example,
split(v1, v2, v3, [2, 0, 1]) generates three subsequences: [v1, v2, (), v3]. An empty list is represented by [], and the
concatenation of an item x with a list ls is represented by x : ls. The updated source and environment are generated
by the iter operator, defined in Figure 6, which iterates the backward execution of X on each source item and its
updated view. In Section 7, a new split operator will be defined to separate the updated view with inserted values.

[[xmap X]]C(()) = ()
[[xmap X]]C(v1, ..., vn) = [[X]]C(v1), ..., [[X]]C(vn)
[[xmap X]]E((), ()) = ((),E)
[[xmap X]]E(v1, ..., vn, T ) = iter(X, S T, S , (),E)

where S T = split(T, [len([[X]]E.1(v1)), ..., len([[X]]E.1(vn))])

Conditional transformation: This transformation executes X1 if the predicate P holds, otherwise it executes X2. In
the backward direction, X1 or X2 is executed backward to generate the updated source data S ′ and the updated eval-
uation environment E′, which are then used as arguments to execute backward P before finishing up this conditional
transformation. The backward execution of P is involved to make sure the existing and future updates to S ′ and E′
do not affect the validity of P. That is, if P is true (or false) under the environmentE and the source data S , then P
should still have the same value under E′ and S ′ even if E′ and S ′ may be updated further by other transformations.
This condition is needed when proving the well-behavedness of bidirectional transformations. The predicate P is
defined in the next subsection and more illustrations are given there by examples.

[[xif P X1 X2]]C(S) =

{
[[X1]]C(S ), if [[P]]C(S ) = true
[[X2]]C(S ), if [[P]]C(S ) = false

[[xif P X1 X2]]E(S, T ) =

{
[[P]]E′(S , S ′), if [[P]]E.1(S ) = true and [[X1]]E(S , T ) = (S ′,E′)
[[P]]E′(S , S ′), if [[P]]E.1(S ) = false and [[X2]]E(S , T ) = (S ′,E′)

In the lens language [5], the conditional lens cond and its two special instances ccond and acond are defined. The
lens ccond transforms backward an updated view with the component lens that generates the original view, while
the lenses acond and cond allow an updated view to be reflected back by the component lens that is not the one
generating the original view. For the lenses acond and ccond, if the component lens used to process an updated
view is not the one generating the original view, the original source data is completely discarded or needs to be fixed
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up for the backward execution. We argue that this is not acceptable for XQuery view update since the source data
generally contains more information than views, and thus discarding or fixing-up the source data will lose or destroy
the data in the source but not in views. On the other hand, it is not reasonable either by using the original source
data directly. This is because two branches of xif are independent, so a pair of source and target data related by one
branch does not imply they can be related sensibly by another branch.

Variable binding: This construct provides the primitive variable binding mechanism for this bidirectional language.
It will be used to define other constructs that need bound variables, such as function calls, and the let and for
expressions in XQuery.

[[xlet Var X]]C(S) = [[X]]C′(()),where C′ = C,Var �→ S

[[xlet Var X]]E(S, T ) =

{
(S ′,E′), if $inlet ∈ Dom(E)
(clean(S , S ′),E′), otherwise

where ((),E′,Var �→ (S , S ′)) = [[X]]E′′((), T ) and E′′ = E,Var �→ (S , S ), if $inlet ∈ Dom(E)
((),E′,Var �→ (S , S ′), $inlet �→ (1, 1)) = [[X]]E′′((), T ) and

E′′ = E,Var �→ (S , S ), $inlet �→ (1, 1), otherwise

The forward semantics of this construct is defined similarly as that of the let construct in conventional functional
programming languages. That is, the source S is bound to variable Var before executing the argument transformation
X. In this language, the source can be replicated only after it is bound to a variable.

The backward semantics is defined in two cases, depending on whether a special variable $inlet is bound or not
in the execution environment E. A binding $inlet �→ (1, 1) in E is used to indicate the current xlet is enclosed by
another xlet (the value (1,1) in the binding does not matter). If the current xlet is an enclosed one, its backward
execution executes backward the transformation X under the environment E,Var �→ (S , S ), where the variable Var
is bound to a pair of the original source S , since at this point the value of this variable has not been updated. The
backward execution of X produces the environment E′,Var �→ (S , S ′), which contains the updated source S ′ and
environment E′.

If the current xlet is not enclosed by any other xlet, the backward execution of X is under an environment
with the binding $inlet �→ (1, 1) pushed into E after the binding of Var (Var �→ (S , S )). In this case, the updated
source S ′ needs to be cleaned by using the clean operator, which is defined in Figure 7. The purpose of clean is
to remove changes to modification indicators made by backward executions of some predicates. As to be seen later,
the backward executions of the predicates xeq, xlt, and xgt may change the modification indicator i in a string to
express their requirements on how other transformations executed in parallel should modify the string. The changes
to modification indicators should be cleaned if the strings are not modified by users, so that the language can satisfy
the stability property described later.

Briefly, the operation clean(S , S ′) changes a string in S ′ into the corresponding one in the original source S in the
following cases: a string str(ori(i),s) (i ∈ {↑, ↓, •}) in S ′ corresponds to a string str(ori(�),s) in S , or a string str(ori(•),s)
in S ′ corresponds to a string str(ori(i),s) (i ∈ {↑, ↓}) in S . In these cases, the modification indicators are changed by
predicates xeq, xlt and xgt.

Function call: Suppose the function fname is defined as

fun fname(Var1, ...,Varn) = X

Then, the semantics of applying the function fname to n arguments X1, ..., Xn is defined below with the previous
constructs.

xfunapp fname [X1, ..., Xn] = xconst (); X′1
where

X′1 = X1; xlet Var1 X′2
X′2 = X2; xlet Var2 X′3
...
X′n = Xn; xlet Varn X

In this definition, all component transformations are first evaluated, and then their results are bound to the corre-
sponding variables. And then, the function body X is executed. The source data for the function body is always the
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guard(str(ori(�),s), i) = str(ori(i),s), if i ∈ {↑, ↓, •}
guard(str(ori(↑),s), i) = str(ori(•),s), if i ∈ {↓, •}
guard(str(ori(↓),s), i) = str(ori(•),s), if i ∈ {↑, •}
guard(str(u,o), i) = str(u,o), otherwise

Fig. 8 The guard operator.

empty sequence () due to the definition of xlet. That is, the function body cannot directly use and update the source
data of xfunapp. Hence, any data to be processed by the function body should be passed as the arguments of the
function call.

3.5 Predicates
Each predicate is also defined with both forward and backward semantics. The target data produced by predicates

is either true or false, which is used only by xif and cannot appear in views. Like transformations, predicates
also take two arguments for their backward executions, but the second argument is the updated source data generated
by the backward executions of branch transformations of xif, instead of the target data true or false.

Comparison: In the forward direction, the predicate xeq returns true if the views of X1 and X2 are the same string
(probably with different annotations), or false otherwise. The comparison result is preserved by the backward se-
mantics of this predicate. That is, if this predicate returns true (or false) with the original source and environment,
then it still returns true (or false) with the updated ones. For this purpose, the backward semantics of predicate
xeq expresses its modification requirements to the string views of X1 and X2 through the guard operator, defined in
Figure 8. The operation guard(str(u,o), i) incorporates the modification indicator i into the string view str(u,o) if it is
modifiable (i.e., if u ∈ {ori(�), ori(↑), ori(↓)} and o = s). For example, if i is ↑ and the string view is str(ori(�),s),
then the result of applying guard is an updated string view str(ori(↑),s). That is, the string can only be modified to a
bigger one by other transformations that may execute in parallel. Preserving the comparison result is critical for the
language to satisfy the round-tripping property described later. This is because if the comparison result changes due
to updates on view, the forward transformation applied to the original source and updated source are actually dif-
ferent, and hence the updated view and the view from the updated source cannot be sensibly related. For predicates
xlt and xgt, their forward semantics is defined similarly, and their backward semantics are the same as that of xeq,
hence not given.

[[xeq X1 X2]]C(S ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
true, if [[X1]]C(()) = str(u,o) and [[X2]]C(()) = str(u′ ,o′)

false, if [[X1]]C(()) = str(u,o), [[X2]]C(()) = str′(u′ ,o′) and str � str′
fail, otherwise

[[xeq X1 X2]]E(S , S ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(S ′,E′), if [[X1]]E.1(()) = str(u,o), [[X2]]E.1(()) = str(u′ ,o′),
((),E′′) = [[X2]]E((), guard(str(u′ ,o′), •)), and
((),E′) = [[X1]]E′′((), guard(str(u,o), •))

(S ′,E′), if [[X1]]E.1(()) = str(u,o), [[X2]]E.1(()) = str′(u
′ ,o′), str > str′,

((),E′′) = [[X2]]E((), guard(str′(u′ ,o′), ↓)), and
((),E′) = [[X1]]E′′((), guard(str(u,o), ↑)), and

(S ′,E′), if [[X1]]E.1(()) = str(u,o), [[X2]]E.1(()) = str′(u
′ ,o′), str < str′,

((),E′′) = [[X2]]E((), guard(str′(u′ ,o′), ↑)), and
((),E′) = [[X1]]E′′((), guard(str(u,o), ↓)), and

[[xlt X1 X2]]C(S ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
true, if [[X1]]C(()) = str(u,o), [[X2]]C(()) = str′(u′ ,o′) and str < str′
false, if [[X1]]C(()) = str(u,o), [[X2]]C(()) = str′(u′ ,o′) and str ≮ str′
fail, otherwise

[[xgt X1 X2]]C(S ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
true, if [[X1]]C(()) = str(u,o), [[X2]]C(()) = str′(u′ ,o′) and str > str′
false, if [[X1]]C(()) = str(u,o), [[X2]]C(()) = str′(u′ ,o′) and str ≯ str′
fail, otherwise

As an example, suppose we have the source data 10(ori(�),s), and the transformation xlet $d X1||X2, where
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fun toc($book-or-section) = XBody

where

XBody = xvar $book-or-section; //gets the book or section

xchild; //gets the contents of the book or section

xmap (xif (xwithtag section) XSec (xconst ())) //processes each section

//with XSec and hides non-section elements

XSec = xlet $section (

<section(ori,c)>[()] //builds a section element

xsetcnt (XTitle||XSubTitles) //sets title and subsection titles

)

XTitle = xvar $section; //gets a section element

xchild; //gets its content

xmap (xif (xwithtag title) xid (xconst ())) //keeps only its title

XSubTitles = xfunapp toc [xvar $section] //builds toc of subsections

Fig. 9 The XQuery example in bidirectional language.

X1 = xvar$d; xid, X2 = xvar$d; xif P xid xconst (), and P = xeq xconst 10(ori(•),c) xvar $d. After the

forward transformation, the view is 10(ori(�),s), 10(ori(�),s). For the backward transformation, the xvar in xeq needs
to change the source into 10(ori(•),s) for preserving the equivalence result of comparison. If we do not change the
view, then the backward execution of xletwill clean this modification made by xeq and generate the original source.

If we change the view into 15(mod,s), 10(ori(�),s), 10(ori(�),s), 15(mod,s), or 15(mod,s), 15(mod,s), then the mg operator used
in the backward execution of xvarwill detect this modification conflict with the modification indicator in 10(ori(•),s).

Still for the same transformation, if the source data is 12(ori(�),s), then its forward execution generates the view
12(ori(�),s), with the xeq predicate returning false. To preserve the comparison result, the xvar in xeq needs to
change the source into 12(ori(↑),s). Thus, the updated view 15(mod,s) can be reflected back successfully since 15 is
greater than 12, consistent with the modification indicator.

Element selection: This predicate holds if the source data is an element with the specified tag. In the backward
direction, this predicate returns the updated source data S ′ and the updated environment E′ directly since the tags of
elements are not allowed to change and nothing is needed to guard.

[[xwithtag str]]C(S ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
true, if S = <tag(w,o)>[S 1] and tag = str
false, else if S = <tag(w,o)>[S 1] and tag � str
fail, otherwise

[[xwithtag str]]E(S , S ′) = (S ′,E)

Content filter: This predicate holds if the source data is an element. Since an element is not allowed to change into
a text, and vice versa, this predicate returns the updated source data S ′ and the updated environment E′ directly in
its backward execution.

[[xiselement]]C(S ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
true, if S = <tag(w,o)>[S 1]
false, else if S = str(u,o)

fail, otherwise
[[xiselement]]E(S , S ′) = (S ′,E)

3.6 Programming examples
A program of this bidirectional language is given in Figure 9. This program implements the recursive toc function

in Figure 1. The program is divided into several pieces just for the convenience of reading and explanation, with
the help of an informal keyword where. The function body first gets the contents of the input element. Its contents
consist of the author, title, section and other elements. Next, only section elements are chosen, and for each section
element, the code XSec is used to construct the section element in the view with the help of XTitle and XSubTitles,
which correspond to the expression $section/title and the recursive function call in the example query, respectively.

A forward execution of invoking the toc function is illustrated in Table 1 and Table 2, and a corresponding
backward execution is given in Table 3 and Table 4. The data and environments used in these executions are given
in Figure 10, where the data simplifies the XML data in Figure 2 to make the execution traces shorter. The forward
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Table 1 An example of forward execution (Part 1).

Index Tran Src Env Tar

f1 XBody () C0 <section(ori,c)>[S4]

f1.1 xvar $book-or-section () C0 S

f1.2 xchild S C0 S 1, S 2, S 3

f1.3 xmap (xif (xwithtag section) S 1, S 2, C0 (),(),
XSec (xconst ())) S3 <section(ori,c)>[S4]

f1.3.1 xif (xwithtag section) S1 C0 ()
XSec (xconst ()))

f1.3.1.1 [[xwithtag section]]C0 (S 1) = false

f1.3.1.2 xconst () S1 C0 ()

f1.3.2 xif (xwithtag section) S2 C0 ()
XSec (xconst ()))

f1.3.2.1 [[xwithtag section]]C0 (S 2) = false

f1.3.2.2 xconst () S2 C0 ()

f1.3.3 xif (xwithtag section) S3 C0 <section(ori,c)>[S4]
XSec (xconst ()))

f1.3.3.1 [[xwithtag section]]C0 (S 3) = true

f1.3.3.2 XSec S3 C0 <section(ori,c)>[S4]

f1.3.3.2.1 xconst <section(ori,c)>[()] () C1 <section(ori,c)>[()]

f1.3.3.2.2 xsetcnt (XTitle‖XSubTitles) <section(ori,c)> [()] C1 <section(ori,c)>[S4]

f1.3.3.2.2.1 XTitle‖XSubTitles () C1 S4, ()

f1.3.3.2.2.1.1 XTitle () C1 S4

f1.3.3.2.2.1.1.1 xvar $section () C1 S3

f1.3.3.2.2.1.1.2 xchild S3 C1 S4, S5

f1.3.3.2.2.1.1.3 xmap (xif (xwithtag title) S4, S5 C1 S4,()
xid (xconst ()))

f1.3.3.2.2.1.1.3.1 xif (xwithtag title) S4 C1 S4

xid (xconst ())

f1.3.3.2.2.1.1.3.1.1 [[xwithtag title]]C1 (S 4) = true

f1.3.3.2.2.1.1.3.1.2 xid S4 C1 S4

f1.3.3.2.2.1.1.3.2 xif (xwithtag title) S5 C1 ()
xid (xconst ())

f1.3.3.2.2.1.1.3.2.1 [[xwithtag title]]C1 (S 5) = false

f1.3.3.2.2.1.1.3.2.2 xconst () S5 C1 ()

Table 2 An example of forward execution (Part 2).

Index Tran Src Env Tar

f1.3.3.2.2.1.2 XSubTitles () C1 ()

f1.3.3.2.2.1.2.1 xvar $section () C1 S3

f1.3.3.2.2.1.2.2 xlet $book-or-section XBody S3 C1 ()

f1.3.3.2.2.1.2.2.1 xvar $book-or-section () C2 S3

f1.3.3.2.2.1.2.2.2 xchild S3 C2 S4, S5

f1.3.3.2.2.1.2.2.3 xmap (xif (xwithtag section) S4, S5 C2 (),()
XSec (xconst ()))

f1.3.3.2.2.1.2.2.3.1 xif (xwithtag section) S4 C2 ()
XSec (xconst ()))

f1.3.3.2.2.1.2.2.3.1.1 [[xwithtag title]]C2 (S 4) = false

f1.3.3.2.2.1.2.2.3.1.2 xconst () S4 C2 ()

f1.3.3.2.2.1.2.2.3.2 xif (xwithtag section) S5 C2 ()
XSec (xconst ()))

f1.3.3.2.2.1.2.2.3.2.1 [[xwithtag title]]C2 (S 5) = false

f1.3.3.2.2.1.2.2.3.2.2 xconst () S5 C2 ()

invocation starts with the source () and the environment C0 and returns the view <section(ori,c)>[S 4]. Suppose the
view is changed into <section(ori,c)>[S ′4]. Then, using this updated view and the source () as the input of the backward
invocation under the environmentE0, we will get the updated environment E′0, in which the updated data S ′ contains
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Table 3 An example of backward execution (Part 1).

Index Tran Src UTar Env USrc UEnv

b1 XBody () <section(ori,c)>[S ′4] E0 () E′0
b1.3 xvar $book-or-section () S′ E0 () E′0
b1.2 xchild S S1, S2, S′3 E0 S′ E0

b1.1 xmap (xif (xwithtag section) S1, S2, (),(), E0 S1, S2, E0

XSec (xconst ())) S3 <section(ori,c)>[S ′4] S ′3
b1.1.1 xif (xwithtag section) S1 () E0 S1 E0

XSec (xconst ()))

b1.1.1.1 [[xwithtag section]]E0 .1(S 1) = false

b1.1.1.2 xconst () S1 () E0 S1 E0

b1.1.2 xif (xwithtag section) S2 () E0 S2 E0

XSec (xconst ()))

b1.1.2.1 [[xwithtag section]]E0 .1(S 2) = false

b1.1.2.2 xconst () S2 () E0 S2 E0

b1.1.3 xif (xwithtag section) S3 <section(ori,c)>[S ′4] E0 S′3 E0

XSec (xconst ()))

b1.1.3.1 [[xwithtag section]]E0 .1(S 3) = true

b1.1.3.2 XSec S3 <section(ori,c)>[S ′4] E0 S′3 E0

b1.1.3.2.2 xconst <section(ori,c)>[()] () <section(ori,c)>[()] E′1 () E′1
b1.1.3.2.1 xsetcnt (XTitle‖XSubTitles) S c <section(ori,c)>[S ′4] E1 S c E′1
b1.1.3.2.1.1 XTitle‖XSubTitles () S′4, () E1 () E′1
b1.1.3.2.1.1.1 XTitle () S′4 E1 () E′1
b1.1.3.2.1.1.1.3 xvar $section () S′3 E1 () E′1
b1.1.3.2.1.1.1.2 xchild S3 S′4, S5 E1 S′3 E1

b1.1.3.2.1.1.1.1 xmap (xif (xwithtag title) S4, S5 S′4,() E1 S′4, S5 E1

xid (xconst ()))

b1.1.3.2.1.1.1.1.1 xif (xwithtag title) S4 S′4 E1 S′4 E1

xid (xconst ())

b1.1.3.2.1.1.1.1.1.1 [[xwithtag title]]E1 .1(S 4) = true

b1.1.3.2.1.1.1.1.1.2 xid S4 S′4 E1 S′4 E1

b1.1.3.2.1.1.1.1.2 xif (xwithtag title) S5 () E1 S5 E1

xid (xconst ())

b1.1.3.2.1.1.1.1.2.1 [[xwithtag title]]E1 .1(S 5) = false

b1.1.3.2.1.1.1.1.2.2 xconst () S5 () E1 S5 E1

Table 4 An example of backward execution (Part 2).

Index Tran Src UTar Env USrc UEnv

b1.1.3.2.1.1.2 XSubTitles () () E1 () E1

b1.1.3.2.1.1.2.2 xvar $section () S3 E1 () E1

b1.1.3.2.1.1.2.1 xlet $book-or-section XBody S3 () E1 S3 E1

b1.1.3.2.1.1.2.1.3 xvar $book-or-section () S3 E2 () E2

b1.1.3.2.1.1.2.1.2 xchild S3 S4, S5 E2 S3 E2

b1.1.3.2.1.1.2.1.1 xmap (xif (xwithtag section) S4, S5 (),() E2 S4, S5 E2

XSec (xconst ()))

b1.1.3.2.1.1.2.1.1.1 xif (xwithtag section) S4 () E2 S4 E2

XSec (xconst ()))

b1.1.3.2.1.1.2.1.1.1.1 [[xwithtag section]]E2 .1(S 4) = false

b1.1.3.2.1.1.2.1.1.1.2 xconst () S4 () E2 S4 E2

b1.1.3.2.1.1.2.1.1.2 xif (xwithtag section) S5 () E2 S5 E2

XSec (xconst ()))

b1.1.3.2.1.1.2.1.1.2.1 [[xwithtag section]]E2 .1(S 5) = false

b1.1.3.2.1.1.2.1.1.2.2 xconst () S5 () E2 S5 E2

the modified section title. The source () is not updated.
The executions illustrated in the aforementioned tables are organized by using indexes, which indicate the execu-

tion sequence or dependency of transformations. For example, the transformation f1 depends on the transformations
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S = <book(ori,s)>[S1, S2, S3]

S1 = <title(ori,s)>[Data on the Web(ori(�),s)]

S2 = <author(ori,s)>[Serge(ori(�),s)]

S3 = <section(ori,s)>[S4, S5]

S4 = <title(ori,s)>[Introduction(ori(�),s)]

S5 = <p(ori,s)>[Text(ori(�),s)]

S′
3 = <section(ori,s)>[S′

4, S5]

S′
4 = <title(ori,s)>[Background(mod,s)]

S′ = <book(ori,s)>[S1, S2, S′
3]

Sc = <section(ori,c)>[()]

$book-or-section S
$section S3

$book-or-section S

$book-or-section S3

$section S3

$book-or-section S

C0 C1 C2

$book-or-section S S
$section S3 S3

$book-or-section S S

$book-or-section S3 S3

$section S3 S3

$book-or-section S S

E0 E1 E2

$book-or-section S S′ $section S3 S′
3

$book-or-section S S

E ′
0 E ′

1

Fig. 10 Data and environments for the XQuery example.

f1.1, f1.2 and f1.3, and they are executed in sequence since the transformation f1.1 is a sequence composition.
As another example, the transformation f1.3 depends on the transformations f1.3.1, f1.3.2 and f1.3.3, and their
results will be put together as the result of transformation f1.3 since it is an xmap transformation. In our bidirec-
tional language, backward executions always need forward executions to generate intermediary data. For example,
the transformation b1.1 needs the forward transformations f1.1, f1.2 to generate its source data S 1, S 2, S 3.

The organization of executions in the tables with execution indexes provides a convenient way to trace the bidirec-
tional transformations and the intermediate data. Each line in the tables contains all information needed to understand
the transformation in that line, and moreover the transformation details can be found by following the indexes. For
example, the line f1.3.3 in Table 1 says under the context C0 the conditional transformation generates the target
<section(ori,c)>[S4] from S 3, and if the details of this conditional transformation is wanted, then we can check the
lines with the indexes f1.3.3.1 and f1.3.3.2.

4 Well-behaved bidirectional transformations
In this section, we will give two properties that well-behaved bidirectional transformations should have. The

transformations defined in the previous section and its revised semantics for supporting view insertions are designed
with such two properties considered. A rigorous proof will be completed as our future work.

4.1 Stability property
This property says if the view is not updated, then after backward transformation the source is not changed either.

This property is called GETPUT property in [5], [6], and acceptable condition in [2]. The stability property of our
bidirectional transformation is described in Theorem 1, where X does not have free variables (i.e., all variables are
bound by xlet) and the evaluation environment is ·.

Theorem 1 If [[X]]·(S ) = T , then [[X]]·(S , T ) = (S , ·).
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4.2 Extended round-tripping property
The second property is called extended round-tripping property. Before introducing this property, we first discuss

why the existing round-tripping property is not suitable for the view updating problem of XQuery. This property
is initially proposed to characterize view updating schemes for relational databases [2], and then taken by a series
of bidirectional transformation languages such as [5], [6]. Actually, this property is not suitable for relational view
updating, either. In Appendix Appendix A., we show that this property is not adopted in the major database manage-
ment systems such as Microsoft SQL Server 2003, Oracle DB 10g and MySQL 5.0. The round-tripping property is
called PUTGET property in [5], [6], and consistent condition in [2].

4.2.1 Limitations of round-tripping property
Suppose X is a bidirectional transformation. Then, in our setting, the round-tripping property is represented as: if

[[X]]E(S, T ) = (S ′,E′) and [[X]]E′.2(S ′) = T ′, then T = T ′. However, this property is too limited for our bidirectional
language, which is expressive to interpret XQuery. The following example explains the limitation. Suppose we have
the following source data.

<bib(ori,s)>[<book(ori,s)>[<title(ori,s)>[Database(ori(�),s)], <price(ori,s)>[20(ori(�),s)]],
<book(ori,s)>[<title(ori,s)>[Network(ori(�),s)], <price(ori,s)>[10(ori(�),s)]]]

And then, we want a view that consists of all books and a table-of-contents (toc) containing their titles. The trans-
formation BibView and the generated view are given below.

BibView = xchild; xlet $books (xconst <bibview(ori,c)>[()];
xsetcnt (MkToc||xvar $books))

MkToc = xconst <toc(ori,c)>[()]; xsetcnt(xvar $books; xmap (xchild; GetTitle))
GetTitle = xmap (xif (xwithtag title) xid xconst ())

<bibview(ori,c)>[<toc(ori,c)>[<title(ori,s)>[Database(ori(�),s)], <title(ori,s)>[Network(ori(�),s)]],
<book(ori,s)>[<title(ori,s)>[Database(ori(�),s)], <price(ori,s)>[20(ori(�),s)]],
<book(ori,s)>[<title(ori,s)>[Network(ori(�),s)], <price(ori,s)>[10(ori(�),s)]]]

In the bibview element above, each title element appears twice. Suppose we change
<title(ori,s)>[Database(ori(�),s)] in the toc element into <title(ori,s)>[Web Database(mod,s)]. Then, after updat-
ing the source data and running forward the transformation BibView again, we get the following new updated
view.

<bibview(ori,c)>[<toc(ori,c)>[<title(ori,s)>[Web Database(mod,s)], <title(ori,s)>[Network(ori(�),s)]],
<book(ori,s)>[<title(ori,s)>[Web Database(mod,s)], <price(ori,s)>[20(ori(�),s)]],
<book(ori,s)>[<title(ori,s)>[Network(ori(�),s)], <price(ori,s)>[10(ori(�),s)]]]

Hence, the old updated view and the new view from the updated source are not identical and the round-tripping
property fails to accommodate the above transformation of our bidirectional language. In the new view, the change of
title in the book element is called an update side-effect. The round-tripping property does not take update side-effects
into account.

More generally speaking, the above example shows a case where the round-tripping property fails when a view
includes data replicas. Such kind of views are very common when a query performs join operations on relational
tables or XML data. For example, a value on the view is replicated if the record including it is joined with several
records in another table. Any change to this value can lead to a failure of the round-tripping property.

4.2.2 Extended round-tripping property
Our bidirectional transformation language satisfies the extended round-tripping property, which is shown by the

following theorem. The transformation X in the theorem does not contain free variables.

Theorem 2 If [[X]]·(S , T ) = (S ′, ·) and [[X]]·(S ′) = T ′, then T 
 T ′.
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() � ()

str(u,o) � str(u,o)

str(ori(�),s) � str ′(mod,s)

str(ori(↑),s) � str ′(mod,s), if str′ > str

str(ori(↓),s) � str ′(mod,s), if str′ < str

str(ori(i),s) � str(del,s), i ∈ {↑, ↓, �, •}
<tag(w,o)>[S ] � <tag(w,o)>[S ′], if S � S′

<tag(ori,s)>[S ] � <tag(del,s)>[S ′], if S � S′

v, S � v′, S′, if v � v′ and S � S′

Fig. 11 The update-keeping relation.

That is, we do not require the updated view T and the new view T ′ from the updated source be identical. Instead,
we relate T to T ′ with the update-keeping relation 
, which is defined in Figure 11. Informally, this property
requires all updates made to T are still kept in T ′, and moreover T ′ may include more updates than T due to update
side-effects. The update-keeping relation characterizes what update side-effects can appear on T ′. For example, a
string annotated by del cannot be changed into mod due to update-side effects. Though update side-effects on views
have been recognized in work [14], it does not give a way to describe what update side-effects are allowed on the
new views generated from the updated source. The rationale behind some cases of the update-keeping relation is
explained below.

• str(ori(�),s) 
 str′(mod,s). A replica of string str(ori(�),s) is changed to str′(mod,s), so the string becomes str′(mod,s) in
the view generated from the updated source due to update side-effects.

• str(ori(↑),s) 
 str′(mod,s), if str′ > str. A replica of string str(ori(↑),s) is changed to str′(mod,s), which is consistent
with the modification indicator in this string, so the string becomes str′(mod,s) in the new view generated from
the updated source.

• str(ori(i),s) 
 str(del,s), i ∈ {↑, ↓, •, �}. The string str(ori(i),s) becomes str(del,s) if it has a replica on the view
tagged as deleted.

• <tag(ori,s)>[S] 
 <tag(del,s)>[S′], if S 
 S ′. The <tag(ori,s)>[S] has a replica on the view tagged as deleted, so
it becomes <tag(del,s)>[S′] after the transformation is applied to the updated source.

For the example in the previous section, the updated view and the new view from the updated source satisfy the
update-keeping relation, though they are not identical. The update-keeping relation is reflexive, and hence if a view
updating scheme satisfies the round-tripping property, then it also satisfies the extended round-tripping property.

5 Translation of XQuery core into bidirectional language
The expressions of XQuery can be normalized to the equivalent expressions in XQuery Core, for instance, by the

Galax XQuery engine [19]. The syntax of XQuery core is more compact. Hence, like the work [20], we implement
bidirectional XQuery based on the XQuery Core syntax.

5.1 Introduction of XQuery core
The syntax of XQuery Core interpreted in this paper is given in Figure 12. The XQuery Core expressions include

the literal string value String, the empty sequence (), the sequence construction expression, the variable $Var, the for
and let expressions, the conditional expression, the expression for XPath steps, the element construction expression
and the function call. The formal semantics of XQuery Core is defined at [21].

In the aforementioned syntax, the constructs child, descendant and self are three forward XPath axes. Eval-
uating XPath axes needs to know their context nodes. As in [21], the special variable $fs :dot is used to represent
context nodes of XPath axes. The XQuery Core here does not include reverse axes of XPath, such as the parent
axis. This axis returns the parent of the current context node. Actually, it is difficult to implement reverse axes using
the technique in the previous section since from the source element we have no information about its parent node or
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Var ::= NCName

Expr ::= String | () | Expr ,Expr | $Var

| for $Var in Expr return Expr

| let $Var := Expr return Expr

| if (Cmp) then Expr else Expr

| Axis NodeTest

| element NCName {Expr}
| NCName (Expr1, ..., Exprn)

Cmp ::= Expr < Expr | Expr = Expr | Expr > Expr

Axis ::= child :: | descendant :: | self ::

NodeTest ::= NCName | ∗ | text() | node()
FunDec ::= function NCName(ArgList){Expr}
ArgList ::= $Var1, ..., $Varn

Fig. 12 Syntax of the XQuery core.

its ancestor node. This limitation might be addressed with the technique in [22] by rewriting path expressions with
reverse axes into equivalent reverse-axis-free ones.

XQuery includes a lot of built-in functions, such as fn : sum and fn : data. In order to support full XQuery,
we need to define the bidirectional versions of these functions in the underlying bidirectional language. The tricky
thing is that these implementations must satisfy the well-behaved conditions for bidirectional transformations. For
example, the backward semantics of fn : sum must ensure that the sum of all items in its argument is not changed
for the updated source and updated evaluation environment, otherwise the extended round-tripping property will be
violated. Implementing these built-in functions is our future work.

5.2 The translation
Figure 13 gives the rules for translating XQuery Core into the bidirectional language. The operation [[expr]]I

returns the translation result for the XQuery Core expression expr. Note that I is just a part of the operation name,
not a parameter of the translation. With such an interpretation, XQuery Core expressions can be executed in two
directions: generating the view in the forward direction and putting view updates back in the backward direction.
The translation is not difficult due to the expressiveness of the underlying bidirectional language. Some rules are
illustrated below.

In the rule of for expression, the subexpression Expr1 is first translated, and then composed with an xmap, which
takes the transformation xlet $Var [[Expr2]]I as its argument. That is, the variable $Var is bound to each value in
the sequence returned by [[Expr1]]I, and then used within the scope [[Expr2]]I.

In the XQuery Core, the expression Axis NodeTest means that Axis first produces a list of nodes from its context
node, and then from this list NodeTest selects the nodes by its conditions. In the translation of this expression, we
need to explicitly get the context node of an axis by referring to the value of the reserved variable $fs :dot, and then
compose the translation results of Axis and NodeTest.

The child axis of XPath is primitively defined by xchild in the bidirectional language,while the descendant
axis is not. Instead, this axis is implemented by the function xdes below, which returns all descendant nodes of the
input node $node.

fun xdes($node) = xvar $node; xif xiselement (xchild;(xid||xmap DeepNodes)) (xconst ())
where DeepNodes = xlet $cnode (xfunapp xdes [xvar $cnode])

If the input node is a text node, then it does not have any descendant, so the function xdes returns (); if the input
node is an element node, then the result includes its content nodes and their descendants.

The functions in XQuery are translated into functions in the bidirectional language. For example, the following
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[[String ]]I = xconst String(ori(•),c)

[[()]]I = xconst ()

[[Expr1,Expr2]]I = [[Expr1]]I ||[[Expr2]]I

[[$Var ]]I = xvar $Var

[[for $Var in Expr1 return Expr2]]I = [[Expr1]]I ; xmap (xlet $Var [[Expr2]]I)

[[let $Var := Expr1 return Expr2 ]]I = [[Expr1]]I ; xlet $Var [[Expr2]]I

[[if (Expr ′1 < Expr ′2) then Expr1 else Expr2]]I = xif (xlt [[Expr ′1]]I [[Expr ′2]]I)

xconst (); [[Expr1]]I xconst (); [[Expr2]]I

[[if (Expr ′1 = Expr ′2) then Expr1 else Expr2]]I = xif (xeq [[Expr ′1]]I [[Expr ′2]]I)

xconst (); [[Expr1]]I xconst (); [[Expr2]]I

[[if (Expr ′1 > Expr ′2) then Expr1 else Expr2]]I = xif (xgt [[Expr ′1]]I [[Expr ′2]]I)

xconst (); [[Expr1]]I xconst (); [[Expr2]]I

[[Axis NodeTest ]]I = [[Axis]]I ; [[NodeTest ]]I

[[child ::]]I = xvar $fs :dot; xchild

[[descendant ::]]I = xfunapp xdes [xvar $fs :dot]

[[self ::]]I = xvar $fs :dot

[[NCName]]I = xmap (xif xiselement xid (xconst ()));

xmap ((xif (xwithtag NCName) xid (xconst ())))

[[∗]]I = xmap (xif xiselement xid (xconst ()))

[[text()]]I = xmap (xif xiselement (xconst ()) xid)

[[node()]]I = xid

[[element NCName {Expr}]]I = xconst <NCName(ori,c)>[()]; xsetcnt [[Expr ]]I

[[NCName (Expr1, ...,Exprn)]]I = xfunapp NCName [[[Expr1]]I , ..., [[Exprn]]I ]

Fig. 13 Translation of XQuery core expression.

XQuery function:

function NCName($Var1, ..., $Varn){Expr}
is translated into the following function in the bidirectional language:

fun NCName($Var1, ..., $Varn) = [[Expr]]I

The translation satisfies the property in Theorem 3, which says that the translation preserves the semantics of
XQuery Core. The values in the underlying bidirectional language are annotated with updating and origin annota-
tions. To be consistent with XQuery values, these annotations should be erased. The erase operator for this purpose
is defined below.

erase(S ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(), if S = ()
str, if S = str(u,o)

<tag>[erase(S)], if S = <tag(w,o)>[S]
erase(v), erase(V), if S = v,V

The erase operator is extended to an environment C by the following definition.

erase(C) =

⎧⎪⎪⎨⎪⎪⎩
·, if C = ·
erase(C′),Var �→ erase(S ), if C = C′,Var �→ S
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τ ::=a | () | stringo | <tago>[τ ] | τ ∗ | τ, τ | τ |τ | μa.τ | �τ	

Fig. 14 Syntax of recursive regular expression types.

() ∈ () str(u,o) ∈ stringo

S ∈ τ

<tag(u,o)>[S] ∈ <tago>[τ ]

S ∈ ()|τ, τ∗
S ∈ τ∗

S1 ∈ τ1 S2 ∈ τ2
S1, S2 ∈ τ1, τ2

S ∈ τi i = 1 or i = 2

S ∈ τ1|τ2
S ∈ τ [μa.τ/a]

S ∈ μa.τ

S ∈ τ

�S	 ∈ �τ	

Fig. 15 Semantics of types.

Theorem 3 Let C be an environment that maps variables to values. If an XQuery Core expression Expr has the value
Val under erase(C), then the forward transformation [[[[Expr]]I]]C(()) must return a value T and erase(T ) = Val.

The proof is done by induction on the structure of the XQuery Core expression Expr.

6 The type system
In this section, we will design a type system for the bidirectional transformation language and prove that this

type system is sound with respect to the forward semantics of this language. On the other hand, we also prove
that the types of updated source data are preserved after backward executions of well-typed programs. The type
system annotates well-typed programs with types. In the next section, we will see annotated types provide guiding
information for the language to process updated views with insertions in its backward semantics.

6.1 Syntax of types
The syntax of types is given in Figure 14, which defines the recursive regular expression types for XML. They are

similar to the regular expression types in [23] except the recursive type, the boxed type �τ�, and the origin annotation
o on the string type and element type. The origin annotation in the type is still either s or c. The boxed type will be
introduced later when we discuss the typing rule for xmap. The notation S ∈ τ, defined in Figure 15, means S has
the type τ. A boxed type contains boxed values, which will be used in the next section for describing the property of
the revised split operator. The boxed type will be ignored where possible since it appears only in the annotations
of xmap as shown later.

The recursive type μa.τ is necessary to describe recursive XML data, such as a book that has recursive subsections.
The recursive type μa.τ is regarded as equivalent to its unfolded form τ[μa.τ/a], which means all occurrences of the
free type variable a in τ are replaced with μa.τ. For brevity, recursive types and type variables will not be considered
in some operators defined over type cases. That is, when a recursive type encountered, we just use its unfolded form.
We require that all recursive types have different bound type variables. This can be achieved by alpha-conversion.
Note that τ∗ is not necessary in the syntax, since it can be defined as μa.()|τ, a.

6.2 Typing rules
The typing rules for the bidirectional transformation language are defined in Figure 16. The judgment has the

form Γ � X : τ ↔ τ′ ⇒ X′, meaning that under the typing context Γ, if the source data has the type τ, then the
transformation X will generate a view with the type τ′ after forward executions, and on the other hand, if the updated
view has the type τ′, then X will generate an updated source data with the type τ after backward executions. The
typing context Γmaps variables to types, or maps function names together with the types of their arguments to types.
The transformation X′ is the result of annotating X with types. The semantics of X′ will be described in the next
section.

In the typing rule for xconst S , the operation mkty(S ) makes a type, say τ′, from S : if S = (), then τ′ = (); if
S = str(ori(•),c), then τ′ = stringc; if S = <tag(ori,c)>[()], then τ′ = <tagc>[()]. Hence, S ∈ mkty(S ). For the
typing of xsetcnt, its argument X can be applied to source data with any one of types τ1,τ2,..., and τn. Hence, the
type annotation on X needs to take into account all possible input types, which are then represented as τ1|...|τn to
produce X′′.

There are seven constructs annotated with types: xvar, xchild, the parallel composition transformation ‖, xmap,
xif, and xfunapp. The first six constructs need type information to process updated views with insertions. The last
construct xfunapp uses annotated information to dynamically annotate the function body to be called. A function
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Γ 
 xid : τ ↔ τ ⇒ xid

Γ 
 xconst S : τ ↔ mkty(S) ⇒ xconst S

Γ = Γ1,Var 
→ τ ′, Γ2 Var �∈ Dom(Γ2)

Γ 
 xvar Var : τ ↔ τ ′ ⇒ xvarτ ′
Var

τ = <tago1
1 >[τ1]|...|<tagon

n >[τn]

Γ 
 xchild : τ ↔ τ1|...|τn ⇒ xchildτ

τ = <tago1
1 >[τ1]|...|<tagon

n >[τn] Γ 
 X : τi ↔ τ ′
i ⇒ X′ Γ 
 X : τ1|...|τn ↔ τ ′′ ⇒ X′′

Γ 
 xsetcnt X : τ ↔ <tago1
1 >[τ ′

1]|...|<tagon
n >[τ ′

n] ⇒ xsetcnt X′′

Γ 
 X1 : τ ↔ τ1 ⇒ X′
1 Γ 
 X2 : τ1 ↔ τ2 ⇒ X′

2

Γ 
 X1; X2 : τ ↔ τ2 ⇒ X′
1; X′

2

Γ 
 X1 : () ↔ τ1 ⇒ X′
1 Γ 
 X2 : () ↔ τ2 ⇒ X′

2 τ ′ = �τ1	, �τ2	
Γ 
 X1‖X2 : τ ↔ τ1, τ2 ⇒ X′

1‖τ ′
τ X′

2

singlety(τ) = ∅
Γ 
 xmap X : τ ↔ () ⇒ xmap() X

singlety(τ) �= ∅ Γ; · 
m xmap X : τ ↔ τ ′ Γ 
 X : mkchoicety((singlety(τ)) ↔ τ ′′ ⇒ X′

Γ 
 xmap X : τ ↔ rmbox(τ ′) ⇒ xmapτ ′
X′

Γ 
ok P : τ T(τ, P ) �= ∅ F(τ, P ) �= ∅
Γ 
 X1 : mkchoicety(T(τ, P )) ↔ τ1 ⇒ X′

1 Γ 
 X2 : mkchoicety(F(τ, P )) ↔ τ2 ⇒ X′
2

Γ 
 xif P X1 X2 : τ ↔ τ1|τ2 ⇒ xif
τ2
τ1 P X′

1 X′
2

Γ 
ok P : τ T(τ, P ) = ∅ F(τ, P ) �= ∅ Γ 
 X2 : mkchoicety(F(τ, P )) ↔ τ2 ⇒ X′
2

Γ 
 xif P X1 X2 : τ ↔ τ2 ⇒ xif
τ2
()

P X′
1 X′

2

Γ 
ok P : τ T(τ, P ) �= ∅ F(τ, P ) = ∅ Γ 
 X1 : mkchoicety(T(τ, P )) ↔ τ1 ⇒ X′
1

Γ 
 xif P X1 X2 : τ ↔ τ1 ⇒ xif
()
τ1 P X′

1 X′
2

Γ,Var 
→ τ 
 X : () ↔ τ ′ ⇒ X′

Γ 
 xlet Var X : τ ↔ τ ′ ⇒ xlet Var X′

fun fname(V ar1, ..., V arn) = X ∈ G

Γ 
 Xi : () ↔ τi ⇒ X′
i (1 ≤ i ≤ n) fname(τ1, ..., τn) �∈ Dom(Γ)

[Var1 
→ τ1, ...,Varn 
→ τn, fname(τ1, ..., τn) 
→ a] 
 X : () ↔ τ ′ ⇒ X′ a is fresh

Γ 
 xfunapp fname [X1, ..., Xn] : τ ↔ μa.τ ′ ⇒ xfunapp[τ1,...,τn] fname [X′
1, ..., X′

n]

fun fname(V ar1, ..., V arn) = X ∈ G Γ 
 Xi : () ↔ τi ⇒ X′
i (1 ≤ i ≤ n)

Γ = Γ1, fname(τ1, ..., τn) 
→ a, Γ2 fname(τ1, ..., τn) �∈ Dom(Γ2)

Γ 
 xfunapp fname [X1, ..., Xn] : τ ↔ a ⇒ xfunapp[τ1,...,τn] fname [X′
1, ..., X′

n]

Fig. 16 Typing rules.

can be applied at different points with arguments of different types, so its body needs to be annotated according to
argument types at each function calling point.

The transformation xvar is annotated with the type of the variable it references, xchild is annotated with the
type of its source data, and the parallel composition || is annotated with the type of its source data and a pair of the
boxed view types of its two argument transformations.

There two rules for typing xmap X. The first rule applies when the source type τ does not contain any string type
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Γ 
 X : () ↔ τ ′ ⇒ X′ τ ′ ∈ {strings|stringc, strings, stringc}
τ ∈ {strings|stringc, strings, stringc}

Γ 
ok xeq X : τ

τ = <tago1
1 >[τ1]|...|<tagon

n >[τn]

Γ 
ok xwithtag str : τ

τ = <tago1
1 >[τ1]|...|<tagok

k
>[τk]|τ ′ τ ′ ∈ {strings|stringc, strings, stringc}

Γ 
ok xiselement : τ

Fig. 17 The typing rules for predicates.

Γ; Θ 
m xmap X : a ↔ a

Γ;Θ 
m xmap X : () ↔ ()

τ ∈ {stringo, <tago′
>[τ ′]} Γ 
 X : τΘ ↔ τ ′′ ⇒ X′

Γ;Θ 
m xmap X : τ ↔ �τ ′′	
Γ;Θ 
m xmap X : τ ↔ τ1

Γ; Θ 
m xmap X : τ∗ ↔ τ1∗
Γ; Θ 
m xmap X : τ1 ↔ τ ′

1 Γ;Θ 
m xmap X : τ2 ↔ τ ′
2

Γ; Θ 
m xmap X : τ1, τ2 ↔ τ ′
1, τ ′

2

Γ; Θ 
m xmap X : τ1 ↔ τ ′
1 Γ;Θ 
m xmap X : τ2 ↔ τ ′

2

Γ; Θ 
m xmap X : τ1|τ2 ↔ τ ′
1|τ ′

2

Γ; Θ, [μa.τ/a] 
m xmap X : τ ↔ τ ′

Γ;Θ 
m xmap X : μa.τ ↔ μa.τ ′

Fig. 18 The rules for xmap typing.

or element type, that is, when singlety(τ) = ∅, which implies the source data of xmap is (). The singlety operator
is defined in Figure 19. At this case, the view type of xmap is trivially (), and the component transformation X is
not checked and annotated since it does not have a chance to execute. That is, by using this rule, we do not need
to care whether X is type-correct or not. The second typing rule applies when singlety(τ) � ∅. At this case, the
component transformation X will be applied to each single value in the source data. In the following, we explain for
the second case how the view type of xmap is generated and how the component transformation X is annotated.

If the source type τ satisfies singlety(τ) � ∅, the rules in Figure 18 are used to generate the view type of xmap.
These rules derive the judgment of the form Γ;Θ �m xmap X : τ↔ τ′, where the type τ′ is obtained by traversing the
structure of τ, and replacing each string or element type in τ with a boxed type obtained by type-checking X with
this string or element type as the source type under Γ. The environmentΘ consists of a sequence of substitutions,
each having the form μa.τ/a. These substitutions can be applied to a type τ′, written as τ′Θ, to replace all free
variables a in τ′ with μa.τ. If Θ does not include any substitution, it is represented as ·.

The relation between τ and τ′ is reflected by the Lemma 4. The type τ′ is then used to annotate xmap for supporting
backward transformations. The view type of xmap is obtained by removing the boxes in τ′ with the operation
rmbox(τ′). That is, the boxed types only appear as annotations, and do not used as types for source data or views.
The rmbox operator is defined in Figure 19.

Lemma 4 Given a transformation X, a context Γ and a sequence of substitutions Θ, if Γ;Θ �m X : τ ↔ τ′, then τ
has the identical structure as τ′ at the box level modulo typing of X under Γ, written as τ �X

Γ;Θ τ
′. That is,

• if τ = a, then τ′ = a;

• if τ = (), then τ′ = ();
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singlety(a) = ∅
singlety(()) = ∅
singlety(stringo) = {stringo}
singlety(<tago>[τ ]) = {<tago>[τ ]}
singlety(τ∗) = singlety(τ)

singlety(τ1, τ2) = singlety(τ1) ∪ singlety(τ2)

singlety(τ1|τ2) = singlety(τ1) ∪ singlety(τ2)

singlety(�τ	) = singlety(τ)

singlety(μa.τ) = singlety(τ)

rmbox(a) = a

rmbox(()) = ()

rmbox(stringo) = stringo

rmbox(<tago>[τ ]) = <tago>[τ ]

rmbox(τ∗) = rmbox(τ)∗
rmbox(τ1, τ2) = rmbox(τ1), rmbox(τ2)

rmbox(τ1|τ2) = rmbox(τ1)|rmbox(τ2)

rmbox(�τ	) = τ

rmbox(μa.τ) = μa.τ ′, where τ ′ = rmbox(τ)

Fig. 19 The rmbox and singlety operators for xmap typing.

• if τ ∈ {stringo, <tago′>[τ1]}, then τ′ = �τ′′� and Γ � X : τΘ↔ τ′′ ⇒ X′;

• if τ = τ1∗, then τ′ = τ′1∗ and τ1 �
X
Γ;Θ τ

′
1;

• if τ = τ1, τ2, then τ′ = τ′1, τ
′
2, τ1 �

X
Γ;Θ τ

′
1 and τ2 �

X
Γ;Θ τ

′
2;

• if τ = τ1|τ2, then τ′ = τ′1|τ′2, τ1 �
X
Γ;Θ τ

′
1 and τ2 �

X
Γ;Θ τ

′
2;

• if τ = μa.τ1, then τ′ = μa.τ′1, and τ1 �
X
Γ;Θ,μa.τ1/a

τ′.

Boxed types help identify which subsequence in the view of xmap should be transformed by one backward execu-
tion of X when the view includes inserted values. Boxed types will be used in Section 7 when revising the backward
semantics of xmap. An example below explains the benefits of using boxed types.

The component transformation X of xmap should be annotated by taking into account every possible top-level
string or element type in the source type τ of xmap. These types are collected in a set by the singlety operator
and then represented as a choice type by using the mkchoicety operator below to check X. Thus, X is annotated
with the type information from all possible string and element types in τ.

mkchoicety(TSet) =

⎧⎪⎪⎨⎪⎪⎩
τ, if TSet = {τ}
τ|mkchoicety(TSet′), if TSet = {τ} ∪ TSet′

The boxed type can help update the source data in a more reasonable way for updated views with
insertions. For example, suppose we have the transformation xmap xchild. If the source type is
<bags>[<apples>[strings]∗], then the view type annotation of xmap is �<apples>[strings]∗�; if the source
type is <bags>[<apples>[strings]]∗, then its view type annotation is �<apples>[strings]�∗. The different po-
sition of box can tell us whether the apple elements in a view come from the same bag element or from different
bag elements. If we insert a new apple element on the view already containing some apple elements, then in the
first case, the new apple element should be used together with other existing apple elements by xchild to update
the source data, resulting in a new bag element containing all apple elements; while in the second case, the inserted
apple element should be processed independently by xchild, and a new bag element for this new apple element is
generated in the updated source data. In both cases, the updated source data has the valid type due to the information
from the boxed type.

The typing rule of xif checks its two branches with its source type τ refined by T(τ, P) and F(τ, P), respectively,
which are defined in Figure 20. These operators generate more precise source types for each branch. Here are some
brief explanation of these operators: the operator T(τ, xwithtag str) selects in τ the element types with the tag
str, while F(τ, xwithtag str) returns the element types with the tag other than str; the operator T(τ, xiselement)
selects the element types in τ, while the operator F(τ, xiselement) selects the string types; both operators T(τ, xeq)
and F(τ, xeq) return the source type without further selection since the source type τ for xeq can only a string type
or a choice of strings. The set of types returned by T(τ, P) and F(τ, P) are combined into a choice type by using
mkchoicety. An empty set returned by T(τ, P) means there is no source data of type τ that makes P true. At this
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T(τ, xeq X′) = {τ}
F(τ, xeq X′) = {τ}

T(stringo, xiselement) = ∅
T(<tago>[τ ], xiselement) = {<tago>[τ ]}
T(stringo|τ ′, xiselement) = T(τ ′, xiselement)

T(<tago>[τ ]|τ ′, xiselement) = {<tago>[τ ]} ∪ T(τ ′, xiselement)

F(stringo, xiselement) = {stringo}
F(<tago>[τ ], xiselement) = ∅
F(stringo|τ ′, xiselement) = {stringo} ∪ F(τ ′, xiselement)

F(<tago>[τ ]|τ ′, xiselement) = F(τ ′, xiselement)

T(τ, xwithtag str) = {<tago>[τ ′]|<tago>[τ ′] ∈ T(τ, xiselement), tag = str}
F(τ, xwithtag str) = {<tago>[τ ′]|<tago>[τ ′] ∈ T(τ, xiselement), tag �= str}

Fig. 20 The operator T and F.

case, the true branch will not be type-checked, since it is never be executed. It is also similar for the false branch
when F(τ, P) returns an empty set. It is a typing error when both sets T(τ, P) and F(τ, P) are empty based on the
semantics of the predicates. Hence, there is no the typing rule of xif where both T(τ, P) and F(τ, P) are empty.

The following example shows the usefulness of this typing feature. In this example, suppose we have the code
xif (xwithtag book) xchild (xconst ()) and the source type <books>[strings]|strings. If the source type of
xif is directly applied to check its branches, the true branch will cause a type error since xchild can only accept
elements as its source. Actually, if the true branch is chosen at runtime, we know the xwithtag predicate must hold
and the source data of this branch must be an element. Hence, we can use the element type <books>[strings] to
check the true branch xchild.

There are two typing rules for function calls. If a function together with the types of its arguments is not in the
domain of Γ, then the first rule is used, otherwise the second is taken. In the first rule, the function body X is checked
under the typing context, where the variable Vari is mapped to the type τi, and the function name funname together
with these argument types is mapped to a fresh type variable a. The view type τ′ of the function body X probably
contains the free type variable a because of recursive function calls. Therefore the view type of xfunapp in the first
typing rule is a recursive type μ a.τ′. In the second rule, the function body will not be checked since its resulting
type is already available. Note that the type-annotated function body in the first rule is not used in the typing result.
This does not mean that we do not need type annotations in the function body. Instead, this is because we want to
avoid the trouble of managing different versions of the same function with different type annotations. Our solution
is to annotate function calls with the types of their arguments, and then use these types to dynamically type-check
and annotate function bodies when meeting with function calls at runtime. The dynamic type checking does not fail
since it just replays a static checking to produce annotations for the function body. Suppose an annotated function
call, xfunapp[τ1,...,τn] fname [X1, ..., Xn], is to be executed backward and the function fname is defined as

fun fname(Var1, ...,Varn) = X

Then, the body X can be annotated by reasoning about the following judgment.

[Var1 �→ τ1, ...,Varn �→ τn, fname(τ1, ..., τn) �→ a] � X : ()↔ τ′ ⇒ X′

where a is a fresh type variable. The annotations in X′ may include free occurrences of variable a, which need to be
resolved before executing X′. The operation X′[μa.τ/a] defined in Figure 21 replaces all free type variables a in X′
by its definition μa.τ.

6.3 Type soundness
We will prove the type system in this section is sound with respect to the forward semantics of the bidirectional

language. The forward semantics of the bidirectional language depends on the evaluation environment C. In the fol-
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X[μa.τ/a] = X, where X ∈ {xid, xconst T}
(xvarτ ′

Var)[μa.τ/a] = xvarτ ′[μa.τ/a] Var

xchildτ ′
[μa.τ/a] = xchildτ ′[μa.τ/a]

(xsetcnt X)[μa.τ/a] = xsetcnt X[μa.τ/a]

(X1; X2)[μa.τ/a] = X1[μa.τ/a]; X2[μa.τ/a]

(X1‖�τ1�,�τ2�
τ3 X2)[μa.τ/a] = X1[μa.τ/a]‖�τ1[μa.τ/a]�,�τ2[μa.τ/a]�

τ3[μa.τ/a]
X2[μa.τ/a]

(xmapτ ′
X)[μa.τ/a] = xmapτ ′[μa.τ/a] X[μa.τ/a]

(xifτ2
τ1 P X1 X2)[μa.τ/a] = xif

τ2[μa.τ/a]

τ1[μa.τ/a]
P X1[μa.τ/a] X2[μa.τ/a]

(xlet Var X)[μa.τ/a] = xlet Var X[μa.τ/a]

(xfunapp fname[τ1,...,τn] [X1, ..., Xn])[μa.τ/a] = xfunapp fname[τ1[μa.τ/a],...,τn[μa.τ/a]]

[X1[μa.τ/a], ..., Xn[μa.τ/a]]

Fig. 21 The type variable resolving operation.

lowing definition, we define the well-typed evaluation environmentC with respect to a typing context Γ, represented
by C ∈ Γ, which is needed to define the type-soundness property.

Definition 1 Given the evaluation environmentC and the typing context Γ, we say C ∈ Γ if for all Var ∈ Dom(C) we
have Var ∈ Dom(Γ) and C(Var) ∈ Γ(Var).

The soundness property of this type system is stated by Theorem 5. As usual, well-typed programs do not get
stuck in their forward executions, and generate views that have the view types derived by the type system.

Theorem 5 Given a transformation X, a typing context Γ, an evaluation environment C and a source value S , if
Γ � X : τ↔ τ′ ⇒ X′, C ∈ Γ and S ∈ τ, then [[X′]]C(S) = T and T ∈ τ′.

The backward semantics of the bidirectional language depends on the evaluation environment E. The following
definition defines the well-typed evaluation environment E with respect to a typing context Γ.

Definition 2 For the evaluation environment E and the typing context Γ, we say E ∈ Γ, if for all Var ∈ Dom(E) we
have Var ∈ Dom(Γ), E(Var) = (S , S ′) and both S ∈ Γ(Var) and S ′ ∈ Γ(Var).

The type system presented has the property of backward type preservation, which is given in Theorem 6. By this
property, the type of source data is respected after it is updated by backward executions of well-typed programs. The
type system cannot guarantee that well-typed programs do not fail because conflicting and improper updates cannot
be checked statically by this type system.

Theorem 6 Let E ∈ Γ and S ∈ τ. If Γ � X : τ ↔ τ′ ⇒ X′, T ∈ τ′, and [[X]]E(S, T ) = (S ′,E′) or [[X′]]E(S, T ) =
(S ′,E′), then S ′ ∈ τ and E′ ∈ Γ.

6.4 An example of type derivation
Figure 22 lists the types and typing contexts used by a type derivation example illustrated in Table 5 and Table 6.

This example demonstrates how to type-check a call to the function toc in Figure 9. In this example, a judgment
Γ0 � XBody : () ↔ VSecTy∗ ⇒ XBody′ is derived. The annotated function body XBody′ is given in Figure 23,
where another annotated function body XBody′′ is the result of type-checking XSubTitles in XBody′. The derivation
generating XBody′ is indicated by the index t1 in in Table 5, while the derivation for XBody′′ is indicated by the
index t1.3.3.2.2.1.2.2 in Table 6. These two annotated function bodies will be referenced by the examples in Section
7.

The indexes in the aforementioned tables serve as the same purposes as those in the examples in Section 3.6. That
is, the indexes are used to represent the sequence and dependency relations between derivations. For example, the
derivation of t1 depends on the sequential derivations of t1.1, t1.2 and t1.3. Typing an xmap transformation needs a
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BookTy = <books>[TitleTy, AuthorTy∗, SecTy∗]
TitleTy = <titles>[strings]

AuthorTy = <authors>[strings]

SecTy = μ$sec.<sections>[TitleTy, SCntTy∗]
SCntTy = ParaTy|$sec

ParaTy = <ps>[strings]

VSecTy = <sectionc>[TitleTy, RSecTy]

RSecTy = μ$s.(OSecTy∗)
OSecTy = CSecTy|()
CSecTy = <sectionc>[TitleTy, $s]

toc(BookTy) $b

$book-or-section BookTy

$section SecTy

toc(BookTy) $b

$book-or-section BookTy

Γ0 Γ1

toc(SecTy) $s

$book-or-section SecTy

$section SecTy

toc(BookTy) $b

$book-or-section BookTy

$section SecTy

toc(SecTy) $s

$book-or-section SecTy

$section SecTy

toc(BookTy) $b

$book-or-section BookTy

Γ2 Γ3

Fig. 22 The source type and contexts for typing toc.

derivation to generate its view type and also a derivation to annotate its component transformation. In the aforemen-
tioned tables, the derivations for annotating the component transformations of xmap are omitted because they are
either the same as or similar to the existing ones for generating view types. For example, the xmap transformation
of index t1.3 needs to annotate its component transformation xif (xwithtag “section′′) XSec (xconst ()) under Γ0 with
the source type TitleTy|AuthorTy|SecTy (i.e., the result of singlety(TitleTy,AuthorTy∗,SecTy∗)). With the help of T
operator for xwithtag, the true branch XSec needs to be checked under Γ0 with the source type SecTy. This check
is already done by the derivation t1.3.3.2. With the F operator, the false branch xconst () is checked with the source
type TitleTy|AuthorTy, which is trivial and similar to the derivations t1.3.1.2 and t1.3.2.2.

Together with the examples in Section 3.6, for the forward transformation, we have C0 ∈ Γ0, () ∈ () and hence
<section(ori,c)>[S 4] ∈ VSecTy∗; for the backward transformation, we have E0 ∈ Γ0, () ∈ (),<section(ori,c)>[S ′4] ∈
VSecTy∗, and then () ∈ () and E′0 ∈ Γ0.

7 Revised bidirectional semantics for insertions
In this section, we will explain how to transform back the updated views that include insertions. For this purpose,

we need to revise the forward or backward semantics of some transformations. In particular, from the revised
backward semantics, we will see the types annotated on transformations provide guiding information for backward
executions.

All examples in this section use the following source data. It includes a list of books and each book contains a title
and a sequence of authors. This source data is called BookList.

<book(ori,s)>[<title(ori,s)>[a(ori(�),s)], <author(ori,s)>[b(ori(�),s)]],
<book(ori,s)>[<title(ori,s)>[c(ori(�),s)], <author(ori,s)>[d(ori(�),s)], <author(ori,s)>[e(ori(�),s)]]

7.1 Missing source data
The bidirectional transformations defined in Section 3 need the original source data to guide their backward

executions. For example, the transformation xchild needs the original source element to determine what tag the
updated source element could have in its backward semantics. However, if the updated views include insertions, it is
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Table 5 An example of type derivation (Part 1).

Index Tran SrcTy TyCtx ViewTy

t1 XBody () Γ0 VSecTy*

t1.1 xvar $book-or-section () Γ0 BookTy

t1.2 xchild BookTy Γ0 TitleTy,AuthorTy∗, SecTy∗
t1.3 xmap (xif (xwithtag section) TitleTy,AuthorTy∗, Γ0 (),()*,

XSec (xconst ())) SecTy∗ VSecTy*

t1.3.1 xif (xwithtag section) TitleTy Γ0 ()
XSec (xconst ()))

t1.3.1.1 T(TitleTy, xwithtag section)=∅, F(TitleTy, xwithtag section)={TitleTy}
t1.3.1.2 xconst () TitleTy Γ0 ()

t1.3.2 xif (xwithtag section) AuthorTy Γ0 ()
XSec (xconst ()))

t1.3.2.1 T(AuthorTy, xwithtag section)=∅, F(AuthorTy, xwithtag section)={AuthorTy}
t1.3.2.2 xconst () AuthorTy Γ0 ()

t1.3.3 xif (xwithtag section) SecTy Γ0 VSecTy
XSec (xconst ()))

t1.3.3.1 T(SecTy, xwithtag section)={SecTy}, F(SecTy, xwithtag section)=∅
t1.3.3.2 XSec SecTy Γ0 VSecTy

t1.3.3.2.1 xconst <section(ori,c)>[()] () Γ1 <sectionc>[()]

t1.3.3.2.2 xsetcnt (XTitle‖XSubTitles) <sectionc>[()] Γ1 VSecTy

t1.3.3.2.2.1 XTitle‖XSubTitles () Γ1 TitleTy,RSecTy

t1.3.3.2.2.1.1 XTitle () Γ1 TitleTy

t1.3.3.2.2.1.1.1 xvar $section () Γ1 SecTy

t1.3.3.2.2.1.1.2 xchild SecTy Γ1 TitleTy, SCntTy∗
t1.3.3.2.2.1.1.3 xmap (xif (xwithtag title) TitleTy, SCntTy∗ Γ1 TitleTy, ()*

xid (xconst ()))

t1.3.3.2.2.1.1.3.1 xif (xwithtag title) TitleTy Γ1 TitleTy
xid (xconst ())

t1.3.3.2.2.1.1.3.1.1 T(TitleTy, xwithtag title)={TitleTy}, F(TitleTy, xwithtag title)=∅
t1.3.3.2.2.1.1.3.1.2 xid TitleTy Γ1 TitleTy

t1.3.3.2.2.1.1.3.2 xif (xwithtag title) SCntTy Γ1 ()
xid (xconst ())

t1.3.3.2.2.1.1.3.2.1 T(SCntTy, xwithtag title)=∅, F(SCntTy, xwithtag title)={ParaTy,SecTy }
t1.3.3.2.2.1.1.3.2.2 xconst () ParaTy|SecTy Γ1 ()

possible that some inserted values do not correspond to any original source data. Thus, the backward transformation
of these inserted values will cause problems according to the existing bidirectional semantics. The following example
explains how the source data is missing for inserted values on views.

Suppose we have the transformation xmap xid, where type annotations on xmap are ignored for brevity (also in
some examples later), and apply it to the source BookList. The generated view is identical to the source. The
following is an updated view with a new inserted book.

<book(ori,s)>[<title(ori,s)>[a(ori(�),s)], <author(ori,s)>[b(ori(�),s)]],
<book(ori,s)>[<title(ori,s)>[c(ori(�),s)], <author(ori,s)>[d(ori(�),s)], <author(ori,s)>[e(ori(�),s)]],
<book(ins,s)>[<title(ins,s)>[f(ins,s)], <author(ins,s)>[g(ins,s)]]

Now we transform backward the updated view, that is, transform backward each book in the view and its corre-
sponding book in BookList by xid. For the first book and the second book in the updated view, they have the first
book and the second book in BookList as their sources, respectively. However, for the third book in the updated
view, it does not correspond to any book in BookList.

The missing source data is denoted byΩ as in [5]. When xmap X is executed backward, if its view includes inserted
values, then it is possible that the backward execution of X on the inserted values does not have corresponding source
data. At that time, the symbol Ω will be introduced, as shown later by the revised backward semantics of xmap.

The backward execution of X in xmap X may depend on forward executions of its constituent transformations. If
the backward execution of X takesΩ as its source, thenΩmay also be the source of the involved forward executions.
For this case, we have the convention that a forward transformation maps Ω to Ω. Since Ω represents a nonexistent
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Table 6 An example of type derivation (Part 2).

Index Tran SrcTy TyCtx ViewTy

t1.3.3.2.2.1.2 XSubTitles () Γ1 RSecTy

t1.3.3.2.2.1.2.1 xvar $section () Γ1 SecTy

t1.3.3.2.2.1.2.2 XBody () Γ2 OSecTy*

t1.3.3.2.2.1.2.2.1 xvar $book-or-section () Γ2 SecTy

t1.3.3.2.2.1.2.2.2 xchild SecTy Γ2 TitleTy,SCntTy∗
t1.3.3.2.2.1.2.2.3 xmap (xif (xwithtag section) TitleTy, SCntTy∗ Γ2 (), OSecTy*

XSec (xconst ()))

t1.3.3.2.2.1.2.2.3.1 xif (xwithtag section) TitleTy Γ2 ()
XSec (xconst ()))

t1.3.3.2.2.1.2.2.3.1.1 T(TitleTy, xwithtag section)=∅, F(TitleTy, xwithtag section)={TitleTy}
t1.3.3.2.2.1.2.2.3.1.2 xconst () TitleTy Γ2 ()

t1.3.3.2.2.1.2.2.3.2 xif (xwithtag section) SCntTy Γ2 OSecTy
XSec (xconst ()))

t1.3.3.2.2.1.2.2.3.2.1 T(SCntTy, xwithtag section)={SecTy}
F(SCntTy, xwithtag section)= {ParaTy}

t1.3.3.2.2.1.2.2.3.2.2 xconst () ParaTy Γ2 ()

t1.3.3.2.2.1.2.2.3.2.3 XSec SecTy Γ2 CSecTy

t1.3.3.2.2.1.2.2.3.2.3.1 xconst <section(ori,c)>[()] () Γ3 <sectionc>[()]

t1.3.3.2.2.1.2.2.3.2.3.2 xsetcnt (XTitle‖XSubTitles) <sectionc>[()] Γ3

t1.3.3.2.2.1.2.2.3.2.3.2.1 XTitle‖XSubTitles () Γ3 TitleTy, $s

t1.3.3.2.2.1.2.2.3.2.3.2.1.1 XTitle () Γ3 TitleTy

t1.3.3.2.2.1.2.2.3.2.3.2.1.1.1 xvar $section () Γ3 SecTy

t1.3.3.2.2.1.2.2.3.2.3.2.1.1.2 xchild SecTy Γ3 TitleTy,SCntTy∗
t1.3.3.2.2.1.2.2.3.2.3.2.1.1.3 xmap (xif (xwithtag title) TitleTy, SCntTy∗ Γ3 TitleTy, ()*

xid (xconst ()))

t1.3.3.2.2.1.2.2.3.2.3.2.1.1.3.1 xif (xwithtag title) TitleTy Γ3 TitleTy
xid (xconst ())

t1.3.3.2.2.1.2.2.3.2.3.2.1.1.3.1.1 T(TitleTy, xwithtag title)={TitleTy}, F(TitleTy, xwithtag title)=∅
t1.3.3.2.2.1.2.2.3.2.3.2.1.1.3.1.2 xid TitleTy Γ3 TitleTy

t1.3.3.2.2.1.2.2.3.2.3.2.1.1.3.2 xif (xwithtag title) SCntTy Γ3 ()
xid (xconst ())

t1.3.3.2.2.1.2.2.3.2.3.2.1.1.3.2.1 T(SCntTy, xwithtag title)=∅, F(SCntTy, xwithtag title)={ParaTy,SecTy}
t1.3.3.2.2.1.2.2.3.2.3.2.1.1.3.2.2 xconst () ParaTy|SecTy Γ3 ()

t1.3.3.2.2.1.2.2.3.2.3.2.1.2 XSubTitles () Γ3 $s

t1.3.3.2.2.1.2.2.3.2.3.2.1.2.1 xvar $section () Γ3 SecTy

value, its length is regarded as 0 and its type can be any type, that is Ω ∈ τ for any τ.

7.2 Revised backward semantics
The difficulty of revising backward semantics is caused by the missing source data. Without information provided

by the source data some backward executions do not know how to proceed. At this case, we will use the types
annotated on transformations to guide the backward executions.

7.2.1 Constant transformation
If the source data is missing, the constant transformation will fail since we cannot construct the updated source

data even if we have the source-data type of xconst. In addition, the updated view may be an inserted value, as
shown by the following revised backward semantics of xconst.

[[xconst Tc]]E(S, T) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(S ,E), if S � Ω and T = Tc

(S ,E), if S � Ω, T = <tag(ins,c)>[()] or T = str(ins,c)

fail, otherwise

Here is an example that explains when xconst could have an inserted element as its updated view. The code for
this example is given below.

xmap (xlet $b (<pack(ori,c)>[()]; xsetcnt (xvar $b)))
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XBody′ = xvarBookTy $book-or-section; //gets the book or section

xchildBookTy; //gets the contents of the book or section

xmap�()�,�()�∗,�VSecTy�∗(xif
()
VSecTy (xwithtag section) XSec (xconst ()))

//processes each section with XSec and hides non-section elements

XSec = xlet $section (

<section(ori,c)>[()] //builds a section element

xsetcnt (XTitle‖�TitleTy�,�RSecTy�
()

XSubTitles) //sets title and subsection titles

)

XTitle = xvarSecTy $section; //gets a section element

xchildSecTy; //gets its content

xmap�TitleTy�,�()�∗(xif
()
TitleTy(xwithtag title) xid (xconst ()))

//keeps only its title

XSubTitles = xfunapp[SecTy] toc [xvarSecTy $section] //builds toc of subsections

//XBody′′ is the annotated function body generated when typing XSubTitles in XBody′
XBody′′ = xvarSecTy $book-or-section; //gets the book or section

xchildSecTy; //gets the contents of the book or section

xmap�()�,�()�|�VSecTy�∗(xif
()
VSecTy (xwithtag section) XSec (xconst ()))

//processes each section with XSec and hides non-section elements

XSec = xlet $section (

<section(ori,c)>[()] //builds a section element

xsetcnt (XTitle‖�TitleTy�,�RSecTy�
()

XSubTitles) //sets title and subsection titles

)

XTitle = xvarSecTy $section; //gets a section element

xchildSecTy; //gets its content

xmap�TitleTy�,�()�∗(xif
()
TitleTy(xwithtag title) xid (xconst ()))

//keeps only its title

XSubTitles = xfunapp[SecTy] toc [xvarSecTy $section] //builds toc of subsections

Fig. 23 The annotated function bodies of toc.

Applying the above code to the source BookList, we get a view that includes two pack elements, each of which
contains inside a book from BookList. Now if we insert into the view a new pack element with the annotation
(ins, c) containing a new book element as the last element, then the backward execution of the xconst above will
take () as its source data and xconst <pack(ins,c)>[()] as its updated view. The inserted book element will appear as
the last element in the updated BookList after the backward execution of xmap. Note that after applying the above
code to the updated BookList the updating status ins on the last pack element in the view will be changed into
ori based on the forward semantics of xconst. This will be reflected in the new update-keeping relation, which
considers view insertions.

7.2.2 Element deconstruction
If the transformation xchild does not have its source, it does not know what tag the updated source should have.

Recall the definition of its backward semantics, xchild needs the tag of the original element to determine the tag of
the updated element. This problem is solved by the annotated type on xchild, which is the type of the source data.
The source-data type of xchild must have the form <tago1

1 >[τ1]|...|<tagon
n >[τn]. If the view T has the type τi, then

this view is supposed to come from a source element with the type <tagoi
i >[τi], so we use tag(ins,oi)

i as the tag of the
updated source data.

[[xchildτ]]E(S , T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(<tag(w,o)>[T ],E), if S = <tag(w,o)>[S′], τ = <tago1
1 >[τ1]|...|<tagon

n >[τn]
S ∈ τi and T ∈ τi

(<tag(ins,oi)
i >[T ],E), if S = Ω, τ = <tago1

1 >[τ1]|...|<tagon
n >[τn]

T ∈ τi

fail, otherwise

It should mention that if the source data of xchild is not missing, we have a check to make sure the updated view
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has the same type as the content of the original source. This check is necessary for the revised backward semantics
of xchild to satisfy backward type preservation property, and the reason is given below.

Suppose the source-data type of xchild is <tago1
1 >[τ1]|...|<tagon

n >[τn]. Then, its view type for this source-data
type is τ1|...|τ2 according to the typing rule of xchild. Let the source data S have the type <tagoi

i >[τi], so the original
view of xchild has the type τi. However, after updated with insertions, even if the updated view T has the view
type τ1|...|τn, T not necessarily has the type τi. Hence, the updated source data may not have the type <tagoi

i >[τi], or
even not the type <tago1

1 >[τ1]|...|<tagon
n >[τn].

7.2.3 Variable reference
The xvar Var transformation returns the original source data in its backward semantics, so if the source data is

missing, its backward executions will fail. In the revised backward semantics of xvar, a new mg operator, defined in
Figure 24, is used to merge T ′ and the current updated value of Var in E. This new operator is directed by the type
annotated on xvar, which characterizes the structure of the expected merging result. This new mg operator is able to
merge two values that may not have identical structures due to insertions.

[[xvarτ Var]]E(S, T ′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(S ,E′), if S � Ω,E = E1,Var �→ (S 1, S 2),E2,Var � Dom(E2) and

E′ = E1,Var �→ (S 1, mg(S 2, T ′, τ)),E2

fail, otherwise

In the revised backward semantics of xvar, the variable Var in E may be bound to a pair of Ωs by the most recent
enclosed xlet. Then after merging, the binding for Var may change from Var �→ (Ω,Ω) into Var �→ (Ω, T ′).

The following are two examples explaining the new mg operator. In the definition of new mg, the operation
allins(S ) returns true if all top-level strings or elements in S are annotated with ins, and the operation orilen(S )
returns the number of top-level strings or elements in S that are not annotated with ins. In the first example, we
suppose S 1 and S 2 shown below will be merged, where year is an optional element.

S 1 : <title(ori,s)>[t(mod,s)], <author(ins,s)>[h(ins,s)], <author(ori,s)>[b(ori(�),s)], <year(ins,s)>[2009(ins,s)]
S 2 : <title(ori,s)>[a(ori(�),s)], <author(ins,s)>[g(ins,s)], <author(ori,s)>[b(ori(�),s)], <author(ins,s)>[k(ins,s)]

Let the expected merging result have the type τ = Title, Author∗, Year|(), where title, Author, and Year
represent the types for the title, author and year elements, respectively. Then, the operation mg(S 1, S 2, τ) could
return the following data that merges all insertions and modifications in S 1 and S 2.

<title(ori,s)>[t(mod,s)], <author(ins,s)>[h(ins,s)], <author(ins,s)>[g(ins,s)],
<author(ori,s)>[b(ori(�),s)], <author(ins,s)>[k(ins,s)], <year(ins,s)>[2009(ins,s)]

The second example explains a scenario where the view is a join of a book title and all its authors. In this
scenario, when a new author and the book title is inserted, the inserted title needs to merge with the originally
existing title. This merge in this example is processed by the ninth and tenth rules in Figure 24. Suppose the
original source contains an element Bob(ori(�),s) for an author and the environment C maps a variable $title for a
book tile to Database(ori(�),s). The type of title is assumed to be strings, and the source takes type strings∗.
For the transformation xmap (xlet $a (xvar $a‖xvar $title)), we get the view Bob(ori(�),s),Database(ori(�),s).
That is, the transformation joins the book tile Database(ori(�),s) to each author in the source. If the view is up-
dated to Bob(ori(�),s),Database(ori(�),s),Tom(ins,s),Database(ins,s), then the backward execution of xvar needs to
merge Database(ori(�),s) and Database(ins,s) by using the ninth rule of the mg operator. If the view is updated to
Bob(ori(�),s),Database(ori(�),s),Tom(ins,s),WebDB(ins,s), the title is changed to WebDB(mod,s) according to the tenth
rule of the mg operator. That is, when an inserted string has a corresponding one from the source, it is not regarded
as inserted after merging, so does when an inserted string has a corresponding one from code (shown by the eleventh
rule of the mg operator).

7.2.4 Conditional transformation
If the source data of xif is not missing and its predicate has the value true or false, then the revised backward

semantics is the same as that before revision, that is, the branch X1 or X2 is chosen to run backward according to the
value of the predicate. On the other hand, if the source data of xif is Ω, then xif loses the information of how to
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mg((), (), ()) = ()

mg(str(u,o), str(u,o), strings) = str(u,o)

mg(str(ori(�),s), str ′(u,s), strings) = str ′(u,s)

mg(str(ori(↑),s), str ′(mod,s), strings) = str ′(mod,s), if str ′ > str

mg(str(ori(↓),s), str ′(mod,s), strings) = str ′(mod,s), if str ′ < str

mg(str(ori(↑),s), str(ori(↓),s), strings) = str(ori(•),s)

mg(str(ori(•),s), str(ori(i),s), strings) = str(ori(•),s), i ∈ {�, •, ↑, ↓}
mg(str(del,s), str(ori(i),s), strings) = str(del,s), i ∈ {�, •, ↑, ↓}
mg(str(ins,s), str(ori(i),s), strings) = str(ori(i),s), i ∈ {�, •, ↑, ↓}
mg(str(ins,s), str ′(ori(i),s), strings) = mg(str(mod,s), str ′(ori(i),s), strings), if str �= str ′

mg(str(ins,c), str(ori(•),c), stringc) = str(ori(•),c)

mg(<tag(w,o)>[S1], <tag(w,o)>[S2], <tago>[τ ]) = <tag(w,o)>[mg(S1, S2, τ)]

mg(<tag(ori,s)>[S1], <tag(del,s)>[S2], <tags>[τ ]) = <tag(del,s)>[mg(S1, S2, τ)]

mg(<tag(ori,o)>[S1], <tag(ins,o)>[S2], <tago>[τ ]) = <tag(ori,o)>[mg(S1, S2, τ)]

mg(S1, S2, τ∗) = mg(S1, S2, ()|τ, τ∗)
mg(S1, S2, τ1, τ2) = S′, mg(S12, S22, τ2)

if for some S′, S1 = S′, S12, S2 = S′, S22, S′ ∈ τ1, S12 ∈ τ2, S22 ∈ τ2

mg(S1, S2, τ1, τ2) = S11, mg(S12, S2, τ1, τ2)

if S1 = S11, S12 for some S11 and S12, S11 ∈ τ1, S12 ∈ τ1, τ2, allins(S11) = true,

S2 �= S11, S′
22 for any S′

22

mg(S1, S2, τ1, τ2) = mg(S11, S21, τ1), mg(S12, S22, τ2)

if S1 = S11, S12 for some S11 and S12, S11 ∈ τ1, S12 ∈ τ2, S12 �∈ τ1, τ2, allins(S11) = true,

S2 = S21, S22 for some S21 and S22, S21 ∈ τ1, S22 ∈ τ2, S22 �∈ τ1, τ2,

S2 �= S11, S′
22 for any S′

22

mg(S1, S2, τ1, τ2) = mg(S11, S21, τ1), mg(S12, S22, τ2)

if S1 = S11, S12 for some S11 and S12, S11 ∈ τ1, S12 ∈ τ2, allins(S11) = false,

S2 = S21, S22 for some S21 and S22, S21 ∈ τ1, S22 ∈ τ2, allins(S21) = false, orilen(S11) = orilen(S21),

S2 �= S11, S′
22 for any S′

22

mg(S1, S2, τ1|τ2) = mg(S1, S2, τ1), if S1 ∈ τ1, S1 �∈ τ2 and S2 ∈ τ1

mg(S1, S2, τ1|τ2) = mg(S1, S2, τ2), if S1 ∈ τ2, S1 �∈ τ1 and S2 ∈ τ2

mg(S1, S2, τ1|τ2) = mg(S1, S2, τ1)

if S1 ∈ τ1, S1 ∈ τ2, S2 ∈ τ1, S2 ∈ τ2, mg(S1, S2, τ1) = mg(S1, S2, τ2) or mg(S1, S2, τ2) = fail

mg(S1, (), τ1|τ2) = S1, if S1 ∈ τ1, S1 �∈ τ2, () ∈ τ2 and () �∈ τ1

mg(Ω, S, τ) = S

mg(S1, S2, τ) = mg(S2, S1, τ), if one case above applies to mg(S2, S1, τ)

mg(S1, S2, τ) = fail, if no other case applies

Fig. 24 The new mg operator.

advance its backward executions. At this case, the types annotated on xif provide such information. If the updated
view belongs to the view type of the branch X1, then it is supposed to be generated by X1, so X1 will be chosen; if
the updated view has the view type of X2, then X2 is chosen. After backward executions of X1 or X2, the updated
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source and updated evaluation environment are required to make sure the predicate of xif has the corresponding
value. That is, if X1 is chosen, then the predicate must be true for the updated source under the updated evaluation
environment, and similarly if X2 is chosen. This requirement keeps xif transformation onto the same branch in its
backward and forward transformations, as discussed in Section 3.4. If the updated view belongs to the view types of
both branches, then either branch with the above requirement satisfied can be chosen.

[[xifτ2
τ1

P X1 X2]]E(S, T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[[P]]E′(S , S ′), if S � Ω, [[P]]E.1(S ) = true and [[X1]]E(S , T ) = (S ′,E′)
[[P]]E′(S , S ′), if S � Ω, [[P]]E.1(S ) = false and [[X2]]E(S , T ) = (S ′,E′)
[[P]]E′(S , S ′), if S = Ω, T ∈ τ1, [[X1]]E(Ω, T ) = (S ′,E′)

and [[P]]E′.2(S ′) = true
[[P]]E′(S , S ′), if S = Ω, T ∈ τ2, [[X2]]E(Ω, T ) = (S ′,E′)

and [[P]]E′.2(S ′) = false
fail, otherwise

7.2.5 Mapping transformation
The revision of xmap mainly focuses on the split operator. The operator split is used by xmap to divide their

views into subsequences, and then each subsequence is transformed backward to update the corresponding string
or element in the source data or insert a new one. When a view does not include inserted values, it can be divided
precisely according to the expected length for each subsequence computed from the original source data. However,
if the view includes inserted values, the length information is not enough to determine how to split the view.

The following example shows that a more flexible splitting mechanism is needed for xmap if its views include
insertions. For example, for the source BookList, the transformation xmap xchild produces a view consisting of a
sequence of titles and authors of each book. Then, consider the following updated view.

<title(ori,s)>[a(ori(�),s)], <author(ori,s)>[b(ori(�),s)], <author(ins,s)>[f(ins,s)], <title(ins,s)>[g(ins,s)],
<author(ins,s)>[h(ins,s)], <title(ori,s)>[c(ori(�),s)], <author(ori,s)>[d(ori(�),s)],
<author(ins,s)>[i(ins,s)], <author(ori,s)>[e(ori(�),s)], <title(ins,s)>[j(ins,s)]

where three authors and two titles are inserted. In the backward execution of xmap xchild, this view is first divided
into subsequences and then each of them is used as the updated view of xchild to generate an updated or a new
book element. However, since the view length is changed, the lengths of the original subsequences do not provide
enough information for dividing the updated view. The view type annotated on xmap will provide extra information
for the new split operator, which needs to determine how many subsequences will be generated and how long a
subsequence should be.

The new split operator is given in Figure 25. It has three arguments: the updated view to be split, a list of integers
for the expected length of each subsequence, and the view type of xmap. This operator returns a list, each item in
which is a pair of a subsequence and a flag m or e indicating whether the corresponding source of this subsequence
is missing or existing, respectively. Two list can be contacted by using ++.

The following are two examples explaining the new split operator. Let Title and Author be the types for
title and author elements as in the source BookList. The first example has a successful split operation, while the
second has a failed one.

The first example uses the above transformation and the updated view denoted as T . In this exam-
ple, the source type for BookList is specified as <books>[Title, Author∗]∗, and hence T has the type
�Title, Author∗�∗. The first book element in BookList generates two elements in T , and the second generates
three, so split(T, [2, 3], �Title, Author∗�∗) is used to split the updated view T . The result are four subsequences
consisting of the first three elements, the fourth and fifth elements, the next four elements and the last one, respec-
tively. The first and the third subsequences are flagged by e and the second and the fourth are flagged by m. Thus,
after the source BookList is updated, the first book element is inserted with a new author, the second book element
is a newly inserted one with the inserted title and author, the third book element has an inserted author and the fourth
book element is also a newly inserted one with only the inserted title.

In the second example, suppose we have the source type Title, Author∗. Then, for the code
xmap (xif (xwithtag title) xid xconst ()), the annotated view type will be �Title�, �()�∗. Let the source for this
example be (). Then, the original view is also (). If we change the view into <title(ins,s)>[k(ins,s)], then the splitting
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split((), [], ()) = []

split(T, [l], �τ	) = [(T, e)], if T ∈ τ, orilen(T ) = l and allins(T ) = false

split(T, [], �τ	) = [(T, m)], if T ∈ τ and allins(T ) = true

split(T, ls, τ∗) = split(T, ls, τ, τ∗), if ls �= []

split(T, [], τ∗) = split(T, [], ()|τ, τ∗)
split(T, ls, τ1|τ2) = split(T, ls, τ1), if T ∈ rmbox(τ1) and T �∈ rmbox(τ2)

split(T, ls, τ1|τ2) = split(T, ls, τ2), if T ∈ rmbox(τ2) and T �∈ rmbox(τ1)

split(T, ls, τ1|τ2) = split(T, ls, τ1), if T ∈ rmbox(τ1), T ∈ rmbox(τ2) and split(T, ls, τ2) = fail

split(T, ls, τ1|τ2) = split(T, ls, τ2), if T ∈ rmbox(τ1), T ∈ rmbox(τ2) and split(T, ls, τ1) = fail

split(T, ls, τ1|τ2) = split(T, ls, τ1)

if T ∈ rmbox(τ1), T ∈ rmbox(τ2), split(T, ls, τ1) �= fail and split(T, ls, τ1) = split(T, ls, τ2)

split(T, l:ls, τ1, τ2) = split(T1, [l], τ1)++split(T2, ls, τ2)

if T = T1, T2 for some T1 and T2, T1 ∈ rmbox(τ1), T2 ∈ rmbox(τ2), orilen(T1) = l and allins(T1) = false

split(T, ls, τ1, τ2) = split(T1, [], τ1)++split(T2, ls, τ2)

if T = T1, T2 for some T1 and T2, T1 ∈ rmbox(τ1), T2 ∈ rmbox(τ2) and allins(T1) = true

split(T, ls, τ) = fail, if no other case applies

Fig. 25 The split operator.

iter(X, [], S, S′, E) = (S′, E)

iter(X, (T, m) : ls, S, S′, E) = iter(X, ls, S, S′, v′, E ′), where [[X]]E (Ω, T ) = (v′, E ′)

iter(X, (T, e) : ls, v, S, S′, E) = iter(X, ls, S, S′, v′, E ′), where [[X]]E (v, T ) = (v′, E ′)

Fig. 26 The iter operator.

operation will finally get struck on the case split((), [], �()�). Note that allins(()) = false. The reason is that the
type �()� means some source data is hidden from the view, so for the type �()� the split operator does not allow a
subsequence () with the flag m. This is to make sure that the inserted data contains enough information to build a
well-typed source data if being transformed backward successfully.

The revised backward semantics of xmap X is given below, where the new iter operator is defined in Figure 26.
For a subsequence, if its source data is missing, then in the iter operator its source is replaced byΩ at the backward
execution of X.

[[xmapτ X]]E(S , T ) = (S ′,E′), if S = () or S = Ω
where S T = split(T, [], τ) and (S ′,E′) = iter(X, S T, S , (),E)

[[xmapτ X]]E(S , T ) = (S ′,E′), if S = v1, ..., vn

where ST = split(T, [len([[X]]E.1(v1)), ..., len([[X]]E.1(vn))], τ)
and(S ′,E′) = iter(X, S T, S , (),E)

The following lemma says after wrapping each subsequence from a splitting operation with a box, their concate-
nation has the type used by this splitting operation. That is, each boxed subsequence belongs to a boxed type in the
type used by this splitting operation. Together with Lemma 4, this lemma will help prove that the revised backward
semantics of xmap satisfies the backward type preservation property.

Lemma 7 Given a transformation xmapτ X and a sequence T , if split(T, ls, τ) = [(T1, k1), ..., (Tn, kn)], where
ki ∈ {m, e}, then �T1�, ..., �Tn� ∈ τ.



05-005

An expressive bidirectional transformation language for XQuery view update 121

7.2.6 Parallel composition
The backward semantics of X1‖�τ1�,�τ2�

τ X2 is revised on how to split the updated views into two subsequences. The
updated views may include insertions, so the splitting cannot be completed only based on the lengths of two original
subviews. As in the revised semantics of xmap, the type annotations τ1 and τ2 provide extra information for splitting,
which are the view types of X1 and X2, respectively. Since this transformation does not update its source S , we
require S � Ω, such that it never returns Ω as the updated source.

[[X1||�τ1�,�τ2�
τ X2]]E(S, T ) =

⎧⎪⎪⎨⎪⎪⎩
(S ,E′), if S � Ω

fail, otherwise

where T = T1, T2, Ti ∈ τi, orilen(Ti) = len([[Xi]]E.1(S ))
((),E′′) = [[X2]]E(S , T2), ((),E′) = [[X1]]E′′ (S , T1)

7.2.7 Variable binding and element construction
If the source is Ω, xlet will bind its variable to (Ω,Ω) in the evaluation environment. However, the second Ω

may not be updated by the component transformation X of xlet. The backward semantics of xlet is only revised
to make sure the updated source S ′ is not Ω. For example, in the backward transformation xlet $x xconst (), the
source of xlet is not updated by the component transformation xconst (). The clean operator also needs to be
extended a little. That is, clean(Ω, S ′) = S ′.

[[xlet Var X]]E(S, T ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(S ′,E′), if $inlet ∈ Dom(E) and S ′ � Ω
(clean(S , S ′),E′), if $inlet � Dom(E) and S ′ � Ω
fail, otherwise

where ((),E′,Var �→ (S , S ′)) = [[X]]E′′((), T ) and E′′ = E,Var �→ (S , S ), if $inlet ∈ Dom(E)

((),E′,Var �→ (S , S ′), $inlet �→ (1, 1)) = [[X]]E′′((), T ) and

E′′ = E,Var �→ (S , S ), $inlet �→ (1, 1), if $inlet � Dom(E)

If the source is Ω, xsetcnt needs to use Ω as the source for the backward transformation of its component
transformation. Since the tag of the updated element is derived from the updated view, xsetcnt does not need type
annotations as xchild.

[[xsetcnt X]]E(S , T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(<tag(w′,o)>[S ′′],E′), if S = <tag(w,o)>[S′], T = <tag(w′ ,o)>[T ′] and
(S ′′,E′) = [[X]]E(S ′, T ′)

(<tag(w′,o)>[S ′′],E′), if S = Ω, T = <tag(w′ ,o)>[T ′] and
(S ′′,E′) = [[X]]E(Ω, T ′)

fail, otherwise

7.3 Revised update-keeping relation
The update-keeping relation in Figure 11 only relates two views of the same length. However, the updated view

includes insertions, its length may be different from the new view from the updated source. Figure 27 lists six rules to
extend the update-keeping relation. The first and last rules allow two sequences with different lengths to be related.
Other rules consider the relation between inserted values and non-inserted values. The (ins, s) tag on strings might
be changed into (mod, s) or (ori(i), s), as shown by the second example in Section 7.2.3. Similarly, the (ins, s) tag
on elements is changed into (ori, s) when they are merged with non-inserted elements.

For the values tagged with (ins, c), they cannot be reflected back into the source by backward transformations
since they originate from code. Thus, a subsequent forward transformation based on the updated source changes
their tags back to (ori, c) or (ori(•), c). The following example explains the tag change and the unmatched length
between an updated view and the new view from the updated source. Suppose the variable $src in the environment
is initially bound to () and has the type strings∗.

(xvar $src; xmap xlet $s (<item(ori,c)>[()]; xsetcnt xvar $s))‖(xvar $src; xmap xid).

Then, the above transformation produces the view (), which has the type <item(ori,c)>[string]s∗, strings∗. If we
change the view into <item(ins,c)>[hello(ins,s)], then after backward transformation the variable $src is updated to
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() � S

str(ins,s) � str(ori(i),s), i ∈ {�, •, ↑, ↓}
str(ins,s) � str(mod,s)

str(ins,c) � str(ori(•),c)

<tag(ins,o)>[S ] � <tag(ori,o)>[S ′], if S � S′

v, S � v′, S′, if v �� v′ and S � S′

Fig. 27 Extensions to the update-keeping relation.

Table 7 A backward execution with insertion (Part 1).

Index Tran Src UTar Ctx USrc UCtx

b1 XBody () T ′ E0 () E′0
b1.3 xvarBookTy $book-or-section () S′ E0 () E′0
b1.2 xchildBookTy S0 S1 ,S2,S′′′3 E0 S′ E0

b1.1 xmap�()�,�()�∗,�VSecTy�∗(xif()
VSecTy (xwithtag section) S1,S2, (),(), E0 S1, S2, E0

XSec (xconst ())) S3 T ′ S ′′′3

b1.1.1 xif()
VSecTy (xwithtag section) S1 () E0 S1 E0

XSec (xconst ()))

b1.1.1.1 [[xwithtag section]]E0 .1(S 1) = false

b1.1.1.2 xconst () S1 () E0 S1 E0

b1.1.2 xif()
VSecTy (xwithtag section) S2 () E0 S2 E0

XSec (xconst ()))

b1.1.2.1 [[xwithtag section]]E0 .1(S 2) = false

b1.1.2.2 xconst () S2 () E0 S2 E0

b1.1.3 xif()
VSecTy (xwithtag section) S3 T ′ E0 S′′′3 E0

XSec (xconst ()))

b1.1.3.1 [[xwithtag section]]E0 .1(S 3) = true

b1.1.3.2 XSec S3 T ′ E0 S′′′3 E0

b1.1.3.2.2 xconst S c () S c E′′1 () E′′1
b1.1.3.2.1 xsetcnt (XTitle‖�TitleTy�,�RSecTy�() XSubTitles) S c T ′ E1 S c E′′1
b1.1.3.2.1.1 XTitle‖�TitleTy�,�RSecTy�() XSubTitles () S′4 ,S

′
6 E1 () E′′1

b1.1.3.2.1.1.1 XTitle () S′4 E′1 () E′′1
b1.1.3.2.1.1.1.3 xvarSecTy $section () S′′3 E′1 () E′′1
b1.1.3.2.1.1.1.2 xchildSecTy S3 S′4 ,S5 E′1 S′′3 E′1
b1.1.3.2.1.1.1.1 xmap�TitleTy�,�()�∗(xif()

TitleTy
(xwithtag title) S4,S5 S′4,() E′1 S′4, S5 E′1

xid (xconst ()))

b1.1.3.2.1.1.1.1.1 xif()
TitleTy

(xwithtag title) S4 S′4 E′1 S′4 E′1
xid (xconst ())

b1.1.3.2.1.1.1.1.1.1 [[xwithtag title]]E′1 .1(S 4) = true

b1.1.3.2.1.1.1.1.1.2 xid S4 S′4 E′1 S′4 E′1
b1.1.3.2.1.1.1.1.2 xif()

TitleTy
(xwithtag title) S5 () E′1 S5 E′1

xid (xconst ())

b1.1.3.2.1.1.1.1.2.1 [[xwithtag title]]E′1 .1(S 5) = false

b1.1.3.2.1.1.1.1.2.2 xconst () S5 () E′1 S5 E′1

hello(ins,s). Based on the updated environment, executing the transformation forward again generates the new view
<item(ori,c)>[hello(ins,s)], hello(ins,s). We can see the updated view and the new view have different length, and the
updating status on the item tag, which originates from code, changes from ins into ori.

7.4 An example for insertion
With the transformation toc annotated with types in Section 6.4, we demonstrate how view insertions are reflected

back into source. The example is explained in the Table 7 and Table 8. The data and environments used by the
example are shown in Figure 28. The value T ′ is the updated view, in which S ′6 is a section newly inserted and
S ′4 is a title modified. After backward transformation, the updated data S ′ includes a new subsection S ′′6 , which
is generated from S ′6. The following are the results of split operations used by xmap at b1.1, b1.1.3.2.1.1.1.1,
b1.1.3.2.1.1.2.1.1 and b1.1.3.2.1.1.2.1.1.3.2.1.1.1.1.
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Table 8 A backward execution with insertion (Part 2).

Index Tran Src UTar Ctx USrc UCtx

b1.1.3.2.1.1.2 XSubTitles () S′6 E1 () E′1
b1.1.3.2.1.1.2.2 xvarSecTy $section () S′3 E1 () E′1
b1.1.3.2.1.1.2.1 xlet $book-or-section XBody S3 S′6 E1 S′3 E1

b1.1.3.2.1.1.2.1.3 xvarSecTy $book-or-section () S′3 E2 () E′2
b1.1.3.2.1.1.2.1.2 xchildSecTy S3 S4, S5, S ′′6 E2 S′3 E2

b1.1.3.2.1.1.2.1.1 xmap�()�,�()�|�VSecTy�∗(xif()
VSecTy

S4, S5 (),(),S ′6 E2 S4, S5, S ′′6 E2

(xwithtag section) XSec (xconst ()))

b1.1.3.2.1.1.2.1.1.1 xif()
VSecTy

(xwithtag section) S4 () E2 S4 E2

XSec (xconst ()))

b1.1.3.2.1.1.2.1.1.1.1 [[xwithtag section]]E2 .1(S 4) = false

b1.1.3.2.1.1.2.1.1.1.2 xconst () S4 () E2 S4 E2

b1.1.3.2.1.1.2.1.1.2 xif()
VSecTy

(xwithtag section) S5 () E2 S5 E2

XSec (xconst ()))

b1.1.3.2.1.1.2.1.1.2.1 [[xwithtag section]]E2 .1(S 5) = false

b1.1.3.2.1.1.2.1.1.2.2 xconst () S5 () E2 S5 E2

b1.1.3.2.1.1.2.1.1.3 xif()
VSecTy

(xwithtag section) Ω S ′6 E2 S ′′6 E2

XSec (xconst ()))

b1.1.3.2.1.1.2.1.1.3.1 S ′6 ∈ VSecTy
b1.1.3.2.1.1.2.1.1.3.2 XSec Ω S ′6 E2 S′′6 E2

b1.1.3.2.1.1.2.1.1.3.2.2 xconst S c () S ′c E′3 () E′3
b1.1.3.2.1.1.2.1.1.3.2.1 xsetcnt (XTitle‖�TitleTy�,�RSecTy�() XSubTitles) S c S ′6 E3 S ′c E′3
b1.1.3.2.1.1.2.1.1.3.2.1.1 XTitle‖�TitleTy�,�RSecTy�() XSubTitles () S′7, () E3 () E′3
b1.1.3.2.1.1.2.1.1.3.2.1.1.1 XTitle () S′7 E3 () E′3
b1.1.3.2.1.1.2.1.1.3.2.1.1.1.3 xvarSecTy $section () S′′6 E3 () E′3
b1.1.3.2.1.1.2.1.1.3.2.1.1.1.2 xchildSecTy Ω S′7 E3 S′′6 E3

b1.1.3.2.1.1.2.1.1.3.2.1.1.1.1 xmap�TitleTy�,�()�∗(xif()
TitleTy

(xwithtag title) Ω S′7 E3 S′7 E3

xid (xconst ()))

b1.1.3.2.1.1.2.1.1.3.2.1.1.1.1.1 xif()
TitleTy

(xwithtag title) Ω S′7 E3 S′7 E3

xid (xconst ())

b1.1.3.2.1.1.2.1.1.3.2.1.1.1.1.1.1 S ′7 ∈ TitleTy
b1.1.3.2.1.1.2.1.1.3.2.1.1.1.1.1.2 xid Ω S′7 E3 S′7 E3

split(T ′, [0, 0, 1], �()�, �()�∗, �VSecTy�∗) = [((), e), ((), e), (T ′, e)] (b1.1 )
split(S ′4, [1, 0], �TitleTy�, �()�∗) = [(S ′4, e), ((), e)] (b1.1.3.2.1.1.1.1)
split(S ′6, [0, 0], �()�, �()�|�VSecTy�∗) = [((), e), ((), e), (S ′6, m)] (b1.1.3.2.1.1.2.1.1)
split(S ′7, [], �TitleTy�, �()�∗) = [(S ′7, m)] (b1.1.3.2.1.1.2.1.1.3.2.1.1.1.1)

Note that the split operator is not deterministic. For example, the third split below may also return
[((), e), (S ′6, m), ((), e)]. If this splitting result is taken, then the updated source of xmap at b1.1.3.2.1.1.2.1.1 will
become S 4, S ′′6 , S 5, rather than S 4, S 5, S ′′6 . However, both S 4, S 5, S ′′6 and S 4, S ′′6 , S 5 belong to the source type
TitleTy, SCntTy∗ of this xmap.

8 Implementation
The approach proposed in this work has been implemented in Java with JDOM. The Galax XQuery engine [19] is

used to normalize XQuery expressions to generate XQuery core code. Our implementation supports more XQuery
Core syntax than we presented in this paper. For example, the order expression in XQuery, the existential predicate,
the attribute axis, XML name spaces, and the constructors for constructing and destructing sequences (or lists) are
supported in our implementation. To support XML data input and output, we implemented the constructs input
and output, which both take a file name as their parameters. The XQuery function doc(“book.xml”) is translated
to the input with the string “book.xml” as its parameter. The source XML data can specify its type by including
the processing instruction <?import srctype =“typefile.xml”>. The types are represented in the XML format,
following the syntax in Figure 14.

Our implementation also supported the definition of libraries to contain commonly used bidirectional functions.
There is a manual [16] that describes the bidirectional language from the perspective of users. In addition, our
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S = <book(ori,s)>[S1, S2, S3]

S1 = <title(ori,s)>[Data on the Web(ori(�),s)]

S2 = <author(ori,s)>[Serge(ori(�),s)]

S3 = <section(ori,s)>[S4, S5]

S4 = <title(ori,s)>[Introduction(ori(�),s)]

S5 = <p(ori,s)>[Text(ori(�),s)]

Sc = <section(ori,c)>[()]

S′
c = <section(ins,c)>[()]

S′ = <book(ori,s)>[S1, S2, S′′′
3 ]

S′
3 = <section(ori,s)>[S4, S5, S′′

6 ]

S′′
3 = <section(ori,s)>[S′

4, S5]

S′′′
3 = <section(ori,s)>[S′

4, S5, S′′
6 ]

S′
4 = <title(ori,s)>[Background(mod,s)]

S′
6 = <section(ins,c)>[S′

7]

S′′
6 = <section(ins,s)>[S′

7]

S′
7 = <title(ins,s)>[History of Web(ins,s)]

T ′ = <section(ori,c)>[S′
4, S′

6]

$book-or-section S
$section S3

$book-or-section S

$book-or-section S3

$section S3

$book-or-section S

C0 C1 C2

$book-or-section S S
$section S3 S3

$book-or-section S S

$book-or-section S3 S3

$section S3 S3

$book-or-section S S

E0 E1 E2

$book-or-section S S′ $section S3 S′
3

$book-or-section S S

$book-or-section S3 S′
3

$section S3 S3

$book-or-section S S

E ′
0 E ′

1 E ′
2

$section Ω Ω

$book-or-section S3 S3

$section S3 S3

$book-or-section S S

$section S3 S′′′
3

$book-or-section S S

$section Ω S′′
6

$book-or-section S3 S3

$section S3 S3

$book-or-section S S

E3 E ′′
1 E ′

3

Fig. 28 Data and environments for the XQuery examples.

implementation can simulate higher-order functions in functional languages by changing the argument fname in
xfunapp from a string to a transformation, and therefore a function argument can also be used as a function name.
This feature is useful when we use this bidirectional language to interpret HaXML [24], which contains some higher-
order XML transformation combinators.

In this implementation, only inserted or deleted elements need to be marked with ins or del, and other flags are
derived by the system automatically. For example, by typing the updated view against the view type, we can obtain
the origin annotations of strings or elements from their types, and by comparing the updated view with the original
view, we can know whether a string is modified or not. This prototype implementation is not used to benchmark the
performance of our approach since the implementation itself can be improved and the code generated from XQuery
Core has much space to optimize. Our approach does not allow any change to the values generated by xconst or
aggregate functions, such as sum and count. We reviewed the first forty-one XQuery use cases in [15]. Only six of
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them generate views completely consisting of values from xconst or aggregate functions and hence not allowing
any update. For other use cases, our approach is found useful by enabling view update of XQuery.

9 Related work
The related work can be described from two aspects. The first is related to the bidirectional language design, and

the second is about XML view update.
The bidirectional languages in [5]–[9], [12], [14] cannot be used directly to interpret XQuery for the following

reasons. First, they do not have the variable binding mechanism, and consequently the output of a transformation can
only be used by its successive transformations or the transformation combinators containing it. However, in XQuery,
an output from an expression may be bound to a variable, and then used many times by different subexpressions.
Though some languages such as those in [5], [14] have constructs to replicate a piece of source data into the view,
these constructs are not suitable to support the interpretation of XQuery variables. This is because 1) the replicated
parts do not have names, so it is hard to manage the scope of these replicas if there are many replicas, 2) replicating
a value into the intermediate data for possible later reference will produce a value that is not expected by high-level
XQuery expressions and hence not expected by (or not type correct for) the bidirectional code translated from the
high-level XQuery expressions. Second, these languages do not provide a general setting to interpret functions in
XQuery. A function in XQuery can have any number of arguments, each of which may be used as the updatable
source data. However, these languages support only functions with one argument as the updatable source data. Third,
the constructs in these languages are designed for their particular purposes and are not suitable for processing XML.
For example, XPath axes are difficult to interpret in these languages and the condition lenses in [5] require more
parameters than the conditional expression in XQuery can provide. In addition, the languages in [5]–[9], [12], [14]
do not take expressive types for XML in their type systems. That is, their types cannot be directly used to interpret
the XML schema languages used by XQuery such as Document Type Definition (DTD).

The injective language in [25] and the reversible language in [26] can also be executed in bidirectional ways.
These languages express only injective functions, so their programs can be inverted. Since XQuery can express non-
injective functions, the target languages for interpreting XQuery should be able to support non-injective functions.
The work [27] proposes a method that given a function, it can automatically derives the backward function, so bidi-
rectional transformation can be implemented without defining the backward semantics for each language construct.
However, the language in [27] is simple in that a bound variable can only be used once and a function call can appear
only in data constructors. Due to these restrictions, it is difficult to use this method to interpret XQuery. All these
languages do not support recursive regular expression types for XML, either.

The bidirectional languages in [10], [11] are designed for synchronizing software models, not suitable for inter-
preting XQuery. In addition to the expressive type system for XML, the main difference is that our language allows
the backward semantics of variable referencing construct to accumulate updates from its different replicas in views
and the conditions in a conditional transformation can be preserved by other transformations which are even outside
the scope of this conditional transformation (i.e., not contained within the two branches of the conditional transfor-
mation). These two features are necessary for updating XQuery views as explained by the examples in this paper.

The work [28], [29] studies how to update the relational database through XML views, rather than update XML
data like our work. This work uses query trees to capture common operations in most XML query languages.
However, query trees cannot support recursive functions in XQuery, as shown by our motivating example. The work
[30] studies the conditions under which the updates to XML views can be translated into the underlying databases.
In our approach, we use dynamic check to determine whether an updated view leads to valid updated source data.
For example, the transformations xchild and xmap in our bidirectional language perform dynamic type checks to
make sure the updated source is well-typed.

The work [31] addresses the problem of updating XML source through XML views. However, only views that
remove parts of the document and rename nodes are supported. In [32], the programming language technique is
also used to solve the view updating problem. But the view definition language in [32] is not bidirectional, so when
defining a view, users have to write the code for putting back possible updates into the source XML data. XML
views can also be defined by using XPath. The work [33] deals with the problem of updating XML views defined by
XPath, which is not as expressive as XQuery.

XML views may not be materialized. The work [34] addresses the problem of updating XML views by translating
updates to virtual views into updates to the source data according to the view definitions. The translation supports
only the for-where-return XQuery expressions. That is, XQuery functions as used in our motivating example cannot
be permitted as view definitions. The precise condition in [34] does not allow a translation to produce view side-
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effects. Thus, the updates to a replicated data may not be translated successfully.
The work [35] describes a tracing mechanism of translating updates to XQuery views into SQL updates to rela-

tional databases. Since only atomic data on views can come from the relational databases, the mechanism in [35] only
traces the lineage of atomic values. Their lineage tracing mechanism is not suitable for our view updating problem
since our backward semantics involves the reconstruction of elements which should appear in the source data, but
not in the views. However, the lineage information can be used to optimize the implementation of our bidirectional
language by avoiding a complete reconstruction of the updated source data. An update translation scheme is also
reported in [36], and since its source data also comes from relational databases, the scheme does not consider the
reconstruction of elements, which is not easy as shown in our work particularly for updated views with insertions.

10 Conclusion
In this paper, we have proposed an expressive bidirectional XML transformation language and applied it to address

the view updating problem of XQuery. The translation from XQuery to the bidirectional language is developed. The
bidirectional language allows modifications, deletions and insertions on views. It is difficult to update view insertions
and we proposed a type-based solution to this problem. The types of transformations are used to guide the backward
executions, such that inserted values can be put back into the source in a reasonable way. A type system is designed
for the bidirectional language to automatically annotate accurate types on the transformation, making the type system
and language easy to use.

We proposed originally the extended round-tripping property by introducing the update-keeping relation to relate
two updated views. The extended round-tripping property gives us the flexibility to describe the desired view-
updating property of the expressive bidirectional language. When designing the language features, we have con-
sidered carefully to ensure each language feature does not violate the expected properties and explained the design
rationales with many examples. However, due to the complexity of this expressive bidirectional language, we have
not completely proved the theorems stated in this paper. It will be our future work to give the complete rigorous
proofs.

Although we are motivated by interpreting XQuery, we believe that our work provides a technique to define
general-purpose bidirectional functional languages since the bidirectional semantics of functions and constructors for
algebraic data types can be defined by following the technique in this paper. It is interesting to analyze bidirectional
programs and determine what are valid updates on views, such that valid updates do not lead to failure during
backward executions.
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Appendix A. Round-tripping property for relational view updates
The restrictions of round-tripping property discussed in Section 4.2.1 also hold on relational view updates. In

this section, we use SQL examples to illustrate these restrictions. These examples have been executed on the major
database management systems Microsoft SQL Server 2003, Oracle DB 10g and MySQL 5.0. That is, the round-
tripping property is not adopted in these major systems.

Suppose there is a database table Persons defined in Table A. 1 that contains all staff information for a company.
The following SQL statement defines a view MarketMem that contains only the staff information from the market
department. This view needs each staff to have both daytime and night phone numbers, which are actually generated
from the same phone number in the underlying table.

create view MarketMem
as
select ID AS ID, Name AS Name, Phone AS DPhone, Phone AS NPhone
from Persons
where (Dept = ‘Market’)

By using the SQL statement select ∗ fromMarcketMem, the MarketMem view is materialized as shown in Table
A. 2. This view is then updated by the following statement, which changes the daytime phone number of Tom into
9805.

update Members set DTel = 9805 where (Name = ‘Tom’)

After the above update, we materialize the view MarketMem again, which is shown in Table A. 3. On this view,
both the daytime and night phone numbers are changed into 9805, though the above update changes only the daytime
number. That is, the view updated with the above statement is different from the newly materialized view, violating
the round-tripping property. However, the extended round-tripping property is still valid for this example if tuples
are treated as sequences and values are annotated with ori(�) or mod based on their updating status and the origin
s.

Table A. 1 The persons table.

ID Name Dept Phone

1 Tom Market 9801

2 Peter Product 9802

3 Kevin Market 9803

Table A. 2 The view MarketMem based on the persons table.

ID Name DTel NTel

1 Tom 9801 9801

3 Kevin 9803 9803
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Table A. 3 The view MarketMem based on the updated persons table.

ID Name DTel NTel

1 Tom 9805 9805

3 Kevin 9803 9803
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