Online ISSN:1349-8606
Progress in Informatics  
No.10 March 2013  
Page 3-18  
Distributive laws of directed containers
Danel AHMAN and Tarmo UUSTALU

LINK [1] M. Abbott, T. Altenkirch, and N. Ghani, “Containers: constructing strictly positive types,” Theor. Comput. Sci., vol. 342, no. 1, pp. 3-27, 2005.

LINK [2] M. Abbott, T. Altenkirch, N. Ghani, and C. McBride, “Constructing polymorphic programs with quotient types,” In D. Kozen, editor, Proc. of 7th Int. Conf. on Mathematics of Program Construction, MPC 2004, Lect. Notes in Comput. Sci., vol. 3125, pp. 2-15, Springer, 2004.

LINK [3] D. Ahman, J. Chapman, and T. Uustalu, “When is a container a comonad?”, in L. Birkedal, editor, Proc. of 15th Int. Conf. on Foundations of Software Science and Computation Structures, FoSSaCS 2012, Lect. Notes in Comput. Sci., vol. 7213, pp. 74-88, Springer, 2012.

LINK [4] T. Altenkirch and P. Morris, “Indexed containers,” in Proc. of 24th Ann. IEEE Symp. on Logic in Computer Science, LICS 2009, pp. 277-285, IEEE CS Press, 2009.

LINK [5] M. Barr and C. Wells, Toposes, Triples and Theories, Grundlehren der mathematischen Wissenschaften, vol. 278, Springer, 1984.

LINK [6] J. Beck, “Distributive laws,” in B. Eckmann, ed., Seminar on Triples and Categorical Homology, ETH 1966/67, Lect. Notes in Math., vol. 80, pp. 119-140, Springer, 1969.

LINK [7] M. G. Brin, “On the Zappa-Szép product,” Commun. in Algebra, vol. 33, no. 2, pp. 393-424, 2005.

LINK [8] S. Brookes and S. Geva, “Computational comonads and intensional semantics,” in M. P. Fourman, P. T. Johnstone, and A. M. Pitts, editors, Applications of Categories in Computer Science, London Math. Society Lect. Note Series, vol. 77, pp. 1-44. Cambridge Univ. Press, 1992.

LINK [9] S. Capobianco and T. Uustalu, “A categorical outlook on cellular automata,” in J. Kari, editor, Proc. of 2nd Symp. on Cellular Automata, JAC 2010, TUCS Lecture Note Series, vol. 13, pp. 88-89, Turku Centre for Comput. Sci., 2010.

LINK [10] V. H. Fernandes and T. M. Quinteiro, “Bilateral semidirect product decompositions of transformation monoids,” Semigroup Forum, vol. 82, no. 2, pp. 271-287, 2011.

LINK [11] N. Gambino and M. Hyland, “Wellfounded trees and dependent polynomial functors,” in S. Berardi, M. Coppo, and F. Damiani, editors, Revised Selected Papers from Int. Wksh. on Types for Programs and Proofs, TYPES 2003, Lect. Notes in Comput. Sci., vol. 2085, pp. 210-225, Springer, 2004.

LINK [12] N. Gambino and J. Kock, “Polynomial functors and polynomial monads,” Math. Proc. of Cambridge Phil. Soc., vol. 154, no. 1, pp. 153-192, 2013.

LINK [13] J. Kock, Notes on polynomial functors, manuscript, 2009.

LINK [14] J. Kock, “Polynomial functors and trees,” Int. Math. Research Notices, vol. 2011, no. 3, pp. 609-673, 2011.

LINK [15] M. V. Lawson, “A correspondence between a class of monoids and self-similar group actions I,” Semigroup Forum, vol. 76, no. 3, pp. 489-517, 2008.

LINK [16] U. Norell, “Towards a practical programming language based on dependent type theory,” PhD thesis, Chalmers University of Technology, 2007.

LINK [17] G. Zappa, “Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro,” in Atti Secondo Congresso dell'Unione Matemática Italiana, pp. 119-125. Edizioni Cremonense, Rome, 1942.

LINK [18] T. Uustalu and V. Vene, “The essence of dataflow programming,” in K. Yi, Proc. of 2nd Asian Symp. on Programming Languages and Systems, APLAS 2004, Lect. Notes in Comput. Sci., vol. 3780, pp. 2-18, Springer, 2004.

LINK [19] T. Uustalu and V. Vene, “Comonadic functional attribute evaluation,” in M. van Eekelen, editor, Trends in Functional Programming 6, pp. 145-162, Intellect, Bristol, 2007.

LINK [20] T. Uustalu and V. Vene, “Comonadic notions of computation,” in J. Adámek and C. Kupke, editors, Proc. of 9th Int. Wksh. on Coalgebraic Methods in Computer Science, CMCS 2008, Electron. Notes in Theor. Comput. Sci., vol. 203, no. 5, pp. 263-284, Elsevier, 2008.