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ABSTRACT

Dependently typed programmers are encouraged to use inductive families to integrate con-
straints with data construction. Different constraints are used in different contexts, leading
to different versions of datatypes for the same data structure. For example, sequences might
be constrained by length or by an ordering on elements, giving rise to different datatypes
“vectors” and “‘sorted lists” for the same underlying data structure of sequences. Modular
implementation of common operations for these structurally similar datatypes has been a
longstanding problem. We propose a datatype-generic solution, in which we axiomatise a
family of isomorphisms between datatypes and their more refined versions as datatype refine-
ments, and show that McBride’s ornaments can be translated into such refinements. With
the ornament-induced refinements, relevant properties of the operations can be separately
proven for each constraint, and after the programmer selects several constraints to impose
on a basic datatype and synthesises a new datatype incorporating those constraints, the op-

erations can be routinely upgraded to work with the synthesised datatype.
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1 Introduction

Dependently typed programmers are encouraged to
use inductive families [7], i.e., datatypes with fancy in-
dices, to integrate various constraints with data con-
struction. Correctness proofs are built into and manip-
ulated simultaneously with the data, and in ideal cases
correct programs can be written in blissful ignorance
of the proofs. We might characterise this approach
as internalist, suggesting that data constraints are in-
ternalised. In contrast, the more traditional approach
which favours using only basic datatypes and express-
ing constraints through separate predicates on those da-
tatypes might be described as externalist.

The internalist approach quickly leads to an explo-
sion in differently indexed versions of the same data
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structure. For example, as well as ordinary lists, in dif-
ferent contexts we may need vectors (lists indexed with
their length), sorted lists, or sorted vectors, ending up
with four slightly different but structurally similar da-
tatypes. The problem, then, is how the common oper-
ations are implemented for these different versions of
the datatype. Current practice is to completely reimple-
ment the operations for each version, causing serious
code duplication and dreadful reusability. The external-
ist approach, in contrast, responds to this problem very
well. We would have only one basic list datatype, with
one predicate stating that a list has a certain length and
another predicate asserting that a list is sorted. The list
datatype is upgraded to the vector datatype, the sorted
list datatype, or the sorted vector datatype by simply
pairing the list datatype with the sortedness predicate,
the length predicate, or the pointwise conjunction of
the two predicates, respectively. The common opera-
tions are implemented for ordinary lists only, and their
properties regarding ordering or length are separately
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proven and invoked when needed. Can we somehow in-
troduce this beneficial composability to internalism as
well? Yes, we can! There is an isomorphism between
externalist and internalist datatypes to be exploited.

To illustrate, let us go through a case study on
function upgrading. The dependently typed language
Agda[12] will be used throughout the paper; its syntax
is explained in an appendix. We start with the following
function insert on lists and try to upgrade it to work on
more refined list datatypes:

insert : Val — List Val — List Val
inserty[] =y []

insert'y (x :: xs) with y <o x

inserty (x ::xs) | yes _ =y x:ixs
inserty (x ::xs) | N0 _ = x:: inserty xs

where Val is assumed to be a datatype on which there
is a decidable total order _<_. We might need to be
precise about how the length of the list changes. The
internalist would use vectors, and reimplement a new
version

vinsert .
Val — V {n} — Vec Valn — Vec Val (suc n)

whose body is exactly the same as that of insert. On the
other hand, the externalist might define a relation

data Length {A : Set} : Nat — ListA — Set
where
nil  : Length zero [ ]
cons : ¥V x {nxs} —
Length n xs — Length (suc n) (x :: xs)

such that a list xs has length »n if and only if there is a
proof of type Length n xs, and then prove:

insert-length : ¥ y {n xs} —

Length n xs —

Length (suc n) (insert y xs)
insert-length y nil = cons y nil
insert-length y (cons x [)

with y < x
insert-length y (cons x [)
| yes _ = consy (cons x [)
insert-length y (cons x [)
| no _ = cons x (insert-length y [)

Afterwards, the externalist can just pair lists with their
length proofs and pass the pairs around:

insert-l : Val — VY {n} —
¥ (List Val) (Length n) —

¥ (List Val) (Length (suc n))
insert-ly = insert'y X insert-length y

where _x_ is defined by (f X g) (x,y) = (f x,g y) (and
is later also overloaded to denote the product type). The
two approaches to type refinement are interchangeable,
however, since for each n there is an isomorphism

Vec An = X (List A) (Length n)
whose two directions are

Rvec-10 :

V{An} - VecAn — X (List A) (Length n)
Rvec-to [ ] =[], nil
Rvec-to (x :: x5) = (_::_ x X cons x) (Ryec-10 xs)
Rvec-from :

V{An} - X (ListA) (Lengthn) —» VecA n
Ryvec-from (._, nil) =[]
Rvec-from (._,cons x [) = x :: Ryec-from (_, 1)

and we can prove that the two directions are indeed in-
verse to each other:

Rvec-to-from-inverse :
VY {An} - {s : T (ListA) (Length n)} —
Rvec-10 (Ryec-from s) = s

Rvec-to-from-inverse {s = (._, nil)} = refl
Rvec-to-from-inverse {s = (._,cons x )} =
cong (_::_ x X CONS x)
(Rvec-to-from-inverse {s = _,1})
R vec-from-to-inverse :

V{An} - {v:VecAn} —»

Rvec-from (Ryec-to v) = v
Rvec-from-to-inverse {v = [} = refl
Rvec-from-to-inverse {v = x :: xs} =

cong (_::_ x) (Ryec-from-to-inverse {v = xs})

With the help of this family of isomorphisms, vinsert
and insert-I can be defined in terms of each other. For
example, the externalist can get vinsert by

vinsert
Val —» V {n} —» Vec Val n — Vec Val (suc n)
vinsert y xs = Ryec-from (insert-1 y (Ryec-to xs))

which is, in effect, like supplying an additional proof
insert-length to upgrade insert to the more precisely
typed vinsert.

The same story is repeated when we wish to say that
insert produces a sorted list if the input list is sorted.
The internalist would define another version of lists

data SList : Val — Set where
snil  : V{b} — SlListb
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scons : (x: Val) > V{b} > b<x -
SList x — SlList b

which are sorted lists indexed by a lower bound, and
reimplement the insert function on this datatype.

sinsert .
(y : Val) - V {b} — SListb — SList (bT1y)

The relation that the externalist uses this time might be

data Sorted : Val — List Val —» Set where
nil :V{b} — Sorted b []
cons :
Vixb} > b<x —>
V {xs} — Sorted x xs — Sorted b (x :: xs)

They need to prove

insert-sorted : Y y {b xs} — Sorted b xs —
Sorted (b M y) (insert y xs)

to get their function

(y:Val) - VY {b} -

X (List Val) (Sorted b) —

X (List Val) (Sorted (b 1 y))
insert-s y = insert y X insert-sorted y

insert-s :

Again, the internalist and externalist datatypes are inti-
mately related: for each b there is an isomorphism

SList b = X (List Val) (Sorted b)

so the externalist can define the internalist version
sinsert in terms of the externalist version insert-s, and
vice versa for the internalist.

Things get more interesting when we move on to
dealing with ordering and length information simulta-
neously. The internalist would repeat the story for a
third time, defining yet another new version of lists

data SVec : Val —» Nat — Set where
svnil : VY {b} - SVec b zero
sveons : (x: Val) > V{b} > b<x >
Y {n} - SVecxn — SVec b (suc n)

and reimplement insert as

svinsert : (y : Val) - V {bn} -
SVec b n — SVec (b My) (suc n)

The externalist, however, needs no more new datatypes
or proofs this time. To them, a sorted vector is simply
a list with proofs that it both has a particular length and
is sorted, so they can reuse and assemble the previous
proofs to get

insert-sv :
(y:Val) > ¥{bn} >
¥ [xs : List Val]
Sorted b xs x Length n xs —
X [xs : List Val]
Sorted (b M y) xs X Length (suc n) xs
insert-svy =
insert y X (insert-sorted y X insert-length y)

Furthermore, through the family of isomorphisms

SVecbhn =
Y [xs : List Val] Sorted b xs x Length n xs

they can get the internalist version svinsert without ad-
ditional effort.

This case study suggests that we can switch between
internalist and externalist representations to modularly
synthesise internalist functions from externalist proofs,
making use of the relevant representation-changing iso-
morphisms. Without the excursion into the external-
ist world, it would have been less straightforward for
the internalist to synthesise svinsert from vinsert and
sinsert. The reusability problem is thus reduced to writ-
ing the representation-changing isomorphisms. Based
on previous work on ornaments by McBride and Da-
gand [6],[10], we propose in this paper a framework in
which such isomorphisms can be synthesised datatype-
generically. We axiomatise the isomorphisms between
internalist and externalist datatypes as refinements, and
show that ornaments" translate into a particular class of
refinements, so the isomorphisms can be generated by
inspecting the ornamental structure of datatypes. Orna-
ments also help to reveal the same composable structure
of internalist datatypes corresponding to that of their
externalist brethren — new internalist datatypes can be
computed by composing the ornaments about existing
internalist datatypes. For example, we would be able to
synthesise SVec from the ornaments that describe how
Vec and SList differ from List, and obtain all the iso-
morphisms relating the four datatypes for free, includ-
ing the one saying that SVec is isomorphic to the ex-
ternalist representation and allowing us to get svinsert
from its modularly produced externalist version.

Here is an outline of the paper. Section 2 defines
refinements and gives a motivation for a finer analysis
of refinements, which is achieved by ornaments. Be-
fore ornaments and their (parallel) composition are de-
fined in Section 4, we first introduce index-first data-
types [5], [6], which can result in more efficient repre-
sentations of data, and construct a universe for them

! Readers familiar with previous developments on ornaments should note that
our terminologies deviate from those in previous works. For a comparison and
justification of the deviation, see Section 7.
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in Section 3. The main result of this paper is pre-
sented in Section 5, where ornaments are translated into
refinements and parallel composition of ornaments is
shown to give rise to useful composable structure of re-
finements, enabling modular function upgrading. We
give an extended example — leftist heaps[13] — in
Section 6. Finally, Section 7 discusses related work
and some future directions. Our Agda source code
is available at http://www.cs.ox.ac.uk/people/hsiang-
shang.ko/pcOrn/.

2 Refinements
From the case study in Section 1, we see that isomor-
phisms such as

VecAn = X (List A) (Length n)

are the key to moving between internalist and external-
ist datatypes. In this section we axiomatise these iso-
morphisms as refinements.

2.1 Definition of refinements

We say that a type family Y J — Set refines
another type family X I — Set if the members
of Y (i.e., the individual types Y j where j J) are
partitioned such that each partition refines a member
of X, say X i for some i I, which means that an
object of type X i can possibly and only be promoted
to a type in that partition. The partitioning is specified
by a function e : J — [ from finer indices to coarser
ones, assigning to (the index of) each member of Y (the
index of) a member of X which it refines. We can put
this more formally with the help of the inverse image
datatype:

data ~'_{J ] : Set} (e
where

ok:(G:J) = e l(e))

:J > 1) : 1 — Set

If X is refined by Y, an object of type X i can possibly
and only be promoted to Y (und j) for somej : e ~' i,

where the function

und : Y {J I} {e
und (ok j) = j

I - Dy e lioJ

extracts the underlying index that is guaranteed to be
mapped to i by e. The possibility of promotion is cap-
tured by the promotion predicate

P:vV{i}(:

which states the condition under which an object x of
type X i can be converted to one of type Y (und j)
— a “promotion proof” of type P j x contains neces-
sary information that augments x to an object of type

e ') » Xi— Set

Y (und j). The conversion, then, is an isomorphism R
between Y (und j) and £ (X i) (P j), and a refinement
consists of the index transformation e, the promotion
predicate P, and the refinement isomorphism R:

record Refinement {I J : Set}
(X : I — Set) (Y : J — Set) : Set; where

field
e :J o1
P :V{i}(G:e i) —> Xi— Set

R:V{EG:ei)—>
Iso (Y (und j)) (X (X ©) (P)))

where the type of isomorphisms is defined as an inverse
pair of functions, as usual:

record Iso (A B : Set) : Set where
field
to :A-—>B
from : B — A

to-from-inverse :
from-to-inverse :

Y iy} = 1o (fromy) =y
Y {x} — from (to x) = x

When the more refined type family in a refinement is
an inductive family, i.e., an internalist datatype, the re-
finement then provides a lossless conversion between
the internalist datatype and its externalist representa-
tion, which is all one needs in order to achieve func-
tion upgrading, as illustrated in Section 1. For exam-
ple, we have all the ingredients for a refinement from
const (List A) : T — Set (where const = 1 X _

X : Set > T — Set)toVec A : Nat —» Setin
Section 1, and we can just put them together:

ListVec : (A : Set) —
Refinement (const (List A)) (Vec A)

ListVec A =

record
{e =
;P = A {(ok n) — Length n}
= A{(okn) —
record
{to = Rvec-to

s from = Ryec-from

; to-from-inverse =
Rvec-to-from-inverse

; from-to-inverse =
Rvec-from-to-inverse}}}

where the partitioning function is

1:{A :Set} - A>T
1 _ =t

As the partitioning is trivial, a list xs List A can
be promoted to a vector of type Vec A n for “any” n,
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provided that P (ok n) xs, i.e., Length n xs, has a proof.
Given this refinement, the vinsert function in Section 1
can be reimplemented as

vinsert
Val - V {n} — Vec Val n — Vec Val (suc n)
vinsert y {n} xs =
Iso.from (Refinement.®R r (ok (suc n)))
(insert-ly
(Iso.to (Refinement.*R r (ok n)) xs))
where
r : Refinement (const (List Val)) (Vec Val)
r = ListVec Val

where Ryec-1o and Ryec-from are simply replaced with
appropriate fields in List-Vec Val.

It is worth noting that the notion of refinements is
in general proof-relevant — different promotion proofs
can lead to different completed objects. A classic ex-
ample is the refinement from natural numbers to lists,

Nat-List : (A : Set) —
Refinement (const Nat) (const (List A))

in which the promotion predicate is 4 = — Vec A,
meaning that to augment a natural number n : Nat
to a list of type List A we need to supply a vec-
tor of type Vec A n, i.e., n elements of type A, and
the isomorphism is the usual one between List A and
¥ Nat (Vec A). A natural number n can be promoted
to different lists of length n, which is determined by the
choice of promotion proof, i.e., the vector specifying
what elements are to be associated with the suc nodes
inn.

2.2 Predicate swapping

Sometimes we want to swap the promotion predi-
cate P in a refinement for an isomorphic one that better
suits our needs. For example, instead of the predicate
Length, it is more economical to use

Anxs — lengthxs = n

which does not have a recursive structure, and so a
proof about the length of a list need not incorpotate
proofs about each of its. We hence define a record
Swap containing a new predicate Q and a proof that
it is isomorphic to the old one, i.e., that P j x is isomor-
phicto Q j x for all j and x.

record Swap {/ J : Set}
{X : I - Set}{Y : J - Set}
(r : Refinement X Y) : Set; where
field
0 : Y {i} (j : Refinementer~'i) —

(x: X1i) — Set
s VY {i} G : Refinementer ~'i) —
x:Xi) -

Iso (Refinement.P rjx) (Qj x)

A new refinement can then be obtained by chaining the
isomorphisms together:

Yndj) = ZXi)Pj) = ZXi)(Q))
This is implemented by

toRefinement :
Y{IJ}{X : I —> Set}{Y : J — Set}
{r : Refinement X Y} —
Swap r — RefinementX Y

There is an identity swap which simply takes Q = P
and uses the identity isomorphism, whose type is

idSwap
V{J}{X : I — Set}{Y : J - Set}
{r : Refinement X Y} — Swap r

For example, we can define a predicate swap for the
refinement ListVec A as follows:

LengthSwap : (A : Set) — Swap (ListVec A)
LengthSwap A =
record
{Q = A{(ok n) xs — length xs = n}
;8 = A{(ok n) xs —
record
{to = to
;from = from
; to-from-inverse = UIP
; from-to-inverse = ULP}}}

where
to : VY {nxs} —
Length n xs — lengthxs = n

to nil = refl
to (cons x [) = cong suc (to I)
from : N {xsn} —

length xs = n — Length n xs
Sfrom {[ 1} refl = nil
from {x :: xs} refl = cons x (from refl)
ULP : ¥ {n} {xs : ListA} —

{Ll : Lengthnxs} - 1=17
ULP {l = nil} {I' = nil}
ULP{l = consx [} {I' = cons .xI'}

cong (cons x) ULP

refl

where the term

UIP : {A : Set} {xy : A}
legeq : x =y} — eq = eq
UIP {eq = refl} {refl} = refl
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is uniqueness of identity proofs. Then
toRefinement (LengthSwap A)

is a refinement that gives us for each n an isomorphism
VecAn = X [xs:ListA]lengthxs = n

This predicate swapping mechanism will be used in
Section 5.2.

2.3 Problems with refinements

All we have done so far is merely identify the essen-
tial ingredients for modular function upgrading and ax-
iomatise them as refinements. Refinements still have
to be prepared individually and manually, which re-
quires considerable effort. Moreover, although it is
possible to define some sort of refinement composi-
tion directly, this approach would not go very far. In
Section 1, we get externalist modularity for the inter-
nalist datatype SVec because the promotion predicate
from lists to sorted vectors is the pointwise conjunc-
tion of the promotion predicates from lists to vectors
and sorted lists. In general, given two refinements
r : Refinement X Y and s Refinement X Z, we
wish to construct a new type family W and a refinement
of type Refinement X W whose promotion predicate
is the pointwise product of the promotion predicates
of r and s. Without knowing the internal structure of
Y and Z, all one can do is, roughly speaking, take W
to be the pullback of the two maps from Y and Z to X.
But this is a very inefficient representation. For exam-
ple, let X, Y, and Z be const (List Val), Vec Val, and
SList, respectively. Then an object of type W k for
some k would be a pair of a vector and a sorted list with
the same elements, meaning that the recursive structure
and the elements are duplicated. To avoid such duplica-
tion, we need to somehow extract the parts that encode
length and ordering information in Vec Val and SList
and bake them into a single datatype, but this cannot be
done if we work solely with refinements. Hence in the
rest of the paper we seek to exploit the structure of data-
types to induce nontrivial refinements systematically —
in particular, refinements whose promotion predicate is
the pointwise product of the promotion predicates of
some other refinements. Such structure can be exposed
by ornaments, which provide a datatype-generic frame-
work for talking about the relationship between struc-
turally similar datatypes.

3 Index-first datatypes

Central to datatype-generic programming is the idea
that the structure of datatypes can be coded as first-class
entities and thus become ordinary parameters to pro-
grams. The same idea is also found in Martin-Lof’s

Type Theory [9], in which a set of codes for datatypes
is called a universe (a la Tarski), and there is a decod-
ing function translating codes to actual types. Type
theory being the foundation of dependently typed lan-
guages, universe construction can be done directly in
such languages, so datatype-generic programming be-
comes just ordinary programming in the dependently
typed world [1]. In this section we construct a universe
of index-first datatypes[5],[6], on which a second uni-
verse of ornaments, to be constructed in Section 4, will
depend.

3.1 Anintroduction to index-first datatypes

Traditionally, the index in the type of an object is
synthesised in a bottom-up fashion following the con-
struction of the object. Consider vectors as an exam-
ple: the constructor _::_ takes a vector at some index n
and constructs a vector at suc n — the final index is
computed from the index of the sub-object. This ap-
proach, however, can yield redundant representations.
For example, the _::_ constructor for vectors has to
store the index of the sub-vector, so the representation
of a vector would be cluttered with all the intermediate
lengths. If we switch to the opposite perspective, de-
termining from the targeted index what data should be
supplied, then the representations can usually be signif-
icantly cleaned up. For a vector, if the targeted index is
given as suc n for some n, then we know that the con-
structor choice can only be _::_, and that the index of
the sub-vector must be n. All we need to supply is the
head element and the sub-vector; everything else is de-
termined from the targeted index. This is exactly what
Brady’s detagging optimisation does[4]. With index-
first datatypes, however, detagged representations are
available directly, rather than arising from a compiler
optimisation.

Dagand and McBride [6] designed a new notation for
index-first datatypes to reflect this fundamental change
to the notion of datatypes. For reasons of presentation,
we describe here a slightly more Agda-like variation of
their notation. Here is the index-first vector datatype in
the new notation:

indexfirst data Vec (A : Set) : Nat — Set
where
VecA zero > []
VecA (sucn) > _ii_(x:A)(xs: VecAn)

The header remains the same except for the keyword
indexfirst. For the constructor part, since constructor
choices and what data to supply are now determined by
the indices of the requested types, we write the types
first. We do pattern matching on the targeted index to
determine the constructor choice. If a Vec A zero is
requested, the only thing that can be supplied is the nil



Modularising inductive families

constructor; if a Vec A (suc n) is requested, it can only
be constructed by a cons, which takes a head element x
of type A and a vector xs of type Vec A n. Another
example is the datatype of sorted lists, which is also
more cleanly expressed index-first:

indexfirst data SList : Val — Set where
SList b
> snil
| scons (x : Val) (le : b <x) (xs : SList x)
This time the targeted index b is not analysed, and there
are always two constructor choices snil and scons. We
can also describe the traditional bottom-up vector data-

type in this new notation:

indexfirst data Vec (A : Set) : Nat — Set
where

VecAn > [] {_:n=zero}
| _:_{m : Nat}{_ : n = sucm}
(x : A) (xs : Vec A m)

When a vector of type Vec A n is demanded, we are
“free” to choose between supplying a nil or a cons re-
gardless of the index n — however, the two construc-
tors now require implicit proofs of equality constraints,
indirectly forcing us into a particular choice.

Later on in this paper, the indexfirst data definitions
are displayed along with the elements of the universe
defined in Section 3.2, i.e., the codes for index-first da-
tatypes, to aid readability. They should not be confused
with actual datatype definitions in Agda.

3.2 Auniverse for index-first datatypes

Now we proceed to construct the universe. An induc-
tive family of type I — Set is constructed by taking
the least fixed point of a base endofunctoron/ — Set.
For example, to get index-first vectors, we would define
a (parametrised) base functor

VecF : Set — (Nat — Set) — (Nat — Set)
VecFAXzero =T
VecFAX (sucn) =AXXn

and take its least fixed point. If we flip the order of
arguments of VecF A,

VecF : Set — Nat — (Nat — Set) — Set
VecFAzero =A41X—>T
VecFA(sucn) =41X > AXXn

we see that VecF A consists of two different “re-
sponses” to the index request, each of type (Nat —
Set) — Set. It suffices to construct for such responses
a universe

data RDesc (I : Set) : Sety
with decoding function
[T :V{l} - RDescI - (I — Set) — Set

The codes for the responses are called response de-
scriptions. A function of type I — RDesc I, then,
can be decoded to an endofunctor on / — Set, so the
type I — RDesc I acts as a universe for index-first
datatypes.

We now define the datatype of response descriptions
and its decoding function:

data RDesc (I : Set) : Set; where
1 : RDescl
v :(@{:I) — RDescl
o :(5:Set)(D:S — RDescl) —» RDesc I
_#_: (DE : RDescI) —» RDescI

[T :V{l} - RDescI —» (I — Set) — Set
[n 1X=7

[vi J1X=Xi
[oSDIX=X[s:S]I[DsTX
[D+ENX=[[DIXX[ET]X

Given X : I — Set, we are allowed to produce the unit
type (via the description B, suggesting a terminal), fetch
a member of X (via v, suggesting a variable position
in the base functor), or form a dependent sum (o) or
a binary product (_x_). As for the actual universe of
datatypes I — RDesc I, to aid type inference in Agda,
we wrap the function type in a datatype

data Desc (/ : Set) : Set; where
wrap : (I — RDescI) — Desc/

and define a deconstructor for it:

_at_ : Y {I} - DescI — I — RDesc/
(wrapD)ati=Di

Inhabitants of type Desc [ will be called datatype de-
scriptions, or descriptions for short. Least fixed points
can then be taken by

data u {I} (D : Descl) : I — Set where
con: FDuD)= uD

where . decodes a description of type Desc I to an
endofunctoron / — Set,

F :VY{l} - Descl — (I - Set) - (I — Set)
FDXi=[Dati] X

and X = Y is a collection of arrows between corre-
sponding components of X and Y,
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S_:Y{} (XY : I — Set) —» Set
X=>Y=VYV{{}-oXi—oYi

For example, the code for the base functor of the index-
first vector datatype would be

VecD : Set — Desc Nat
VecDA = wrap A {zero — 1
;(sucn) » o[_:Alvn}

and u (VecD A) Nat — Set gives us the actual
datatype to program with.

We can define functions on such vectors by pattern
matching. For example,

head : Y {An} — u (VecD A) (sucn) —» A
head (con (x,xs)) = x

To improve readability, we frequently substitute sug-
ared names of datatypes and constructors for their en-
codings in function definitions. For example, the above
function is sugared into

head : Y {An} — VecA (sucn) — A
head (x :: xs) = x

Direct function definitions by pattern matching work
fine for individual datatypes, but later when we need to
define operations and to state properties for all the data-
types encoded by the universe, it is necessary to have a
generic fold operator parametrised by the codes. There
is also a generic induction operator, which is more pow-
erful and subsumes generic fold, but fold is much easier
to use when the full power of induction is not required.
The two operators are shown in Figure 1. Their im-
plementations are adapted for the index-first universe
from those in McBride’s original work [10] but they are
essentially the same as those original versions. Note
the two-level structure of the definitions of the two op-
erators: the top-level fold and induction are parame-
trised by D Desc I, and the actual analysis of
D at i : RDesc I happens in a helper function after
i is known. This is of course due to the two-level con-
struction of Desc, and this pattern will be followed by
all related definitions later.

It is helpful to form a two-dimensional image of our
datatype manufacturing scheme: we manufacture a da-
tatype by first defining a base functor, and then recur-
sively duplicating the structure of the functor by taking
its least fixed point. The shape of the base functor can
be imagined to stretch horizontally, whereas the recur-
sive structure generated by the least fixed point grows
vertically. This image works directly when the recur-
sive structure is linear, like lists. (Otherwise one resorts
to the abstraction of functor composition.) For exam-
ple, we can typeset a list two-dimensionally like

con (true, a,
con (true, a’,
con (false, tt)))

Things following con on each line are shaped by the
base functor of lists, whereas the con nodes, aligned
vertically, are generated by the least fixed point. This
two-dimensional metaphor will be used in later expla-
nations.

4 Ornaments

To establish relationships between datatypes, one
idea that comes to mind is to write conversion func-
tions. For some kinds of simple structural conver-
sion like projecting away or assigning default values
to fields, however, we may instead state the conversion
at the level of datatypes and later translate the state-
ment to the actual conversion function on values that
we need. For example, a list is a Peano-style natural
number whose successor nodes are decorated with el-
ements, and to convert a list to its length, one simply
discards those elements. To be more precise: given the
descriptions of the two datatypes,

indexfirst data Nat : Set where
Nat > zero
| suc(n :
NatD : Desc T
NatD = wrap A _ —
o Bool A {false — &

Nat)

itrue — vt}
indexfirst data List (A : Set) : Set where
ListA > []
| —:_(x:A) (xs: ListA)

ListD : Set — Desc T
ListDA = wrap A _ —
o Bool A {false — &
;true - o [_:A]lvit)

to state the conversion from a list to its length, the
essential information is just that the elements associ-
ated with cons nodes should be discarded, which is
described by the following natural transformation be-
tween the two base functors .% (ListD A) and .% NatD:

erase : Y {A} - V {X} —»
F (ListD A) X = % NatD X
erase (false, tt) = false,tt -- unchanged

erase (true ,(a,x)) = true ,x -- a discarded

The transformation can then be lifted to work on the
least fixed points.

length : Y {A} — u (ListD A) = u NatD
length = fold (con o erase {X = u NatD})
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mutual

fold : Y {IX}{D :Descl} » DX =X —->uD =X
fold {D = D} ¢ {i} (con ds) = ¢ (mapFold D (D at i) ¢ ds)
mapFold : ¥ {I} (D : Descl) (D’ : RDesc ) —

V{X} > (ZDX=>X)>[D]1ub) - [D]1X

mapFold D 1 w_ =1t

mapFold D (v i) od = fold p d

mapFold D (o S D)

@ (s,ds) = s,mapFold D (D’ s) ¢ ds

mapFold D (D" « D") ¢ (ds,ds’) = mapFold D D’ ¢ ds,mapFold D D" ¢ ds'
All :Y{I}(D : RDescN{X : 1 —» Set} (P:VY{i} > Xi— Set) > [D] X — Set

Alln P_ =T
All (v i) Px =Px
All (c S D) P (s,xs) = All (D s) P xs

All (D * E)

mutual

P (xs,xs")

induction :

= AllD P xs X AIlE P xs’

Y{I}(D :Descl)(P:VY{i} >uDi— Set) »

(ih = Y {i} (ds :
V{i}d:uDi)— Pd

FZDuD)i) — All(Dat i) Pds — P (con ds)) —

induction D P ih {i} (con ds) = ih ds (everywherelnduction D (D at i) P ih ds)

everywherelnduction :

V{I} (D : DescI) (D' : RDescI)(P : VY {i} > uDi — Set) —

(ih - Y {i} (ds :

ds: [ D 1uD)) - AllD’ Pds
everywherelnduction D 1 Pih _
everywherelnduction D (v i) Pihd

everywherelnduction D (o0 S D') P ih (s, ds)
everywherelnduction D (D’ = D") P ih (ds, ds")

Fig. 1

Our goal in this section is to construct a second uni-
verse for such natural transformations between the base
functors that arise as decodings of descriptions. The in-
habitants of this second universe are called ornaments.
By encoding the relationship between datatype descrip-
tions as a universe, we will not only be able to derive
conversion functions between datatypes, but even com-
pute new datatypes that are related to old ones in pre-
scribed ways, which is something we cannot do if we
simply write the conversion functions directly.

4.1 The universe of ornaments

The definition of ornaments, shown in Figure 2, has
the same two-level structure as that of datatype descrip-
tions: we have an upper-level datatype Orn of orna-
ments that refers to a lower-level datatype ROrn of re-
sponse ornaments, which contains the actual encoding
details and is decoded by the function erase. Parame-
trised by a partitioning functione : J — I, the datatype
Orn relates two datatype descriptions D : Desc I and
E : Desc J such that from an inhabitant O : Orne D E

F D uD)i) — All (D at i) Pds — P (conds)) —

=1t

= induction D P ih d

= everywherelnduction D (D' s) P ih ds
everywherelnduction D D’ P ih ds,
everywherelnduction D D" P ih ds’

The fold and induction operators.

we can derive a forgetful map
forget O : uE = uDoe

By design, this forgetful map necessarily preserves the
recursive structure of its input. In terms of the two-
dimensional metaphor mentioned at the end of Sec-
tion 3, an ornament describes only how the horizontal
shapes change, and the forgetful map simply applies the
changes to each vertical level by a fold — it never alters
the vertical structure. For example, the length function
discards elements associated with cons nodes, shrink-
ing the list horizontally to a natural number, but keeps
the vertical structure — the con nodes — intact. Look
more closely: giveny : u E j, we should transform
it into an object of type u D (e j). Deconstructing y
into con ys where ys : [ E atj ]| (u E) and assuming
that the (u E)—objects in ys have been inductively trans-
formed into (1 D o e)-objects, we horizontally modify
the resulting structure of type [ E at j ]| (u D o e)
to one of type [ D at (e j) 1 (u D), which can then
be wrapped by con to an object of type u D (e j).
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The above steps are performed by the ornamental al-
gebra induced by O, whose implementation is shown
as ornAlg in Figure 2, where the horizontal modifica-
tion — a transformation from [[ E at j | (X o e)
to[[ D at (e j) 1 X, natural in X — is decoded by
erase from a response ornament relating D at (e j) and
E at j. Hence an inhabitant of Orn ¢ D E contains
for each requested index j a response ornament of type
ROrn e (D at (e j)) (E at j) to cope with all possible
horizontal structures that can occur in a (u E)—object.

Now we look at each case of the definitions of ROrn
and erase. The v case says that [ v j ] (X o e) can
be transformed into [ vi ]| Xif e j = i — since the
former type reduces to X (e j) and the latter to X i, their
indices had better be equal. There are three other cases
I, 0, and __ mirroring the rest of the response descrip-
tion constructors, each of which declares that the same
constructor is present in the two related response de-
scriptions, and the structure of the constructor is pre-
served by erase. The remaining two cases deal with ad-
dition and deletion of fields inserted by o~ and prompt
erase to perform nontrivial transformations. The A case
says that the more refined response description, o T E,
has an additional field of type T with respect to the re-
sponse description D being refined. The A case of erase
should transform [ o T E ] (X o e) — which ex-
pandstoX [ : T][Et] X oe)—into[[ D ] X,
and it discards the value ¢ of the additional field and
continues to transform the remaining structure of type
[TEz?] (Xoe)into[[ D] X, which is guaranteed to
succeed since the A constructor also demands that D is
related to the trailing response description E ¢ for every
possible value ¢ : T of the additional field. Conversely,
the V case says that o S D, having a field of type S, can
be refined to E by deleting the field, if E refines D s for
some s : S. This s acts as a default value to be installed
into the field when the field is restored by erase.

For an example, the ornament from natural numbers
to lists is

NatD-ListD
(A : Set) — Orn ! NatD (ListD A)
NatD-ListD A =
wrap A _ — o Bool 4 {false — 1
strue —» A[_: Al vrefl}

The A constructor is used to indicate that the field of
type A is new in ListD A, whereas the other parts are
copied from NatD as indicated by the mirroring con-
structors. The forgetful map induced by this ornament
discards the field in every cons node of a list, and is
exactly length. Another example is the ornament from
lists to vectors, in which deletion is involved.

ListDVecD

(A : Set) — Orn ! (ListD A) (VecD A)
ListDVecD A =
wrap A {zero — V false
;(sucn) — Virue (o [_:A]vrefl)}

We analyse the targeted index: if it is zero, then the
constructor choice should be false, so we install that
choice with V; if it is suc n for some n, then we in-
stall the constructor choice true by V, copy the element
with o, and finally affirm by v refl that a request of a
sub-vector at index n is legitimate with respect to the
(trivial) partitioning function ! : Nat — T.

4.2 Ornamental descriptions

The apparent similarity between the description
ListD and the ornament NatD-ListD is typical: fre-
quently we define a new datatype, intending it to be a
more refined version of an existing one, and then imme-
diately write an ornament from the latter to the former.
The structures of the new datatype and of the ornament
are essentially the same, however, so the effort is dupli-
cated. It would be more efficient if we could just write
one “relative” description with respect to the existing
description, specifying the “patches” that need to be
made, and afterwards from this relative description ex-
tract a new description and an ornament from the exist-
ing description to it. We call such relative descriptions
ornamental descriptions; their definition is shown in
Figure 3 and again has a two-level structure. The lower-
level ROrnDesc datatype almost looks like a copy of
the ROrn datatype, except that ROrnDesc is indexed by
only one response description rather than two — it does
not connect two response descriptions like ROrn does,
but creates a new response description whose structure
is guided by an existing one. From an ornamental de-
scription O : OrnDesc J e D, we can extract a new
description | O | Desc J, which is a more refined
version of D, and an ornament [ O] : Orne D | O |
from the reference description D to the new description
L O ]. For example, rather than defining ListD and then
NatD-ListD, we can simply write

ListO : Set —» OrnDesc T ! NatD
ListO A =
wrap 4 _ —
o Bool A {false — 1
;true > A[_:A]v (oktt)}

Then | ListO A | : Desc T is a description of the list
datatype and [ ListO A7 : Orn ! NatD | ListO A ]
is an ornament from natural numbers to lists. By defin-
ing the list datatype in a more informative language that
allows us to mark the differences between lists and nat-
ural numbers, we get the length function — the forget-
ful map induced by the ornament [ ListO A 7 — for
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data ROrn {I J} (e : J — I) : RDesc I — RDesc J — Set; where

8 :ROmenn
V{5 i} (ide :

ej =1i) — ROrme (vi)(vj)

o :(S:Set) > V{DE}(O:¥Vs—ROme(Ds)(Es)) - ROme(cSD)(cSE)

A (T :Set) > V{DE}(O:YVt—>ROmeD(Et)) > ROmeD(c TE)

V :{S:Set}(s:85) >V{DE}(O:ROme(Ds)E)— ROme(cSD)E
_#_:Y{DE}(O:ROmeDE)—V{D E'} (0" :ROmeD E)— ROme (DxD")(Ex*E"

erase : V {I J} {e :
erase 1 — = tt

erase (vrefl) =z

erase (o0 S O) (s,zs) = s,erase (O s) s
erase (A T O) (t,zs) = erase (O t) zs

erase (V s O) s = s, erase O zs

erase (O * O') (z,2") = erase O z, erase O’ x’

J—=I}{DE} >ROmeDE - V{X} > [E](Xoe) - [D]X

dataOrn {I J : Set} (e : J — I) (D : Desc I) (E : Desc J) : Set: where
wrap : (Vj — ROme (D at (ej)) (E atj)) - OmeDE

unwrap :V{I J}{e:J - I} {DE} - OmeDE —Vj— ROme (D at(ej)) (E atj)

unwrap (wrap O) = O

ornAlg :V{I J}{e:J - I}{DE}(O:0meDE)— ZE(uDoe)=pDoe

ornAlg {D = D} (wrap O) {j} = con o erase (O j)

forget :¥{I J}{e:J - I} {DE}(O:0meDE)—puE=pDoe

forget O = fold (ornAlg O)

Fig. 2 The universe of ornaments.

free. For another example, we can define sorted lists by
making modifications to lists,

SListO : OrnDesc Val ! (ListD Val)
SListO =
wrap b —
o Bool A {false — 1
;true — o [x: Val]
A[_:b<x]v(okx)}

An ornament [ SListO ] from ListD Nat to | SListO | can
then be decoded from the ornamental description, and
subsequently we obtain a forgetful map

forget [ SListO1 : ¥ {b} — SList b — List Val
that converts a sorted list to a plain list.

4.3 Parallel composition of ornaments

Functions are not the only entities that can be com-
puted from ornaments. Since we have built a universe
for datatypes, we can also compute new datatypes from
ornaments by computing codes for the new datatypes.
A particularly powerful construction is parallel compo-
sition of ornaments, which plays a central role in this
paper. The generic scenario is illustrated in Figure 4:
given three descriptions D Desc I, E Desc J,
and F : Desc K and two ornaments O : Orne D E
and P Orn ¢ D F independently specifying how

D is refined to E and F, we can compute an ornamental
description

O ® P : OrnDesc (e = f) pull D

incorporating all the modifications to D recorded in O
and P. Also we get two difference ornaments from E
and F to the new description | O ® P | computed by
diffOrn-1 O P and diffOrn-r O P, through which we
can partially forget the modifications. For example, the
ornament from lists to vectors adds length information,
while the ornament from lists to sorted lists enforces
ordering; composing the two ornaments in parallel, we
get a datatype of lists that keep track of their length
and stay ordered at the same time — that is, we get
sorted vectors, which can be demoted to vectors or to
sorted lists by the forgetful maps induced by the two
difference ornaments.

The new index set e > f is the pullback of e and f.
(See the left half of Figure 4 for the commutative dia-
gram.) Set-theoretically, the elements are pairs of the
form (j, k) such that e j equals f k, or putting it another
way, for which there exists i such thatj is in the inverse
image of i under e and £ is in the inverse image of i
under f. Hence we define pullbacks using the inverse
image datatype from Section 2:

data >~_{/ J K : Set}
(e:J > D( : K— I : Set where
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data ROrnDesc {I : Set} (J : Set) (e : J — I) : RDesc I — Set; where
8 : ROrnDesc J en
v :V{i}(j:e i) — ROmDesc J e (vi)
o :(S:Set) »V{D} (O :Vs— ROrDesc J e (D s)) — ROmDesc J e (¢ S D)
A :(S:Set) > V{D} (O :S — ROmDesc J e D) — ROrnDesc J e D
V :{S:Set}(s:S) = V{D} (O : ROrmDesc J e (D s)) — ROrnDesc J ¢ (¢ S D)
_#_:Y¥{D} (O : ROmDesc J e D) — V {D'} (O’ : ROrnDesc J e D’) — ROrnDesc J e (D * D’)

data OrnDesc {I : Set} (J : Set) (e : J — I) (D : Desc I) : Set; where
wrap : (Vj — ROmDesc J e (D at (e j))) — OrnDesc J e D

toRDesc : V{I J} {e: J — I} {D} — ROrnDesc J e D — RDesc J
toRDesc & =1

toRDesc (v (ok j)) = v j

toRDesc (c S O) = o [s:S] toRDesc (O s)

toRDesc (A S O) = o [s:S] toRDesc (O s)

toRDesc (V s O) = toRDesc O

toRDesc (O * O') = toRDesc O * toRDesc O’

| |:v{rJ}{e:J = I} {D} — OrnDesc J e D — Desc J

|wrap O | = wrap A j — toRDesc (O j)

toROrn : V{I J}{e:J — I} {D} — (O : ROmDesc J e D) — ROrn e D (toRDesc O)
toROrn 1 =1

toROrn (v (ok j)) = v refl

toROrn (6 S O) = o [s:S] toROrn (O s)

toROrn (A S O) = A[s: S]toROrn (O s)

toROrn (V s O) = V s (toROrn O)

toROrn (O * O') = toROrn O % toROrn O’

[ 1:vV{IJ}{e:J = I} {D} — (O :0rnDesc J e D) — OmeD | O]
[wrap O] = wrap A ¢ — toROrn (O 1)

Fig. 3 Ornamental descriptions.

e |O® P| : Desc (e f)

f
. \ diﬁOm—V diffOrn-r O P

J pull K E : Desc J [O® P] F :DescK

NN

1 D : Desc I

Fig. 4 Parallel composition of ornaments.

i —meliosfliosexf m (G,-) = undj
We have a function pull which extracts the common m i VUJKY e J > D {f: K= 1} —
value exf — K
7w (k) = und k
pull :Y{IJK}{e:J->NI{f: K-> I} >
exf — 1 It is interesting to think about why the new index set is
pull (—{i} — ) =1 a pullback: the differences recorded in O are only be-

tween corresponding responses of D and E as specified
by e, and they are indexed by J — for eachj : J we get
m Y{IJK}{e:J->D{f:K->1 — a difference between E at j and D at (e j). The same

exf —J goes for P. Now, parallel composition computes an or-

and projections
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namental description based on D by mixing O and P. To
retrieve the differences recorded in O and P, we need a
pair of indices (j, k) to access both ornaments. Not all
pairs would do, however, since the two differences re-
trieved must be based on a common description, other-
wise they would have no common structure and could
not be mixed. By requiring that e j equals f k, we en-
sure that the two differences have a common base de-
scription. Hence the use of pullbacks.

The full definition of parallel composition is shown
in Figure 5, again possessing a two-level structure. The
definition of left difference ornaments is shown in Fig-
ure 6, which is similar to that of parallel composition
but records only modifications from the right-hand side
ornament; right difference ornaments have an analo-
gous definition, which is therefore omitted. We look
at some representative cases of pcROrn. When both
ornaments use o, both of them retain the field in the
common base description — no modification is made.
Consequently, the field is retained in the resulting orna-
mental description as well.

pcROm (oS O) (o .SP) =
o [s:8]pcROrn (O s) (P s)

When one of the ornaments uses A to mark the addition
of a field, that additional field would be inserted into
the resulting ornamental description, like in

pcROm (AT O)P = A[t: T] pcROm (O f) P

If one of the ornaments copies a field by o and the other
deletes it, then the field is deleted in the resulting orna-
mental description, like in

pcROm (S O0) (Vs P) =
Vs (pcROrn (O s) P)

The most interesting case is when both ornaments per-
form deletion: we would put in an equality field de-
manding that the default values supplied in the two or-
naments be equal,

pcROm (Vs O) (Vs P) =
A (s = 5") (pcROrn-doubleV O P)
pcROrn-doubleV {s = s} O P refl =
V s (pcROrn O P)

and then pcROrn-doubleV puts the deletion into the re-
sulting ornamental description after matching the proof
of the equality field with refl. It might seem bizarre that
two deletions results in an insertion (and a deletion), but
consider this informally described scenario: in a base
description there is a field o S, which is refined by two
independent ornaments

Alt:TIV (gD and Alu:U]lV (hu)

That is, instead of S-values, the two ornaments use 7-
and U-values at this position, which can be erased to an
underlying S-valueby g : T — Sandh : U — S.

Composing these two ornaments in parallel, we get
Alt:TIA[u:UlA[—-:gt=hu]lV(g?

where the added equality field completes the construc-
tion of a pullback of g and 4. Here indeed we need a
pullback: when we have an actual value for the field
o S, which gets refined to values of types T and U, the
easiest way to mix the two refining values is to store
them both, as a product. If we wish to retrieve the un-
derlying value of type S, we can either extract the value
of type T and apply g to it or extract the value of type U
and apply £ to it, and through either path we should get
the same underlying value. So the product should really
be a pullback to ensure this.

For an example, we mentioned that sorted vectors
arise out of the parallel composition of the ornaments
from lists to vectors and sorted lists. The datatype dec-
laration for index-first sorted vectors is

indexfirst data SVec : Val — Nat — Set where
SVec b zero > svnil
SVec b (sucn) > sveons (x : Val) (le : b <x)
(xs : SVec x n)

and the ornamental description from lists to sorted vec-
tors would simply be

SVecO : OrnDesc (! = !) pull (ListD Val)
SVecO = [SListO] ® ListDVecD Val

where the first ! has type Val — T and the second
Nat — T (and hence the index set is essentially just a
plain product Val x Nat, justifying the way we index
the sugared datatype SVec). Expanding the definition
of SVecO, we get

wrap A {(ok b,ok zero) — |V false 1
; (0K b, 0k (suc n)) —
V true (o [x: Val]
A[_:b<x] v(okx, okn))}

where a lighter box indicates modifications recorded in
[ SListO7 and a darker box in ListDVecD Val.

5 Refinement semantics of ornaments

In this section we present the main result of this pa-
per: every ornament O Orn e D E induces a re-
finement from u D to u E. That is, we can construct a
function

7
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from=:V{JI}{e:J = I}{ji} 5 ej=i—
from={j = j} refl = ok j
to=:V{JI}{e:J = I1}{i} = (§
to= (ok j) = refl
mutual

pcROrn : ¥V {I J K} {e :

—1

e 7

ce i) = e(undj) =i

J—=>I1}{f: K-> I}{DEF} —

ROm e D E — ROrn f D F — ROrnDesc (e < f) pull D

pcROrn ] =1

pcROrn 1 (AT P) = A[t: T] pcROrnn (P t)
pcROrn (v idz) (vidz') = v (ok (from= idz, from= idz"))
pcROrn (vidz) (AT P) = A[t: T]pcROrn (vidz) (P t)
pcROrn (0 S O) (6.8 P) =0 [s:S8] pcROrn (O 5) (Ps)
pcROrn (o f O) (AT P)=A[t: T]pcROrn (o f O) (P t)
pcROrn (6 S O) (Vs P) =V s (pcROrn (O s) P)

pcROrn (A T O) P = A[t: T] pcROrn (O t) P
pcROrn (Vs O) (6 S P) =V s(pcROrn O (P s))

pcROrn (Vs O) (AT P)=A[t: T]pcROrn (Vs O) (P t)
pcROrn (V5 O) (V s’ P) = A (s = §') (pcROrn-doubleV O P)
pcROr (O % O') (A T P) = A[t: T] pcROrn (O *x O") (P t)
pcROrn (O % O") (P * P") = pcROrn O P x pcROrn O" P’

pcROrn-doubleV : ¥V {I J K S} {e :

J = IY{f :
ROme(Ds)E - ROmf(Ds)F — s=s

K—>I}{DEF}{ss':8}—
— ROrnDesc (e < f) pull (o S D)

pcROrn-doubleV {s = s} O P refl = V s (pcROrn O P)

_V{IJK}{e:J > I}{f: K5 I}{DE

F} —

OmeDE — Om f DF — OrnDesc (e f) pull D
“®_{e = e} {1} {D} {E} {F} (wrap O) (wrap P)
wrap A {(j, k) — pcROrn (subst (A ¢ — ROrn e (D at i) (E at (und j))) (to=j) (O (und 7)))
(subst (A\i — ROrn f (D at i) (F at (und k))) (to= k) (P (und k)))}

Fig. 5 Parallel composition.

RSem : Y {IJ}{e :J »> I} {DE} —
Orn e D E — Refinement (u D) (u E)

which is called the refinement semantics of ornaments
— broadly speaking, we are treating ornaments as a
universe for refinements, with RSem as the decoding
function. We construct in Section 5.1 a canonical pred-
icate for every ornament, which is crafted to allow
promotion proofs to have efficient representations, and
prove that the associated isomorphism holds. When
an ornament is a parallel composition, say O & P,
its canonical predicate can be shown to be isomorphic
to the pointwise conjunction of the canonical predi-
cates for O and P — this decomposition of a canoni-
cal predicate into existing ones is key to modular func-
tion upgrading like the one from insert to svinsert in
Section 1. We express this decomposition as a predi-
cate swap (introduced in Section 2.2) for the refinement
RSem (O ® P) in Section 5.2.

5.1 Canonical predicates
We start with constructing a promotion predicate

[Z]-— VI J}{e:J > I} {DE} >
VY{iyG:e'D(x:uDi) -

(O :0rneDE)— Set

which is called the canonical predicate for the orna-
ment 0. Given x : u D i, a proof of type [j] x + O
would provide the necessary data for complementing x
and forming an object y of type u E (und j) with the
same recursive structure — the proof is the “horizon-
tal” difference between the two objects y and x, speak-
ing in terms of the two-dimensional metaphor sketched
in Section 4.1. Such proofs should have the same verti-
cal recursive structure as that of x, and at each recursive
node store horizontally only those data marked as modi-
fied by the ornament. For example, if we are promoting
the natural number

two = con (true,
con (true,
con (false, tt))) : u NatD tt

to a list, a promotion proof should look like
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J = I}{f: K > I}{D E F}

(O:ROmeDE)(P:ROmfDF)— ROmm E (toRDesc (pcROrn O P))

mutual
diffROrn-1 : ¥V {I J K} {e :
diff ROrn-1 ] =1
diffROrn-1 n ATP)=A[t

(
diff ROrn-1 (v refl) (v idz') = v refl

(
S diffROrn-1 (O s) (P s)
: T diff ROrn-1 (o S O) (P t)

: T] diff ROrn-ln (P t)

Pt)
S

T) diffROrn-1 (O t) P

A[t: T] diffROrn-1 (V s O) (P t)
A (s = §') (diffROrn-1-doubleV O P)
A [t: T] diffROrn-1 (O % O") (P t)

diffROrn-1 (vrefl) (A T P) = A[t: T] diff ROrn-1 (v refl)
diffROrn-1 (¢ S O) (o S P) =o0]s:

diffROrn-l (0 S O) (AT P)=A1t

diffROrn-l (0 S O) (Vs P) =V s (diffROrn-1 (O s) P)
diffROrn-l (A T O) P =o|t:

diffROrn-1 (V s O) (o S P) = diffROrn-1 O (P s)

diffROrn-1 (V s O) (AT P) =

diffROrn-1 (V s ) (Vs P)=

diffROrn-1 (O x O") (A T P) =

diffROrn-1 (O x* O") (P * P') = diffROrn-1 O P x diffROrn-1 O’ P’

diffROrn-1-doubleV :
V{IJK}{e:
(O : ROm e (D

J—=I}{f : K= I} {S}{DEF}{ss
s)E) (P :ROm f (Ds')F) (eq:

: S —
s=3s) >

ROm w1 E (toRDesc (pcROrn-doubleV {D = D} O P eq))

diff ROrn-l-doubleV O P refl = diffROrn-1 O P
J—=>I}{f: K —>I1}{DEF}

diffOrn-1 : ¥V {I J K} {e:

(O:0meDE)(P:0mfDF)—Omm E|0OQP|
diffOrn-l {e = e} {f} {D} {E} {F} (wrap O) (wrap P) =
wrap A {(j, k) = diff ROrn-1 (subst (A i — ROrn e (D at i) (E at (und j))) (to=7) (O (und j)))
(subst (A\i — ROrn f (D at i) (F at (und k))) (to=k) (P (und k)))}

Fig. 6 Left difference ornaments.

r = con (a,
con (d’,

con tt)) : [ok tt] two I [ ListO A

where a and a’ are some elements of type A, so we get
a list by zipping together rwo and r node by node:

con (true, a,
con (true, d’,
con (false, tt))) : u | ListO A | it

Note that r contains only values of the field marked
as additional by A in the ornament [ ListO A 7. The
boolean constructor choices are essential for determin-
ing the recursive structure of r, but instead of being
stored in r, they are derived from two, which is part
of the index of the type of r. So, in general, here is
how we compute an ornamental description of the base
functor for such proofs relative to D: we incorporate
the modifications made by O, and delete the fields that
already exist in D, whose default values are derived in
the index-first fashion from the object that we are pro-
moting, which appears in the index of the type of a
proof. The deletion is independent of O and can be
performed by the singleton ornament for D, whose def-
inition singOrn D is shown below, so the desired orna-

mental description is the parallel composition of O and
singOrn D:

cpD :N{IJ}{le:J - 1}{DE} —
(O : Orn e D E) — Desc (e = proj,)
epD{D = D} O = |0 ® [singOrn D1

where proj; here has type X I (u D) — 1. The canon-
ical predicate, then, is the least fixed point of the de-
scribed base functor.

[]-w— VI J}{e:J > I} {DE} -
Y{i}G:e'DH@x:uDi) —
(O :0OrneDE)— Set

[j]1x O = p(cpD O) (j, (0k (-, x)))

Now we define the singleton ornament singOrn D for a
description D, which describes a datatype additionally
indexed by u D.

singOrn : Y {I} (D : DescI) —
OrnDesc (X I (u D)) proj, D
singOrn D =
wrap A {(i,con xs) — erode (D at i) xs}
erode :
V{I} (D : RDescI) —
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V{J} - [DI1J — ROrnDesc (X1J)proji D

erode _ =1

erode (Vi) ] v (ok (i,)))

erode (o S D) (s, Js) V s (erode (D s) js)
erode (D = E) (js,js') = erode D js * erode E js’

An inhabitant of the new datatype is devoid of any
horizontal contents, which are deleted by erode —
only the vertical structure remains. For any type
u | singOrn D] (i, x), there is only one single inhabitant
(which has the same recursive structure as x), hence the
name of the ornament [11].

For an example, the promotion predicate for the or-
nament NatD-ListD A from u NatD to u (ListD A)
would be the datatype of index-first vectors. Ex-
panding the definition of the ornamental description
NatD-ListD A & [singOrn NatD1,

wrap A { (ok tt, ok (tt, zero)) —

V false n
; (ok tt, ok (tt, suc n)) —

V true

(A[-:A] v(oktit, ok (it,n)))}

where lighter box indicates modifications from the or-
nament NatD-ListD A and darker box from the single-
ton ornament [ singOrn NatD 7], we see that it indeed
yields the datatype of index-first vectors (indexed by a
more heavy-weight datatype of natural numbers).

We have just determined the promotion predicate for
the refinement semantics of ornaments.

RSem : Y {IJ}{e :J - I} {D E} —
Orn e D E — Refinement (u D) (u E)

RSem {e = e} O =
record
{e =e
P =Ajx - [jlxrO

;R =17

The next step is to prove that u E (und j) and
2 [x : u D i] [j] x v O are isomorphic for any
j : e ~'i. The backward direction is easy: the canoni-
cal predicate datatype [j] x I O is defined as a parallel
composition with O as a component, so there is a dif-
ference ornament from the description E, which is the
more refined end of O, to the canonical predicate data-
type. Hence we define

cpOrn :

V{IJ}{e :J —> I}{DE} -

(O :0rmeDE)— Ornmn E (cpD 0O)
cpOrn {D = D} O = diffOrn-1 O [ singOrn D]

and the map forget (cpOrn O) o proj, does the job. For
the forward direction, from an objecty : u E j we

need to compute an object x : u D i and a proof of
[ok j] x = O. We take x to be forget O y, and the proof
is computed by a separate function

remember :

VY{IJ}{e:J > I}{DE} —

(O:0meDE) —

Y{j}(y:uEj) — [okj]forget Oy O
whose implementation is by induction. The translation
can be completed after proving that the two directions
are indeed inverse to each other, again by induction.
The proofs are tedious but standard, and hence are omit-
ted from the paper.

RSem : Y {l[J}{e:J - I}{DE} -
Orn e D E — Refinement (u D) (u E)
RSem {e = ¢} O =
record
{e =e
;P =Ajx - [jlx+rO
A{{.—} (ok)) —
record
{to =
(forget O, remember O)
;from =
forget (cpOrn O) o proj,
; to-from-inverse =
remember-forget-inverse O
; from-to-inverse =
forget-remember-inverse O}}}

5.2 Predicate swap for parallel composition

An ornament describes differences between two da-
tatypes, and the canonical predicate for the ornament
is the datatype of differences between objects of the
two datatypes. To promote an object from the coarser
end to the more refined end of the ornament using its
refinement semantics, we give a promotion proof that
the object satisfies the canonical predicate for the orna-
ment. If, however, the ornament is a parallel composi-
tion, say [ O ® P17, then the differences recorded in
the ornament are simply collected from the component
ornaments O and P. Consequently, it should suffice to
give proofs that the object satisfies the canonical pred-
icates for O and P, instead of the canonical predicate
directly induced by [ O ® P7. We are thus led to prove
that the canonical predicate for [ O ® P amounts to
the pointwise conjunction of the canonical predicates
for O and P. In the language of refinements, we pro-
vide a predicate swap (introduced in Section 2.2) that
allows us to use the pointwise conjunction of the canon-
ical predicates for O and P as the promotion predicate
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in RSem [ O ® P 1, instead of the canonical predi-
cate for [ O ® P 7. We should allow predicate swap-
ping to propagate, though: the canonical predicate for
[O ® P canbe swapped for the pointwise conjunction
of any predicates that are isomorphic to the canonical
predicates for O and P, so, for example, the canonical
predicate for [O ® [P ® Q77 can be swapped for
the pointwise conjunction of the canonical predicates
for O, P, and Q. Hence the predicate swap we provide
is:

Swap-® :
YV{IJK}{e:J > I}{f : K > I}{DEF}
(O:0meDE)(P:0OmfDF) —
Swap (RSem O) — Swap (RSem P) —
Swap (RSem [0 ® P1)

Swap-@ OP st =
record

{Q

;8 =7

A{.—} (ok (k) x —
Swap.Q s jx X Swap.Q t k x}

For the field s, we need only prove that the canonical
predicate for [ O ® P17 is isomorphic to the pointwise
conjunction of the canonical predicates for O and P,
whose forward direction is

project :
Y {lJK}
fe:J->NL{f:K—>1L{DEF} —
(O:0meDE)(P:0mfDF) —
VY{idx:uDid{j:e ' Jk:f i) -
[0k (,k)]x-[O ® P] —
[1x+O X [k]lxW+ P

The implementation proceeds by induction on x and
distributes the data in the composite proof to the two
component proofs that we are constructing. The func-
tion project can be shown to be injective and surjective,
so we get an isomorphism which we can then chain with
the product of the two given isomorphisms Swap.s s j x
and Swap.s ¢ k x by translso. That is, we can indeed
form an isomorphism

[ok (j,k)]x i[O ® P]
[[1x+-O X [k]x+P
Swap.Q sjx x Swap.Q tkx

IR 1R

which is what we use for the field s of Swap-®.
For an example, the key isomorphisms used to mod-
ularly upgrade insert to svinsert in Section 1

SVechn =
Y [xs : List Val] Sorted b xs x Length n xs

can be provided by the refinement

toRefinement
(Swap-® [ SListO (ListDVecD Val)
idSwap idSwap)

If, instead of the inductive predicate Length n xs, we
wish to program with the equality length xs = n, then
we use the refinement

toRefinement
(Swap-® [ SListO7 (ListDVecD Val)
idSwap (LengthSwap Val))

which gives us the family of isomorphisms

SVechn =
Y [xs : List Val] Sorted b xs X length xs

Il
S

6 Example: leftist heaps

In this section we give an extended example: leftist
heaps. In Okasaki’s words [13], “[1]eftist heaps [...] are
heap-ordered binary trees that satisfy the leftist prop-
erty: the rank of any left child is at least as large as the
rank of its right sibling. The rank of a node is defined to
be the length of its right spine (i.e., the rightmost path
from the node in question to an empty node).” From this
description we can immediately decompose the concept
of leftist heaps into three: leftist heaps (i) are binary
trees that (ii) are heap-ordered and (iii) satisfy the left-
ist property. This suggests that there is a basic datatype
of binary trees together with two ornamentations. The
datatype of binary trees is

indexfirst data Tree : Set where
Tree > tip
| fork (¢ : Tree) (u : Tree)

TreeD : Desc T
TreeD = wrap 1 _ —
o Bool A {false — &
;true - vitt = v it}

Leftist trees — binary trees satisfying the leftist prop-
erty — are then an ornamented version of Tree.

indexfirst data LTree : Nat — Set where
Treezero > tip
Tree (suc r) > fork (I : Nat) (r<l : r <)
(t:Treel) (u: Treer)

LTreeO : OrnDesc Nat ! TreeD
LTreeO =
wrap A {zero — Vfalsel
;(sucr) —»
Vitrue (A[l:Nat]A[_:r<l]
v (ok ]) * v (ok 7))}
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Independently, heap-ordered trees are also an orna-
mented version of Tree.

indexfirst data Heap : Val — Set where
Heap b > tip
| fork (x : Val) (b<x : b <x)
(t : Heap x) (u : Heap x)
HeapO : OrnDesc Val ! TreeD
HeapO =
wrap 1 b —
o Bool A {false — 1
itrue > Ax:VallA[—:b<x]
v (ok x) * v (oK x)}

(One can see from the indexing pattern that heap-
ordered trees can be regarded as a generalisation of
sorted lists: in a heap-ordered tree, every path from the
root to a tip is a sorted list.) Composing the two orna-
ments in parallel gives us exactly leftist heaps.

indexfirst data LHeap : Val - Nat — Set
where
LHeap b zero > tip
LHeap b (suc r)
> fork (x : Val) (b<x : b <x)
(I:Nat)(<l:r<)
(t : Heapx ) (u : Heap x r)
LHeapD : Desc (! » )
LHeapD = |[HeapO| ® [LTreeO1 ]

The decomposition gives us the ability to talk about
heap-ordering and the leftist property of leftist heaps in-
dependently. For example, a useful operation on heap-
ordered trees is to relax the lower bound. If we imple-
ment it in predicate form, stating explicitly in the type
that the underlying binary tree structure is unchanged,

relax : Y {bb'} - b <b —
Y {t} —» [ok b] t I [HeapO] —
[ok b'] t I+ [ HeapO
relax b’<b {tip} p = contt
relax b’<b {fork _ _} (con (x, b<x, t,u)) =
con (x, <-trans b’'<b b<x,t,u)

where <-trans is transitivity of _<_, then we can lift
it so as to modify only the heap-ordering portion of a
leftist heap:

lhrelax : Y{bb'} - b <b —
VY {r} - LHeapbr — LHeap ¥’ r
lhrelax {b} (b} b'<b {r} =
Iso.from (Refinement.R re (ok (ok &', 0k r))) o
(id x (relax b’<b X id)) o
Iso.to (Refinement.R re (ok (ok b, ok r)))
where

re : Refinement (u TreeD) (u LHeapD)
re = toRefinement
(Swap-® [ HeapO1 [ LTreeO
idSwap idSwap)

In general, non-modifying heap operations do not de-
pend on the leftist property and can be implemented for
heap-ordered trees and later lifted to work with leftist
heaps, relieving us of the unnecessary work of deal-
ing with the leftist property when it is simply to be ig-
nored. For another example, converting a leftist heap to
a list of its elements has nothing to do with the leftist
property. In fact, it even has nothing to do with heap-
ordering, but only with the internal labelling. Hence we
define the internally labelled trees

indexfirst data ITree (A : Set) : Set where
ITree A > tip
| fork (x : A)
(t: ITree A) (u : ITree A)
ITreeO : Set — OrnDesc T ! TreeD
ITreeO A =
wrap A4 _ —
o Bool A {false — &
;true —
A[_:A]v (oktt) *v (ok tt)}

on which we can do pre-order traversal:

preorder : Y {A} — ITree A — ListA
preorder tip =]
preorder (fork x t u) =

X :: preorder t 4 preorder u

We have an ornament from internally labelled trees to
heap-ordered trees:

ITreeD-HeapD : Orn ! | ITreeO Val] | HeapO |
ITreeD-HeapD =
wrap b —
o Bool A {false — &
strue > o [x:Vall]A[_:b<x]
v refl = v refl}

So, to get a list of the elements of a leftist heap (with the
first element of the list, if any, being the minimum one
in the heap), we convert the leftist heap to an internally
labelled tree and then invoke preorder.

toList : ¥ {br} — LHeap b r — List Val
toList = preorder o forget ITreeD-HeapD o
forget (diffOrn-1 [ HeapO1 [ LTreeO1)

For modifying operations, however, we need to con-
sider both heap-ordering and the leftist property at the
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same time, so we should program directly with the
composite datatype of leftist heaps. For example, the
key modifying operation is merging two heaps,

merge : Y {br} — LHeapbr —
V{b'r} - LHeap b’ r —

> Nat (LHeap (b 1 b))

with which we can easily implement insertion of a new
element and deletion of the minimum element. The def-
inition of merge is shown in Figure 7. It is a more pre-
cisely typed version of Okasaki’s implementation, split
into two mutually recursive functions to make the two-
level induction clear to Agda’s termination checker, and
conversions are added to establish the correct bounds.

Another advantage of separating the leftist property
and heap-ordering is that we can swap the leftist prop-
erty for another balancing property. The non-modifying
operations, previously defined for heap-ordered trees,
can be upgraded to work with the new balanced heap
datatype in the same way, while the modifying opera-
tions are reimplemented with respect to the new balanc-
ing property. For example, the leftist property requires
that the rank of the left subtree is at least that of the right
one; we can replace “rank” with “size” in its statement
and get the weight-biased leftist property. This is again
codified as an ornamentation of binary trees

indexfirst data WLTree : Nat — Set where
WLTree zero > tip
WLTree (suc n)
> fork (I : Nat) (r : Nat)
<l :r<h)msl+r :n=1+r)
(t : WLTree I) (u : WLTree r)
WLTreeO : OrnDesc Nat ! TreeD

WLTreeO =
wrap A {zero — V falsel
;(sucn) —
V true

(A [l:Nat] A[r: Nat]
Al_:r<IIA[_:n=1l+r]
v (ok ) = v (0k r))}

which can be composed in parallel with the heap-
ordering ornament and give us weight-biased leftist
heaps.

indexfirst data WLHeap : Val - Nat — Set

where

WLHeap b zero > tip

WLHeap b (suc n)

> fork (x : Val) (b<x : b <x)

(I : Nat) (r : Nat)
(r<l : r <) (nsl+r
(t : WLHeap x ) (u :

n=1l+r)
WLHeap x r)

WLHeapD : Desc (! 1)
WLHeapD = | [HeapO1 ® [ WLTreeO1 |

Switching to the weight-biased leftist property makes it
possible to reimplement merge in a single, top-down
pass rather than two passes: with the original rank-
biased leftist property, recursive calls to merge are de-
termined top-down by comparing root elements, and
the helper function makeT swaps the recursive result
with the other subtree if the rank of the former is larger;
the rank of the result, however, is not known before the
recursive call returns, so during the whole merging pro-
cess makeT does the swapping in a second bottom-up
pass. On the other hand, with the weight-biased leftist
property, the size of the recursive result is known be-
fore the merging is actually performed, so makeT can
determine whether to do the swapping or not before the
recursive call, and the whole merging process requires
only one top-down pass. The new implementation is
similar to the one for rank-biased leftist heaps and is
thus omitted from the paper.

7 Discussion

This paper is a heavily revised version of the one
that the authors previously published in the Workshop
of Generic Programming (WGP) [8]. The WGP version
was the first to use the terms “internalism” and “exter-
nalism” for naming different ways of expressing con-
straints known by the dependently typed programming
community, the former using inductive families with
fancy indices and the latter using separately defined
predicates, and to show that there is a connection be-
tween internalism and externalism: whereas externalist
constraints are expressed by predicates, internalist con-
straints can be expressed by ornaments, and we can de-
rive a predicate from every ornament, thereby translat-
ing internalist constraints to externalist ones. This con-
nection is axiomatised in this paper in terms of refine-
ments. The axiomatisation greatly streamlines the pre-
sentation, as it makes a clear logical separation between
how (modular) function upgrading can be achieved by
having isomorphisms between internalist and external-
ist datatypes and how a particular class of such isomor-
phisms can be induced by capturing structural similari-
ties between datatypes with ornaments.

We might say that ornaments form a universe for re-
finements (in a broader sense). Even though it is ob-
vious that ornaments encode only a small collection of
refinements, what we have achieved is typical of uni-
verse constructions: refinements on their own do not
have a very useful compositional structure, but we can
identify a collection of more composable refinements
by reflecting their deeper structure as codes, i.e., or-
naments. This collection of ornament-induced refine-
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-- We assume the existence of the function %-invert : V{z y} > z<€y > y<z=

-- (which makes _<_ a total ordering).

-- Various proof terms about equalities/inequalities are not essential and
-- thus omitted; instead, the holes {!!} are filled with the expected types only.

makeT : (z : Nat) — V {r} (¢t : LHeapz r) — V {r'} (¢’ : LHeap z 7') — ¥ Nat (LHeap z)

makeT x {r} ¢t {r'} ¢’ with r <, '

makeT z {r} t {r'} t' | yesr<r’ = sucr ,fork z <-refl v’ r<r' t' t
makeT z {r} t {r'} t' | no r&€r’ = sucr’, fork z <-refl r (£-invert r£r') t ¢

mutual

merge : ¥V {br} — LHeap b r — V {b’' '} — LHeap b’ ' — ¥ Nat (LHeap (b 1 %))
merge {b} {zero } h {b'} B’ = _ lhrelaz {! b1 b < b 1} K

merge {b} {sucr} h {b'} B’ = merge’ h b’

merge’ : ¥V {br} — LHeap b (sucr) — V {b' '} — LHeap b’ v’ — ¥ Nat (LHeap (b M b"))

merge’ {b} {r} h {b’'} {zero} b’ =

_,threlaz {! b M b" < b !} (subst (LHeap b) {! suc r = suc r + zero !} h)
merge’ {b} {r} (fork z b<z I r<l t uw) {b'} {suc r'} (fork " b'<z’ I 'KV ' u')

with z <7 2’

merge’ {b} {r} (fork z b<z I <l t u) {b'} {suc r'} (fork 2’ b'<z’ I P’ ¢’ u')
| yes z<z’ = _, lhrelaz (<-trans {! b1 b" < b !} b<a)
(proje (makeT z t (lhrelaz {! x <z Mz !}
(proja (merge u (fork z’' z<z' I '’ ¢’ u'))))))
merge’ {b} {r} (fork z b<z I r<I t u) {b'} {suc r'} (fork z’ b'<z’ I 'l ¢’ u')
| nozds’ = _, lhrelaz (<-trans {! b b" < b’ 1} b'<a’)
(proja (makeT z' t' (lhrelax {! ' < ' Nz’ 1}
(projz (merge’ (fork z (£-invert z£z’) I r<I t u) u')))))

Fig. 7 Merging two leftist heaps.

ments can be composed at the level of ornaments by
parallel composition so the resulting promotion predi-
cate is the pointwise conjunction of the promotion pred-
icates of the component refinements. Such composable
structure is the key to modular function upgrading, and
is made possible because we can manipulate the deeper
structure of refinements through ornaments. (Parallel
composition is not an initial structure of ornaments,
however, so strictly speaking we will need to construct
a higher universe for an algebra of ornaments, one of
whose constructors is parallel composition. It is pre-
mature to carry out this higher universe construction,
though, before such an algebra of ornaments is prop-
erly studied.)

Parallel composition has been fully implemented in
this paper, whereas the WGP version merely imple-
mented a specialised version. We are thus able to give
canonical predicates a concise definition and to define
leftist heaps by composing the heap-ordering ornament
in parallel with the leftist ornament, neither of which
could have been done without the full power of paral-
lel composition. Also we give projection an efficient
implementation by directly distributing the content of
a composite promotion proof, as opposed to the ineffi-
cient composition of forgetful and remembering maps

used in the WGP version.

The idea of viewing vectors as promotion predicates
was first proposed by Bernardy [2 p 82], who refers to
the realisability transformation defined for pure type
systems by Bernardy and Lasson [3]. He started with
the list type in which the element-type parameter is
marked as “first-level”, whereas the list type itself is
“second-level”. Applying the “projecting transforma-
tion”, which removes first-level terms and demotes
second-level terms to first-level, the second-level type
of lists is transformed to the first-level type of natural
numbers. And then, applying their realisability trans-
formation, the list type is transformed to a second-level
vector type indexed by first-level natural numbers. Our
WGP paper can be seen as an adaptation of Bernardy’s
idea into the language of ornaments without introduc-
ing levels, but also adopting the realisability terminol-
ogy. We have abandoned the realisability terminology
in this paper, though, as we feel that the departure from
the theory of realisability is now so great that an explicit
analogy seems inappropriate.

Ornaments were first proposed by McBride [10] and
later adapted to index-first datatypes by Dagand and
McBride [6], who also proposed reornaments as a more
efficient representation of promotion predicates, taking
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full advantage of index-first datatypes. Following their
suggestion, we have also adapted our work to index-
first datatypes. Their reornaments are reimplemented in
this paper as canonical predicates using parallel com-
position. Dagand and McBride [6] also extended the
notion of ornaments to functional ornaments. Our ax-
iomatisation of refinements and their functional orna-
ments are complementary and await integration: their
functional ornaments can be seen as a universe for re-
finements generalised for function types, which will au-
tomate the insertion of isomorphisms for function up-
grading as shown in their work and make the refinement
approach truly worthwhile.

We have redefined ornaments to be relations between
descriptions, whereas what are called “ornaments” in
both works above correspond to our ornamental de-
scriptions. Separation of ornaments from ornamental
descriptions gives us the ability to state ornamental re-
lationships between two existing datatypes. This ability
is essential to forming the “pullback square” for parallel
composition — in the WGP version we had only orna-
mental descriptions, and thus were forced to make the
two difference ornaments produce two redundant new
datatypes that are isomorphic to the one manufactured
by parallel composition. Separating ornaments from
ornamental descriptions also opens up the possibility
of structuring descriptions and ornaments as a category
with descriptions as objects and ornaments as arrows:
after defining sequential composition of ornaments

_O_:

V{IJK)}
fe:J->L{f:K—>J{DEF} —
OneDE - OnfEF —- Om(eof)DF

and determining a suitable equivalence for ornaments,
we should then be able to formulate parallel compo-
sition as a pullback in this category. Then, for exam-
ple, we can take advantage of the fact that the canonical
predicates are defined by parallel composition, so as to
derive operations and properties about canonical pred-
icates easily from the universal property of pullbacks.
We should also be able to show that u and RSem consti-
tute a pullback-preserving functor, completing the the-
ory.

Practically, how do we structure our libraries with
ornaments and refinements for better reusability? As
McBride suggested [10], the datatypes should be deliv-
ered as codes and ornaments. The datatypes on which
operations are defined should be as general as possible,
and other versions of the operations on more specialised
types should be implemented in the form of promotion
predicates. For example, insert should be defined for
plain lists, and implemented for sorted lists and vectors

as functions on proofs about ordering and length re-
spectively. Delivered in this way, then, insert for sorted
lists, vectors, and sorted vectors can all be derived rou-
tinely by the refinement mechanism, as we have seen.
This is the reusability and modularity offered by ex-
ternalism. On the other hand, some operations are best
defined on more specialised datatypes, so datatype con-
straints can be manipulated with data in an integrated
fashion and guide the implementation, an example be-
ing the merge operation for leftist heaps. This is due to
the precision offered by internalism. So here is the de-
velopment pattern we have in mind: once a rich collec-
tion of ornaments is provided, programmers will have
the freedom to choose which constraints they wish to
impose on a basic type, compose the relevant ornaments
and decode the composite ornament to a suitable data-
type. Existing operations are upgraded to work with the
new datatype routinely by refinements. And then, oper-
ations specific to the new datatype can be programmed
directly on it, benefiting from the precision of program-
ming with inductive families.
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Appendix: Agda syntax

This appendix provides a whistle-stop tour of Agda
syntax, for those familiar with dependently typed pro-
gramming in general but ono Agda specifically.

Function types

Let us look at a practical example of simplifying the
type of the elimination (induction) principle for lists,
which should help the reader to grasp the Agda syntax
for function types. (The datatype definition of lists will
be shown and explained later.)

1. In dependent function types, we give names to pa-
rameters, so the result type can refer to the values
of those parameters. If a parameter is not referred
to later, its name can be omitted. Thus, the first ar-
gument A : Set below (where Set is the type of all
small types) needs to be named, because its value A
is used in the result type, but in the type of the fourth
parameter ind-case, the third argument of type P xs
need not be named, because nothing depends on its
value.

list-elim -
(A : Set) » (P: ListA — Set) —
(base-case : P[]) —
(ind-case : (x : A) — (xs : ListA) —

Pxs —» P (x::xs) —
(xs : ListA) — P xs

We sometimes give names even to parameters that
are not referred to later in the code, just so that we
can mention the parameters in the text.

. Arrows between named parameters can be abbrevi-

ated, forming a telescope, highlighted below.

list-elim -
(A : Set) (P : ListA — Set) —
(base-case : P[]) —
(ind-case : (x : A) (xs : ListA) —
Pxs —» P (x::xs) —
(xs : ListA) - Pxs

If parameters in a telescope are of the same type,
eg.,(x : A (y : A), then the telescope can be
further condensed into (x y : A).

. Inferrable parameters can be marked as implicit by

putting them into curly braces.

list-elim -
{A : Set} {P : ListA — Set} —
(base-case : P[]) —
(ind-case : (x : A) (xs : ListA) —
Pxs —» P (x::xs) —
(xs : ListA) —» Pxs

A function with implicit parameters can be applied
as if the implicit parameters were ignored. For ex-
ample, when applying list-elim, we do not have to
mention A and P if they are truly inferrable. If Agda
cannot infer the argument to an implicit parameter,
the programmer can explicitly supply an argument
by putting it in curly braces, like list-elim {A} {P}.
If we only wish to supply P and let Agda infer A,
we can write list-elim {P = P}, in which the first P
is the name of the formal parameter and the sec-
ond P is the actual parameter we supply. On the
other hand, if an explicit argument can be inferred,
we can place an underscore to instruct Agda to infer
1t.

. Parameters whose type is inferrable can be quan-

tified by V and subsequently omit their type. V-
quantified parameters can also be collected in a
telescope, and their type can still be displayed if
needed.

list-elim -
V{A} {P : ListA — Set} —
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(base-case : P[]) —

Vxxs —
Pxs —» P (x:xs)) —

(ind-case

Yxs — Pxs

Datatype definitions

Agda datatype definitions employ the syntax of gen-
eralised algebraic datatypes (GADTsS), the most notable
feature being that the types of constructors are explic-
itly written. For example, the booleans are defined by

data Bool : Set where
false : Bool
true : Bool

and the natural numbers by

data Nat : Set where
zero : Nat
suc : Nat — Nat

The definition of lists is slightly more interesting:

data List (A : Set) : Set where
[1 : ListA
_i_:A —> ListA — ListA

The cons constructor is given a name _::_ which con-
tains two underscores indicating where its two argu-
ments can go — we can write x :: xs for _::_ x xs. This

mixfix operator syntax works for any name, be it the
name of a constructor, a function, or a datatype. There
are very few restrictions on what constitutes a name in
Agda— almost all unicode characters are allowed, with
just a few exceptions like whitespace and parentheses.
The highlighted (A : Set), which appears to the left
of the colon, is a “uniform” parameter which can be
used throughout the declaration. Compare this with the
declaration of vectors,

data Vec (A : Set) : Nat — Set where
[1 : VecA zero
__:A > V{n} »> VecAn — Vec A (sucn)

in which the highlighted Nat, appearing to the right of
the colon, is a type whose elements are used as indices
of the types in the inductive family Vec A. Constructor
names can be overloaded for different datatypes.

The dependent pair type is defined by

data X (A : Set) (B : A — Set) : Set where
——:(x:A) > Bx—>XAB

An element of ¥ A B is a pair where the type of the sec-
ond component depends on the value of the first com-
ponent. Projections are then defined by

m {A:Set}{B: A —> Set} > XAB - A
m(xy) =x

and

m :{A: Set} {B: A — Set} —
(p:XAB) - B(m p)
T (X,y) =y

The usual non-dependent pair type is a special case
of X.

_X_: Set —» Set — Set
AXB=3ZAA_—> B

Frequently we write types of the form X A (A x — E)
where the second argument is a A-expression (in which
the body E is an expression that can refer to x). We can
sugar such types into £ [x : A] E if we provide the
following syntax declaration

syntax XA (lx - E) =X [x:A]E

With this syntax, we can regard ¥ [x : A] as a binder,
whose scope extends as far as possible, so X [x: A] B x
is parsed as X [x : A] (B x). In general such syntax
declarations can be provided for the application of any
(simple) names to A-expressions.

The propositional equality type is defined by

data _=_{A : Set} (x : A) : A — Set where
refl : x = x

The type x = y has a proof if and only if x and y can
somehow be shown to be equal, as demanded by the
type of its only constructor refl.

Function definitions
Functions can be defined by pattern matching as
usual. For example,

not : Bool — Bool
not false = true
not true = false

What is unusual is that performing pattern matching on
a variable whose type depends on another variable may
determine the value of the latter variable. For example,
sym : {A: Set}{xy: A} —
(eg:x=y) o y=x
sym {x = x'} {x'} refl = refl

First we see that implicit parameters can be explicitly
mentioned if needed. We skip A and match the param-
eter x with the pattern variable x’. Then notice that the
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value of y is determined to be x” because eq is matched
with refl, causing x" and y to be unified. This fact is
shown by the dot pattern .x’ appearing in y’s position
— it indicates that the value of y is determined by uni-
fication instead of pattern matching. The goal type is
thus X = x’ and can be solved simply by refl. (This
example can actually be completed without mentioning
the implicit parameters; we mention them for the pur-
pose of illustration.)

To perform pattern matching on intermediate terms,
we use the with construct. For example, let us look at
the insert function used in Section 1:

insert : Val — List Val — List Val
inserty[] =y []

insert'y (x :: xs) with y <o x

inserty (x ::xs) | yes _ =y x:ixs
inserty (x :: xs) | N0 _ = x::inserty xs

In the x :: xs case, we need to compare y and x to deter-
mine how to carry on, so we put the term y <» x after
with as if adding it as a new argument, which is then
matched with yes or no. The result of y <9 x is either
yes p forsomep : y < xorno g forsomeq : y £ x.
We have no use of the proofs p and ¢, though, so under-
scores are placed after yes and no to save the trouble of
giving names to the unused proofs.
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