
01-008

Special issue: Advanced Programming Techniques for Construction of Robust, General and Evolutionary Programs

Progress in Informatics, No. 10, pp.3–18, (2013) 3

Research Paper

Distributive laws of directed containers

Danel AHMAN1 and Tarmo UUSTALU2

1Laboratory for Foundations of Computer Science, University of Edinburgh
2Institute of Cybernetics, Tallinn University of Technology

ABSTRACT
Containers are an elegant representation of a wide class of datatypes in terms of positions
and shapes. We have recently introduced directed containers as a special case to account
for the common situation where every position in a shape determines another shape, infor-
mally the subshape rooted by that position. While containers interpret into set functors via
a fully faithful functor, directed containers denote comonads fully faithfully. In fact, directed
containers correspond to exactly those containers that carry a comonad structure. Directed
containers can also be seen as a generalization (a dependently typed version) of monoids.

While the category of containers (just as the category of set functors) carries a composi-
tion monoidal structure, directed containers (just as comonads) do not generally compose. In
this paper, we develop a concept of a distributive law between two directed containers corre-
sponding to that of a distributive law between two comonads and spell out the distributive-
law based composition construction of directed containers. This turns out to generalize the
Zappa-Szép product of two monoids.

KEYWORDS
directed containers, comonads, distributive laws, monoids, Zappa-Szép products, mathematical
structures in functional programming, dependently typed programming

1 Introduction
The containers of Abbott, Altenkirch and Ghani

[1] are an elegant representation of a wide class of
datatypes in terms of shapes and positions in shapes.
They make a kind of “syntax” for programming and
reasoning about these datatypes (along with the related
proposal, the polynomial functors of Gambino and Hy-
land [11]).

In previous work [3], we have introduced directed
containers as a special case of containers to account
for the common situation where every position in a
shape determines another shape, informally the sub-
shape rooted by that position. Some examples are
the datatypes of non-empty lists and node-labelled
trees together with the corresponding zipper datatypes.

Received June 10, 2012; Revised November 6, 2012; Accepted December 22,
2012.
1) d.ahman@ed.ac.uk, 2) tarmo@cs.ioc.ee

While containers interpret into set functors via a fully
faithful monoidal functor, directed containers inter-
pret fully-faithfully into comonads. Furthermore, di-
rected containers correspond to exactly those containers
whose interpretation carries a comonad structure. Di-
rected containers with exactly one shape are the same as
monoids. General directed containers are a curious gen-
eralization of monoids, a dependently typed version.

Directed containers do not admit all constructions
that containers do. As with comonads, it is straight-
forward to form a coproduct of two arbitrary directed
containers, but explicit constructions of the product are
complicated and depend on assumptions. It is well-
known that a sufficient condition for the composition
of the underlying functors of two comonads to again
exhibit a comonad structure is the presence of a dis-
tributive law between these comonads.

In this paper, we develop a representation of distribu-

DOI: 10.2201/NiiPi.2013.10.2

c©2013 National Institute of Informatics



01-008

4 Progress in Informatics, No. 10, pp.3–18, (2013)

tive laws between comonads whose underlying functor
is a container. We use it to define a direct composition
construction of directed containers. We discover that
this construction generalizes the Zappa-Szép product of
two monoids (known also as the knit product, general
product, bicrossed product, bilateral semidirect prod-
uct and studied in group theory and semigroup theory,
for an introduction, see [7]). We then provide a num-
ber of examples of this construction, concentrating on
the datatypes of streams and non-empty lists. Among
those are several that we could only find after we had
acquainted ourselves with some facts about Zappa-Szép
products of monoids.

Comonads can be used to model notions of context-
dependence in computation, the central examples being
dataflow computation, attribute evaluation and cellu-
lar automata [20]. In such applications, composition of
comonads corresponds to combining different notions
of context. In this paper, we do not attempt to elabo-
rate these applications and focus only on basic theory.
But we want to convey our excitement about ever newer
mathematical structures that emerge in functional pro-
gramming.

The paper is organized as follows. First, we briefly
review containers and their interpretation as set func-
tors, emphasizing the composition monoidal structure
that is present on the category of containers. Then
we proceed to directed containers and their interpreta-
tion as comonads. We explain, in particular, that di-
rected containers characterize those containers whose
interpretation carries a comonad structure. In the main
sections of the paper, we discuss distributive laws be-
tween directed containers and composition of directed
containers based on a distributive law, and present our
examples.

The talk of T. Uustalu at the Shonan meeting on de-
pendently typed programming was on the basic theory
of directed containers. Following the meeting, we pre-
sented the material at FoSSaCS 2012 and published it
in the proceedings [3]. This paper is based on additional
material on distributive laws of directed containers, pre-
sented at CMCS 2012 as a short talk, but not published
formally until now.

2 Containers
We begin by a very brief summary of the basics of

containers [1] as a representation for a wide class of
(parameterized) datatypes.

A container S �P is given by a set S (of shapes) and
a shape-indexed family P : S → Set (of positions).

It is useful to think of the shapes as “templates” for
datastructures and the positions as “blanks” in those
templates that can be filled with data. For example, we
can represent the datatype of streams as the container

S � P with a single shape S = 1 and natural number
positions P ∗ = Nat. The intuition is that a stream is
nothing but an infinite sequence. The datatype of lists
is represented by the container S � P whose shapes
S = Nat are the possible lengths of lists and positions
P s = [0, s) provide s blanks for lists of length s. For
non-empty lists, one takes S = Nat and P s = [0, s].

A morphism between containers S � P and S ′ � P′
is a pair t � q of maps t : S → S ′ (the shape map)
and q : Π{s : S }. P′ (t s) → P s (the position map).
(Here and in the following, we use Agda’s [16] syntax
of braces for implicit arguments, i.e., for those argu-
ments we may want to skip when they are inferrable
from other arguments.) Note that positions are mapped
“backwards”: every position in the shape t s returned
by the shape map t is associated to some position in the
given shape s. The identity morphism on any container
S �P is given by idc {S �P} = id {S }�λ{s}. id {P s} and
the composition of two container morphisms t � q and
t′ �q′ by (t�q) ◦c (t′�q′) = t ◦ t′ �λ{s}. q′ {s} ◦q {t′ s}.

Containers form a category Cont.
The interpretation of a container S �P is the set func-

tor �S � P�c given by

• �S � P�c X = Σs : S . P s→ X,

• �S � P�c f (s, v) = (s, f ◦ v).

Intuitively, elements of �S � P�c X consist of a shape
and an assignment of data from X to all positions in
the shape. The stream and list containers denote the
expected datatypes. For example, for the stream con-
tainer, we have �S � P�c X = Σ∗ : 1.Nat → X �
Nat → X � Str X. Similarly, for the list container, one
gets �S � P�c X = Σs : Nat. [0, s)→ X � List X.

The interpretation of a container map t�q : S �P→
S ′ � P′ is the natural transformation �t � q�c : �S �
P�c → �S ′ � P′�c, given by

• �t � q�c {X} (s, v) = (t s, v ◦ q {s}).
Interpretation makes a functor from Cont to

[Set, Set]. This functor turns out to be fully faithful:
for any two containers, interpretation of container mor-
phisms between them is a bijection.

Very importantly for this paper, the category Cont
carries a (composition) monoidal structure. The iden-
tity container is Idc = 1 � λ ∗ . 1 (one shape and one
position in it) whereas the composition of two con-
tainers is (S 0 � P0) ·c (S 1 � P1) = Σs : S 0. P0 s →
S 1 � λ (s, v).Σp0 : P0 s. P1 (v p0) (a shape is a pair of
an outer shape and an assignment of an inner shape to
every position in it; a position is a pair of an outer and
an inner position). There are container isomorphisms

• ρ : ∀{C}.C ·c Idc → C,



01-008

Distributive laws of directed containers 5

• λ : ∀{C}. Idc ·c C → C and

• α : ∀{C} {C′}, {C′′}.
(C ·c C′) ·c C′′ → C ·c (C′ ·c C′′)

obeying Mac Lane’s coherence conditions. The in-
terpretation functor �−�c : Cont → [Set, Set] is
monoidal: there are natural isomorphisms

• e : Id→ �Idc�c and

• m : ∀{C0,C1}. �C0�
c · �C1�

c → �C0 ·c C1�
c

satisfying the appropriate conditions.

3 Directed containers
Many datatypes exhibit natural additional struc-

ture. For example, each node in a stream or list de-
fines a substream or sublist (suffix) rooted by that
position; the same applies to node-labelled trees.
When we represent such datatypes as containers, this
additional structure manifests via subshapes deter-
mined by every position in a given shape. This addi-
tional structure is not considered in the theory of (gen-
eral) containers. We will now summarize the central
facts about directed containers [3], a specialization of
containers concerned with exactly this additional struc-
ture.

A directed container is a container S � P together
with three operations

• ↓ : Πs : S . P s → S (the subshape given by a
position),

• o : Π{s : S }. P s (the root position),

• ⊕ : Π{s : S }.Πp : P s. P (s ↓ p) → P s (trans-
lation of subshape positions into positions in the
global shape),

satisfying the following two shape equations and three
position equations:
1. ∀{s}. s ↓ o = s,
2. ∀{s, p, p′}. s ↓ (p ⊕ p′) = (s ↓ p) ↓ p′,
3. ∀{s, p}. p ⊕ {s} o = p,
4. ∀{s, p}. o {s} ⊕ p = p,
5. ∀{s, p, p′, p′′}.

(p ⊕ {s} p′) ⊕ p′′ = p ⊕ (p′ ⊕ p′′).
Note that Equations 4–5 are only well-typed because of
equations 1–2. For Equation 4 to type-check, the p in
the l.h.s. must be an element of P (s ↓ o) whereas that
on the right must belong to P s. For Equation 5 to type-
check, the p′′ on the left must belong to P (s ↓ (p ⊕ p′))
while that on the right must be of type P ((s ↓ p) ↓ p′).
Also note that we have adopted a custom infix notation
for ⊕ by writing the implicit argument after the infix
operation symbol.

Modulo the fact that the positions involved come
from different sets, Equations 3–5 are the laws of a
monoid. In the degenerate case S = 1, Equations 1–
2 trivialize, we really have only one set of positions
P ∗ and we get exactly a monoid. If S is general, but
s ↓ p = s always, then each P s is a monoid. (One
might also notice that laws 1–2 bear similarity to the
laws of a monoid action. If none of P s, o {s}, p⊕ {s} p′
depends on s, then we have one single monoid and ↓ is
then a right action of that monoid on S .)

Streams and non-empty list datatypes (with the sub-
streams, sublists, i.e., suffixes, structure) are archetypal
examples of directed containers. For example, the di-
rected container structure on the container of streams is
given by ∗ ↓ p = ∗, o {∗} = 0 and p ⊕ p′ = p + p′.
For the non-empty list container, the directed container
structure is given by s ↓ p = s − p, o {s} = 0 and
p ⊕ p′ = p + p′.

But these are not the only directed container struc-
tures on these containers. E.g., in the case of streams,
the set of positions in the single shape ∗ is Nat, which
carries other monoid structures than the free monoid
structure on one generator, 1.

Hence we also get a directed container when we de-
fine o {∗} = 1 and p ⊕ p′ = p × p′. This corre-
sponds to streams and sampling. Indeed: positions
0, 1, 2, . . . of the “substream” determined by position p
in a global stream translate to positions 0, p, 2 × p, . . .
of the global stream. Or we could define o {∗} = 0 and
p ⊕ p′ = p max p′. We get a “padded” version of
suffixes: positions 0, 1, 2, . . . , p, p + 1, . . . of the “sub-
stream” determined by position p in a global stream
translate to its positions p, p, p, . . . , p, p + 1, . . ..

Similar structures are possible for non-empty lists
where we get non-trivial definitions of ↓. For sampling,
we must define s ↓ p = if p = 0 then 0 else s ÷ p,
o {s} = if s = 0 then 0 else 1, p ⊕ p′ = p × p′. And for
padded suffixes, it is appropriate to define s ↓ p = s,
o {s} = 0 and p ⊕ p′ = p max p′.

A morphism between directed containers
(S � P, ↓, o,⊕) and (S ′ � P′, ↓′, o′,⊕′) is a mor-
phism t � q between the underlying containers S � P
and S ′ � P′ that satisfies the following equations:

1. ∀{s, p}. t (s ↓ q p) = t s ↓′ p,
2. ∀{s}. o {s} = q (o′ {t s}),
3. ∀{s, p, p′}. q p ⊕ {s} q p′ = q (p ⊕′ {t s} p′).

Here, again, Equations 2–3 are reminiscent of the laws
of a monoid morphism, and specialize to them in the
degenerate case S = S ′ = 1.

Similarly to containers, which form a category, di-
rected containers form a category DCont.

The interpretation �S �P, ↓, o,⊕�dc of a directed con-
tainer is the set functor �S � P�c together with natural
transformations ε : �S � P�c → Id and δ : �S � P�c →



01-008

6 Progress in Informatics, No. 10, pp.3–18, (2013)

�S � P�c · �S � P�c, defined by

• ε (s, v) = v (o {s}),
• δ (s, v) = (s, λp. (s ↓ p, λp′. v (p ⊕ {s} p′))).

The natural transformations ε, δ satisfy the laws of a
comonad. Therefore every directed container defines a
comonad.

The obvious stream and non-empty list directed con-
tainers (with the suffixes structure) denote the expected
comonads. The counit ε extracts the data at the root po-
sition (i.e., head of a stream or non-empty list) and the
comultiplication δ replaces data at each position with
the sub-datastructure rooted by that position. But if, in-
stead, we consider for instance the sampling structure
on the stream container, then the counit extracts the data
at position 1 (the head of the tail) and the comultiplica-
tion sends a stream to a stream of its samplings.

The interpretation �t � q�dc of a directed container
morphism t � q is the natural transformation �t � q�c,
which turns out to satisfy the laws of a comonad mor-
phism.

We get that �−�dc is a functor from DCont to
Comonads(Set) and that it is fully faithful.

Further, it turns out that directed containers corre-
spond to exactly those containers whose interpretation
carries a comonad structure. To be precise, DCont is
isomorphic to Comonoids(Cont), and that in turn is
easily seen to be the pullback of the forgetful functor
U : Comonads(Set) → [Set, Set] along the fully faith-
ful interpretation functor �−�c : Cont→ [Set, Set]:

DCont
i

�

�−�dc f.f.

��

Comonoids(Cont)
U ��

�−�cc f.f.

��

Cont

�−�c f.f.

��
Comonads(Set) Comonoids([Set,Set])

U �� [Set,Set]

More specifically, the comonoid corresponding to a
directed container (S � P, ↓, o,⊕) under the isomor-
phism i is (S �P, tε�qε, tδ�qδ) where tε s = ∗, qε {s} ∗ =
o {s}, tδ s = (s, λp. s ↓ p), qδ {s} (p, p′) = p ⊕ p′. The
directed container for a comonoid (S �P, tε�qε, tδ�qδ)
is (S � P, ↓, o,⊕) where s ↓ p = snd (tδ s) p, o {s} =
qε {s} ∗ and p ⊕ p′ = qδ (p, p′). The equations of
directed containers and their morphisms and those of
comonoids on containers and their morphisms entail
each other under this bijection. We see that, while this
is not how we first arrived at it, the definition of di-
rected containers can be derived systematically from
instantiating the definition of comonoids for the cate-
gory of containers and simplifying the result (in par-
ticular, there is no need for operations corresponding
to tε and fst ◦ tδ as it is forced that ∀{s}. tε s = ∗ and
∀{s}. fst (tδ s) = s).

The functor �−�cc : Comonoids(Cont) →
Comonoids([Set, Set]) lifts the functor �−�c :
Cont → [Set, Set] in the expected way:
�S � P, tε � qε, tδ � qδ�cc = (�S � P�c, ε, δ) where
ε = e−1 ◦ �tε � qε�c and δ = m−1 ◦ �tδ � qδ�c.

4 Distributive laws
We now proceed with our contribution, distributive

laws and how they can be used to compose directed
containers.

The composition of the underlying functors of two
comonads need not have a comonad structure. Simi-
larly, the composition of the underlying containers of
two directed containers does not necessarily exhibit the
structure of a directed container.

A sufficient condition for the composition of the
underlying functors of two comonads to carry a
comonad structure is that they distribute over each other
(moreover, if we insist on a comonad structure compat-
ible with the given ones, it is also necessary). It is nat-
ural to ask for a direct description of the corresponding
condition for directed containers.

Recall first the definition of a distributive law be-
tween two comonads. For two comonads (D0, ε0, δ0)
and (D1, ε1, δ1), a distributive law between them is a
natural transformation θ : D0 · D1 → D1 · D0 making
the following diagrams commute.

D0 · D1
θ ��

ε0·D1

���
��

��
��

� D1 · D0

D1 ·ε0

����
��

��
��

D1

D0 · D1
θ ��

δ0·D1

��

D1 · D0

D1 ·δ0
��

D0 · D0 · D1 D0·θ
�� D0 · D1 · D0

θ·D0

�� D1 · D0 · D0

D0 · D1
θ ��

D0·ε1

���
��

��
��

� D1 · D0

ε1·D0

����
��

��
��

D0

D0 · D1
θ ��

D0·δ1
��

D1 · D0

δ1·D0

��
D0 · D1 · D1

θ·D1

�� D1 · D0 · D1 D1·θ
�� D1 · D1 · D0

For directed containers, we seek a definition agree-
ing with this. First of all, a distributive law between
two directed containers should determine one between
their interpreting comonads. But since the interpreta-



01-008

Distributive laws of directed containers 7

tion of containers is fully-faithful, it makes also sense
to aim at a bijection between the distributive laws be-
tween the two directed containers and the distributive
laws between the two comonads.

The right definition is derived from fully-faithful-
ness of the interpretation of containers together with
monoidality. Here is a sketch; the details are in Ap-
pendix A.

Given two directed containers (S 0 � P0, ↓0, o0,⊕0)
and (S 1 � P1, ↓1, o1,⊕1) and a container morphism
tθ �qθ : (S 0�P0) ·c (S 1�P1)→ (S 1�P1) ·c (S 0�P0),
the four distributive law equations for the natural trans-
formation θ : �S 0 � P0�

c · �S 1 � P1�
c → �S 1 � P1�

c ·
�S 0 � P0�

c given by θ = m−1 ◦ �tθ � qθ�c ◦m translate
into four equations about tθ � qθ.

With abbreviations (t0 s v, t1 s v) = tθ (s, v) and
(q0 {s} {v} p1 p0, q1 {s} {v} p1 p0) = qθ {s, v} (p1, p0),
these four equations are split into 16 equations about t0,
t1, q0, q1. One of them defines t0 by t0 s v = v (o0 {s})
and four are redundant.

Accordingly, we define a distributive law be-
tween two directed containers (S 0 � P0, ↓0, o0,⊕0) and
(S 1 � P1, ↓1, o1,⊕1) to be given by operations

• t1 : Πs : S 0.Πv : P0 s→ S 1.
P1 (v (o0 {s}))→ S 0,

• q0 : Π{s : S 0}.Π{v : P0 s→ S 1}.
Πp1 : P1 (v (o0 {s})). P0 (t1 s v p1))→ P0 s,

• q1 : Π{s : S 0}.Π{v : P0 s→ S 1}.
Πp1 : P1 (v (o0 {s})).Πp0 : P0 (t1 s v p1).

P1 (v (q0 {s} {v} p1 p0))

satisfying the equations
1. ∀{s, v, p1, p0}.

t1 s v p1 ↓0 p0 = t1 (s ↓0 q0 p1 p0)
(λp′0. v (q0 p1 p0 ⊕0 p′0)) (q1 p1 p0),

2. ∀{s, v}. t1 s v o1 = s,
3. ∀{s, v, p1, p′1}.

t1 s v (p1 ⊕1 p′1) = t1 (t1 s v p1)
(λp0. v (q0 p1 p0) ↓1 q1 p1 p0) p′1,

4. ∀{s, v, p1}. q0 {s} {v} p1 o0 = o0 ,
5. ∀{s, v, p1, p0, p′0}. q0 {s} {v} p1 (p0 ⊕0 p′0) =

q0 p1 p0 ⊕0 q0 (q1 p1 p0) p′0,
6. ∀{s, v, p0}. q0 {s} {v} o1 p0 = p0,
7. ∀{s, v, p1, p′1, p0}. q0 {s} {v} (p1 ⊕1 p′1) p0 =

q0 p1 (q0 p′1 p0),
8. ∀{s, v, p1}. q1 {s} {v} p1 o0 = p1,
9. ∀{s, v, p1, p0, p′0}. q1 {s} {v} p1 (p0 ⊕0 p′0) =

q1 (q1 p1 p0) p′0,
10. ∀{s, v, p0}. q1 {s} {v} o1 p0 = o1,
11. ∀{s, v, p1, p′1, p0}. q1 {s} {v} (p1 ⊕1 p′1) p0 =

q1 p1 (q0 p′1 p0) ⊕1 q1 p′1 p0.

With this definition, the distributive laws of two di-
rected containers are in a bijection with the distributive
laws of their interpreting comonads.

We saw before that directed containers generalize
monoids and directed container morphisms general-
ize monoid morphisms. Against this background, we
might expect that distributive laws of directed contain-
ers generalize some known construction for monoids.
As it turns out, they do indeed. Namely, equations 4–
11 governing the interaction of q0, q1 with o0, ⊕0, o1,
⊕1 generalize the laws of what is sometimes called a
matching pair: a pair of mutual actions of two monoids
on each other (Equations 6–7 and 8–9) satisfying some
additional equations (Equations 4–5 and 10–11). In the
special case S 0 = S 1 = 1, when the two directed con-
tainers degenerate to monoids, these equations special-
ize exactly to the equations of a matching pair.

A matching pair for two monoids equips the direct
product of their carriers with a monoid structure com-
patible (in a certain sense) with the two given monoid
structures. This monoid structure is called the Zappa-
Szép product of these two monoids (or knit product,
general product, bicrossed product, bilateral semidirect
product). For an introduction into Zappa-Szép prod-
ucts of groups and monoids, we recommend the ex-
cellent paper by Brin [7]. We should now expect that
distributive-law based composition of directed contain-
ers generalizes the Zappa-Szép product of monoids. In
the next section, we will see that this is indeed the case.

5 Composition of directed containers
We will now show how a distributive law between

two directed containers can be used to compose them.
Recall that a distributive law θ between comonads

(D0, ε0, δ0) and (D1, ε1, δ1) endows the functor D =

D0 · D1 with a comonad structure defined by

• ε = D0 · D1
ε0·ε1 �� Id ,

• δ = D0 · D1
δ0·δ1 �� D0 · D1 · D0 · D1

D0 ·θ·D1 �� D0 · D0 · D1 · D1 .

This given comonad structure is compatible with the
given comonad structures on D0, D1 in the following
sense. First, the natural transformations π0 : D → D0,
π1 : D→ D1, defined by π0 = D0 · ε1, π1 = ε0 ·D1, turn
out to be comonad morphisms, so ((D, ε, δ), π0, π1) is a
span on the two comonads. This means commutation of
the following four diagrams (of whom the first and third
are trivially equivalent to each other and to the equation
ε = ε0 · ε1).



01-008

8 Progress in Informatics, No. 10, pp.3–18, (2013)

D0 · D1
ε ��

D0·ε1 ����
��

��
��

� Id

D0

ε0

		��������

D0 · D1
δ ��

D0·ε1

��

D0 · D1 · D0 · D1

D0·ε1·D0·ε1

��
D0

δ0

�� D0 · D0

D0 · D1
ε ��

ε0·D1 ����
��

��
��

� Id

D1

ε1

		��������

D0 · D1
δ ��

ε0·D1

��

D0 · D1 · D0 · D1

ε0·D1·ε0·D1

��
D1

δ1

�� D1 · D1

In addition, the following condition (the middle couni-
tal law) is met.

D0 · D1
δ ��

���������

���������
D0 · D1 · D0 · D1

D0 ·ε1·ε0·D1

												

D0 · D1

Since a container whose interpretation carries a
comonad structure is endowed with a directed container
structure, it is easy to see that the composition of under-
lying containers of two directed containers with a dis-
tributive law between them must exhibit the structure
of a directed container. Moreover, the induced directed
container structure must be compatible with the two
given directed container structures. But of course we
aim at a direct construction of the composite directed
container and a direct characterization of compatibility.

Given a distributive law (t1, q0, q1) between two
directed containers (S 0 � P0, o0, ↓0,⊕0) and (S 1 �
P1, o1, ↓1, ⊕1), we know that the composition S � P =
(S 0 � P0) ·c (S 1 � P1) of the underlying containers is
defined by

• S = Σs0 : S 0. P0 s0 → S 1,

• P (s0, v) = Σp0 : P0 s0. P1 (v p0),

The distributive law θ between the comonads
�S 0 � P0, o0, ↓0,⊕0�

dc and �S 1 � P1, o1, ↓1,⊕1�
dc

determines a comonad structure on the functor
�S 0�P0�

c ·�S 1�P1�
c, which is isomorphic to �S �P�c.

This comonad structure translates into the following di-
rected container structure on the composite container
S � P:

• (s0, v) ↓ (p0, p1) =
(t1 (s0 ↓0 p0) (λp′0. v (p0 ⊕0 p′0)) p1,

λp′0. v (p0 ⊕0 q0 p1 p′0) ↓1 (q1 p1 p′0)),

• o {s0, v} = (o0 {s0}, o1 {v (o0 {s0})}),
• (p0, p1) ⊕ (p′0, p

′
1) =

(p0 ⊕0 q0 p1 p′0, q1 p1 p′0 ⊕1 p′1).

The natural transformations π0 : �S 0 � P0�
c · �S 1 �

P1�
c → �S 0 � P0�

c, π1 : �S 0 � P0�
c · �S 1 � P1�

c →
�S 1 � P1�

c translate to container morphisms tπ0 � qπ0 :
S � P → S 0 � P0 and tπ1 � qπ1 : S � P → S 1 � P1,
defined by

• tπ0 (s0, v) = s0,

• qπ0 {s0, v} p0 = (p0, o1 {v p0}),
• tπ1 (s0, v) = v (o0 {s0}),
• qπ1 {s0, v} p1 = (o0 {s0}, p1).

Since π0, π1 satisfy the conditions of a comonad mor-
phism, tπ0 �qπ0 and tπ1 �qπ1 are directed container mor-
phisms. This means that the following equations hold.

1. ∀{s0, v, p0}.
fst ((s0, v) ↓ (p0, o1)) = s0 ↓0 p0,

2. ∀{s0, v, p1}.
snd ((s0, v) ↓ (o0, p1)) o0 = v o0 ↓1 p1,

3. ∀{s0, v}. o {s0, v} = (o0, o1),
4. ∀{s0, v, p0, p′0}.

(p0, o1) ⊕ {s0, v} (p′0, o1) = (p0 ⊕0 p′0, o1),
5. ∀{s0, v, p1, p′1}.

(o0, p1) ⊕ {s0, v} (o0, p′1) = (o0, p1 ⊕1 p′1).
The middle counital law contributes two additional

equations:
6. ∀{s0, v, p0}.

snd ((s0, v) ↓ (p0, o1)) o0 = v p0,
7. ∀{s0, v, p0, p1}.

(p0, o1) ⊕ {s0, v} (o0, p1) = (p0, p1).
As we should expect, the definitions of o, ⊕ in terms

of q0, q1 and Equations 3–5, 7 governing o, ⊕ remind
of the construction of a Zappa-Szép product of two
monoids from a matching pair resp. the general defini-
tion a Zappa-Szép product. We have obtained a gener-
alization from the special case S 0 = S 1 = 1 to directed
containers with multiple shapes.

For any two directed containers, their compatible
compositions and the compatible compositions of the
corresponding comonads are in a bijective correspon-
dence.

For comonads, it is known that any compatible com-
posite comonad arises from a distributive law; in fact,
the distributive laws and compatible compositions of
two comonads are in a bijective correspondence. If a
comonad (D0 · D1, ε, δ) is compatible with comonads
(D0, ε0, δ0) and (D1, ε1, δ1), then the distributive law is



01-008

Distributive laws of directed containers 9

• θ = D0 · D1
δ �� D0 · D1 · D0 · D1

ε0·D1·D0·ε1 �� D1 · D0

For a directed container ((S 0 � P0) ·c (S 1 � P1),
↓, o,⊕) compatible with directed containers (S 0 �
P0, ↓0, o0,⊕0) and (S 1 � P1, ↓1, o1,⊕1), the correspond-
ing distributive law is defined by

• t1 s0 v p1 = fst ((s0, v) ↓ (o0, p1)),

• q0 p1 p0 = fst ((o0, p1) ⊕ (p0, o1)),

• q1 p1 p0 = snd ((o0, p1) ⊕ (p0, o1)).

The definition of q0, q1 from ⊕ generalizes the con-
struction of a matching pair from a Zappa-Szép prod-
uct.

From the bijections between the distributive laws of
directed containers and the interpreting comonads and
the compatible compositions of directed containers and
the interpreting comonads, and from the bijection of
the distributive laws and compatible compositions of
comonads, it is immediate that the distributive laws
between two given directed containers and compatible
compositions of these directed containers are in a bi-
jective correspondence. It is also possible to give a di-
rect proof; we show most of these calculations in Ap-
pendix B.

6 Examples
Let us illustrate the constructions of the previous

sections with examples of distributive laws of comon-
ads and directed containers and the resulting composite
comonads and directed containers. We start from sim-
ple and well-known examples and then move on to ex-
amples that we could only construct when we realized
the analogy of compositions of directed containers to
Zappa-Szép products of monoids.

Distributing over the product-with-a-constant comonad
First we look at the well-known fact that any

comonad (D0, ε0, δ0) distributes over the product-with-
a-constant comonad (D1, ε1, δ1) given by D1 X = X×A,
ε1 = fst, δ1 = 〈id, snd〉 where A is a fixed set. The dis-
tributive law θ : ∀{X}.D0 (X×A)→ D0 X×A is defined
by θ = 〈D0 fst, ε0 ◦ D0 snd〉.

The product-with-a-constant comonad is represented
by the directed container with A many shapes of one
position each. The precise definition is given by S 1 =

A, P1 s1 = 1, s1 ↓1 ∗ = s1, o1 {s1} = ∗ and ∗ ⊕1 ∗ = ∗.
The distributive law of any directed container

(S 0 � P0, o0, ↓0,⊕0) over (S 1 � P1, o1, ↓1,⊕1) is defined
by

• t1 s0 v ∗ = s0,

• q0 ∗ p0 = p0,

• q1 ∗ p0 = ∗.
As a consequence, the composite directed container

is defined by

• S = Σs0 : S 0. P0 s0 → A,

• P (s0, v) = Σp0 : P0 s0. 1,

• (s0, v) ↓ (p0, ∗) = (s0 ↓0 p0, λp. v (p0 ⊕0 p)),

• o{s0, v} = (o0 {s0}, ∗),
• (p0, ∗) ⊕ (p′0, ∗) = (p0 ⊕0 p′0, ∗).

Distributing the product-with-a-constant comonad
The product-with-a-constant comonad can also be

composed with other comonads from the outside. For
(D0, ε0, δ0) the product-with-a-constant comonad given
by a set A, the corresponding distributive law θ :
∀{X}.D1X × A → D1 (X × A) is θ {X} = σ {X, A} where
σ is the strength of D1, defined (set-theoretically) by
σ (d, a) = D1 (λx. (x, a)) d (remember that any set func-
tor is strong in a unique way).

Let S 0 = A, P0 s0 = 1, s0 ↓0 ∗ = s0, o0 {s0} =
∗ and ∗ ⊕0 ∗ = ∗. Then, for any directed container
(S 1�P1, ↓1, o1,⊕1), we get a distributive law by setting

• t1 s0 (λ∗. s1) p1 = s0,

• q0 p1 ∗ = ∗,
• q1 p1 ∗ = p1.

The composite directed container is defined by

• S = Σs0 : A. 1→ S 1,

• P (s0, λ∗. s1) = Σ∗ : 1. P1 s1,

• (s0, λ∗. s1) ↓ (∗, p1) = (s0, λ∗. s1 ↓1 p1),

• o {s0, λ∗. s1} = (∗, o1 {s1}),
• (∗, p1) ⊕ (∗, p′1) = (∗, p1 ⊕1 p′1).

Distributing a strict comonad
We can generalize the previous example by al-

lowing (D0, ε0, δ0) to be any strict comonad. By
this we mean that D0 X = X × D+0 X, ε0 {X} =
fst and δ0 {X} = 〈id {D0 X}, δ+0 {X} ◦ snd〉 for some
functor D+0 and natural transformation δ+0 : D+0 →
D+0 · D0 that satisfy (D+0 · ε0) ◦ δ+0 = Id and
(D+0 · δ0) ◦ δ+0 = (δ+0 · D0) ◦ δ+0 . The distributive
law θ : ∀{X}.D1X × D+0 (D1X) → D1 (X × D+0 X) is
θ {X} = D1 (X ×D+0 (ε1 {X})) ◦σ {X,D+0 (D1X)} where σ
is the strength of D1.



01-008

10 Progress in Informatics, No. 10, pp.3–18, (2013)

A directed container (S 0 � P0, ↓0, o0,⊕0) is strict if
p0 � o0 implies p0 ⊕0 p′0 � o0. The distributive law
over any directed container (S 1 � P1, ↓1, o1,⊕1) is

• t1 s v p1 = s,

• q0 p1 p0 = p0,

• q1 p1 p0 = if p0 = o0 then p1 else o1.

As a consequence, the composite directed container
is defined by

• S = Σs0 : S 0. P0 s0 → S 1,

• P (s0, v) = Σp0 : P0 s0. P1 (v p0),

• (s0, v) ↓ (p0, p1) = (s0 ↓0 p0,
λp′0. if p′0 = o0 then v p0 ↓1 p1 else v (p0 ⊕0 p′0)),

• o {s0, v} = (o0 {s0}, o1 {(v {s0})}),
• (p0, p1) ⊕ (p′0, p

′
1) =

(p0 ⊕0 p′0, if p′0 = o0 then p1 ⊕1 p′1 else p′1).

It might be of interest to note that this is the definition
one can easily arrive at when trying to compose two di-
rected containers naively and directly, without thinking
of distributive laws. It makes sense to refrain from ap-
plying the operations ↓1, ⊕1 to an inner position when
the outer position is not the root position o0. But di-
rected container laws 2 and 5 fail for this composition
unless the strictness assumption is made.

Distributing over the exponent comonad
Any comonad (D0, ε0, δ0) distributes over the ex-

ponent comonad (D1, ε1, δ1) given by D1 X = A →
X, ε1 f = f e, δ1 f p1 p′1 = f (p1 • p′1) where
(A, e, •) is some fixed monoid. The distributive law
θ : ∀{X}.D0 (A → X) → A → D0 X is defined in terms
of the strength σ of D0 by θ = curry (D0 eval ◦ σ).

The directed container corresponding to the exponent
comonad (D1, ε1, δ1) has one shape; the carrier of the
monoid is its set of positions and the identity and mul-
tiplication are the root position and subshape position
translation operation: S 1 = ∗, P1 ∗ = A, ∗ ↓1 p1 = ∗,
o1 {∗} = e, p1 ⊕1 p′1 = p1 • p′1.

The corresponding distributive law of any directed
container (S 0 � P0, ↓0, o0,⊕0) over this directed con-
tainer is given by

• t1 s0 (λ . ∗) p1 = ∗,
• q0 p1 p0 = p0,

• q1 p1 p0 = p1.

The composite directed container is given by

• S = Σs0 : S 0. P0 s0 → 1,

• P (s0, λ . ∗) = Σ : P0 s0. A,

• (s0, λ . ∗) ↓ (p0, p1) = (s0 ↓0 p0, λ . ∗),
• o {s0, λ . ∗} = (o0 {s0}, e),

• (p0, p1) ⊕ (p′0, p
′
1) = (p0 ⊕0 p′0, p1 • p′1).

If S 0 were also a singleton, the two given directed
containers would both degenerate to monoids, q0 and
q1 would be projections of the direct product of the car-
riers and the composite directed container would be the
direct product of the two monoids.

So, e.g., in the special case of distributing the streams
comonad over itself, one has S 0 = S 1 = 1, P0 ∗ =
P1 ∗ = Nat, ∗ ↓0 p = ∗ ↓1 p = ∗, o0 {∗} = o1 {∗} = 0,
p ⊕0 p′ = p ⊕1 p′ = p + p′.

The distributive law between these directed contain-
ers is

• t1 ∗ v p1 = ∗,
• q0 p1 p0 = p0,

• q1 p1 p0 = p1.

The composite directed container is given by

• S = Σ∗ : 1. Nat→ 1,

• P (∗, λ . ∗) = Σ : Nat.Nat,

• (∗, λ . ∗) ↓ (p0, p1) = (∗, λ . ∗),
• o {∗, λ . ∗} = (0, 0),

• (p0, p1) ⊕ (p′0, p
′
1) = (p0 + p′0, p1 + p′1).

Similarly we could distribute the non-empty lists
comonad over the streams comonad.

Distributing the non-empty lists comonad over itself
But what about distributing the non-empty lists

comonad over itself? Here the operation t1 must be de-
fined carefully to fulfill the laws. Intuitively, we need to
ensure that the derived operation ↓ will behave well. A
shape of a non-empty list of non-empty lists is a “sky-
line” (see Figure 1) specified by a natural number s0

(its width) and an assignment v of natural numbers to
any number p0 : [0, s0] (its heights). A position in such
a shape is a pair of natural numbers p0 : [0, s0] and
p1 : [0, v p0] (the x- and y-coordinates). The width of
the corresponding subshape can be at most s0 − p0, but
we should also ensure that none of the heights is nega-
tive. A natural idea is to have the subshape as wide as
possible within these constraints.



01-008

Distributive laws of directed containers 11

Fig. 1 A global shape and a subshape for non-empty lists
of non-empty lists.

The two directed containers are given by S 0 = S 1 =

Nat, P0 s = P1 s = [0, s], s ↓0 p = s ↓1 p = s − p,
o0 {s} = o1 {s} = 0, p ⊕0 p′ = p ⊕1 p′ = p + p′.

The distributive law is specified by

• t1 s0 v p1 =

max {s′0 : [0, s0] | ∀p0 : [0, s′0]. p1 ≤ v p0},
• q0 p1 p0 = p0,

• q1 p1 p0 = p1.

The corresponding composite directed container is
defined by

• S = Σs0 : Nat. [0, s0]→ Nat,

• P (s0, v) = Σp0 : [0, s0]. [0, v p0],

• (s0, v) ↓ (p0, p1) = (max {s′0 : [0, s0 − p0] |
∀p′0 : [0, s′0] | p1 ≤ v (p0 + p′0)},

λp′0. v (p0 + p′0) − p1),

• o {s0, v} = (0, 0),

• (p0, p1) ⊕ (p′0, p
′
1) = (p0 + p′0, p1 + p′1).

More ways to distribute the streams comonad over itself
Let us now return to the streams comonad. We are in-

terested in finding other distributive laws of the streams
comonad over itself than the one described above.

First of all it is immediate that we must have

• t1 ∗ v p1 = ∗.
For the composite comonad we must therefore have

• S = Σ∗ : 1. Nat→ 1,

• P (∗, λ . ∗) = Σ : Nat.Nat,

• (∗, λ . ∗) ↓ (p0, p1) = (∗, λ . ∗),
• o {∗, λ . ∗} = (0, 0)

Regarding q0, q1, the key is to realize that (Nat, 0,+)
is the free monoid on one generator, 1. This allows us
to use the method of Fernandes and Quinteiro [10] to
generate the possible pairs of q0 and q1. The laws for
q0, q1 can be rewritten as follows:

q0 0 p0 = p0

q0 1 0 = 0

q0 1 1 = c0

q0 1 (2 + p0) = q0 1 1 + q0 (q1 1 1) (1+ p0)

q0 (p1 + 2) p0 = q0 (p1 + 1) (q0 1 p0)

q1 0 p0 = 0

q1 1 0 = 1

q1 1 1 = c1

q1 1 (2 + p0) = q1 (q1 1 1) (1 + p0)

q1 (p1 + 2) p0 = q1 (p1 + 1) (q0 1 p0) + q1 1 p0

Here c0, c1 are some constants; they capture all the free-
dom that there is in choosing q0, q1. If c1 ≤ 1, then the
equations above make a structurally recursive definition
of q0, q1. If c0 ≤ 1, then symmetric equations form a
structurally recursive definition.

Choosing c0 = c1 = 1 yields the solution we already
described: q0, q1 are projections and ⊕ the multiplica-
tion operation of the direct product of the two monoids.

For c0 = c1 = 0, we get

• q0 p1 p0 = p0−̇p1,

• q1 p1 p0 = p1−̇p0.

where −̇ denotes “truncated” subtraction, i.e.,
p0−̇p1 = if p1 ≤ p0 then p0 − p1 else 0.

Accordingly, we have

• (p0, p1) ⊕ (p′0, p
′
1) =

(p0 + (p′0−̇p1), (p1−̇p′0) + p′1).

For c0 = n + 1, c1 = 0, we get

• q0 p1 p0 = if p0 = 0 then 0 else n × p1 + p0,

• q1 p1 p0 = if p0 = 0 then p1 else 0,

• (p0, p1) ⊕ (p′0, p
′
1) = if p′0 = 0 then (p0, p1 +

p′1) else (p0 + n × p1 + p′0, p
′
1)

whereas choosing c0 = n, c1 = 1 gives

• q0 p1 p0 = np1 × p0,

• q1 p1 p0 = p1

• (p0, p1) ⊕ (p′0, p
′
1) = (p0 + np1 × p′0, p1 + p′1).



01-008

12 Progress in Informatics, No. 10, pp.3–18, (2013)

Distributing the streams and suffixes comonad over the
streams and samplings comonad

We finish by looking at an example that involves two
different monoid structures on the set of natural num-
bers. We want to distribute the streams and suffixes
comonad over the streams and samplings comonad.

We let S 0 = 1, P0 ∗ = Nat, ∗ ↓0 p = ∗, o0 {∗} = 0,
p ⊕0 p′ = p + p′ and S 1 = 1, P1 ∗ = Nat, ∗ ↓1 p = ∗,
o1 {∗} = 1, p ⊕1 p′ = p × p′.

A possible distributive law derives from the fact that
(Nat, 1,×) is (isomorphic to) a transformation monoid
(namely, the full transformation monoid) of (Nat, 0,+)
and thus acts on it. It is given by

• t1 ∗ (λ . ∗) p1 = ∗,
• q0 p1 p0 = p1 × p0,

• q1 p1 p0 = p1.

The composed directed container is therefore defined
by

• S = Σ∗ : 1. P0 ∗ → 1,

• P (∗, λ . ∗) = Σp0 : P0 ∗. P1 ∗,
• (∗, λ . ∗) ↓ (p0, p1) = (∗, λ . ∗),
• o {∗, λ . ∗} = (0, 1),

• (p0, p1) ⊕ (p′0, p
′
1) = (p0 + p1 × p′0, p1 × p′1).

7 Related work
Containers were introduced by Abbott, Altenkirch

and Ghani [1]. Some generalizations are the indexed
containers of Altenkirch and Morris [2] and quotient
containers of Abbott et al. [4]. Simple/indexed contain-
ers are equivalent to the simple/dependent polynomial
functors of Gambino and Hyland [11], now intensively
studied by Kock [13], [14]. Gambino and Kock [12]
have investigated polynomial monads.

Directed containers were first described in our recent
work [3]. The idea is from the work of Uustalu and
Vene [20] on the use of comonads for analyzing no-
tions of context-dependence in computation. The most
compelling examples of comonadic notions of context-
dependence are dataflow computation, attribute evalu-
ation and cellular automata [9], [18], [19]. Brookes and
Geva [8] used comonads in a similar fashion for inten-
sional semantics.

Distributive laws of monads and comonads are due to
Beck [6]. They are well known in category theory and
routinely used also in modern programming language
semantics. Barr and Wells [5, Sec. 9.2] provide a con-
cise overview of the most important facts about them
(but axiomatize compatibility differently from Beck).

The Zappa-Szép product of groups and monoids was
introduced by Zappa [17]. Recently, it has been studied
and applied by Brin [7], Lawson [15] and several other
authors.

8 Conclusions and future work
In this paper, we continued our research project on

containers as a “syntax” for a class of datatypes with
particularly good properties (sometimes informally re-
ferred to as strictly positive datatypes). We had previ-
ously introduced directed containers as a characteriza-
tion of those containers whose interpretation carries the
structure of a comonad. Here we turned our attention
to composition of directed containers. We saw that, just
as directed containers generalize monoids, distributive-
law based composition of directed containers is a gen-
eralization of the Zappa-Szép product of monoids.

The Zappa-Szép product is relatively well known in
algebra (more precisely, group theory and semigroup
theory), but not at all so in theoretical computer science
(mathematical structures for functional programming).
We find such connections very exciting. One the one
hand, we are presented with an opportunity to apply
results from algebra (known facts about monoids) to
computer science. In the course of this work, for in-
stance, we learned about multiple examples of distribu-
tive laws between standard examples of comonads that
we had not been aware of before and could only identify
once we had realized that distributive laws are general-
izations of mutual actions of monoids and acquainted
ourselves with some results about these. On the other
hand, we see new concepts (such as directed contain-
ers) emerge that have not been explored in algebra but
appear natural in functional programming and promise
to lead to elegant theory with useful applications that
are also likely to interest algebraists.

We would like to continue this research by explor-
ing further constructions on directed containers. We
expect that we will witness more interaction between
algebra and functional programming. The product of
directed containers, for instance, must generalize the
coproduct of monoids etc. There are many connec-
tions of semigroup theory to automata; we would like
to find out whether there are interesting connections of
directed containers to automata theory. It should be in-
teresting to work out how comonads and constructions
on comonads are characterized in alternative syntaxes
for strictly positive datatypes, e.g., polynomial func-
tors, and see where they come out prettiest. And of
course we would like to see whether the various new
facts we learn about datatypes with a comonad structure
have applications to functional programming. In addi-
tion to comonads, one can also ask about monads. We
have spelled out the data and laws for the correspond-



01-008

Distributive laws of directed containers 13

ing additional structure on containers [3], but have not
studied them more closely.

We have formalized all of the directed container
theory and examples from our FoSSaCS 2012 pa-
per [3] in the dependently typed programming lan-
guage Agda. This formalization is available online at
http://cs.ioc.ee/˜danel/dcont.html. We will grow this
formalization to also cover distributive laws and com-
position of directed containers.

Acknowledgements
We would like to thank our referees for their diligent

work.
This research was supported by the Estonian Min-

istry of Education and Research target-financed re-
search theme no. 0140007s12, the Estonian Science
Foundation grant no. 9475 and the Estonian Centre of
Excellence in Computer Science, EXCS, a European
Regional Development Fund funded project.

References
[1] M. Abbott, T. Altenkirch, and N. Ghani, “Contain-

ers: constructing strictly positive types,” Theor. Comput.
Sci., vol. 342, no. 1, pp. 3–27, 2005.

[2] M. Abbott, T. Altenkirch, N. Ghani, and C. McBride,
“Constructing polymorphic programs with quotient
types,” In D. Kozen, editor, Proc. of 7th Int. Conf.
on Mathematics of Program Construction, MPC 2004,
Lect. Notes in Comput. Sci., vol. 3125, pp. 2–15,
Springer, 2004.

[3] D. Ahman, J. Chapman, and T. Uustalu, “When is a con-
tainer a comonad?”, in L. Birkedal, editor, Proc. of 15th
Int. Conf. on Foundations of Software Science and Com-
putation Structures, FoSSaCS 2012, Lect. Notes in Com-
put. Sci., vol. 7213, pp. 74–88, Springer, 2012.

[4] T. Altenkirch and P. Morris, “Indexed containers,” in
Proc. of 24th Ann. IEEE Symp. on Logic in Computer
Science, LICS 2009, pp. 277–285, IEEE CS Press, 2009.

[5] M. Barr and C. Wells, Toposes, Triples and Theo-
ries, Grundlehren der mathematischen Wissenschaften,
vol. 278, Springer, 1984.

[6] J. Beck, “Distributive laws,” in B. Eckmann, ed.,
Seminar on Triples and Categorical Homology, ETH
1966/67, Lect. Notes in Math., vol. 80, pp. 119–140,
Springer, 1969.

[7] M. G. Brin, “On the Zappa-Szép product,” Commun. in
Algebra, vol. 33, no. 2, pp. 393–424, 2005.

[8] S. Brookes and S. Geva, “Computational comonads and
intensional semantics,” in M. P. Fourman, P. T. John-
stone, and A. M. Pitts, editors, Applications of Cate-
gories in Computer Science, London Math. Society Lect.
Note Series, vol. 77, pp. 1–44. Cambridge Univ. Press,
1992.

[9] S. Capobianco and T. Uustalu, “A categorical outlook on
cellular automata,” in J. Kari, editor, Proc. of 2nd Symp.
on Cellular Automata, JAC 2010, TUCS Lecture Note
Series, vol. 13, pp. 88–89, Turku Centre for Comput.
Sci., 2010.

[10] V. H. Fernandes and T. M. Quinteiro, “Bilateral
semidirect product decompositions of transformation
monoids,” Semigroup Forum, vol. 82, no. 2, pp. 271–
287, 2011.

[11] N. Gambino and M. Hyland, “Wellfounded trees and de-
pendent polynomial functors,” in S. Berardi, M. Coppo,
and F. Damiani, editors, Revised Selected Papers
from Int. Wksh. on Types for Programs and Proofs,
TYPES 2003, Lect. Notes in Comput. Sci., vol. 2085,
pp. 210–225, Springer, 2004.

[12] N. Gambino and J. Kock, “Polynomial functors and
polynomial monads,” Math. Proc. of Cambridge Phil.
Soc., vol. 154, no. 1, pp. 153–192, 2013.

[13] J. Kock, Notes on polynomial functors, manuscript,
2009.

[14] J. Kock, “Polynomial functors and trees,” Int. Math. Re-
search Notices, vol. 2011, no. 3, pp. 609–673, 2011.

[15] M. V. Lawson, “A correspondence between a class of
monoids and self-similar group actions I,” Semigroup
Forum, vol. 76, no. 3, pp. 489–517, 2008.

[16] U. Norell, “Towards a practical programming language
based on dependent type theory,” PhD thesis, Chalmers
University of Technology, 2007.

[17] G. Zappa, “Sulla costruzione dei gruppi prodotto di due
dati sottogruppi permutabili tra loro,” in Atti Secondo
Congresso dell’Unione Matemática Italiana, pp. 119–
125. Edizioni Cremonense, Rome, 1942.

[18] T. Uustalu and V. Vene, “The essence of dataflow pro-
gramming,” in K. Yi, Proc. of 2nd Asian Symp. on Pro-
gramming Languages and Systems, APLAS 2004, Lect.
Notes in Comput. Sci., vol. 3780, pp. 2–18, Springer,
2004.

[19] T. Uustalu and V. Vene, “Comonadic functional attribute
evaluation,” in M. van Eekelen, editor, Trends in Func-
tional Programming 6, pp. 145–162, Intellect, Bristol,
2007.

[20] T. Uustalu and V. Vene, “Comonadic notions of com-
putation,” in J. Adámek and C. Kupke, editors, Proc.
of 9th Int. Wksh. on Coalgebraic Methods in Computer
Science, CMCS 2008, Electron. Notes in Theor. Comput.
Sci., vol. 203, no. 5, pp. 263–284, Elsevier, 2008.

A Derivation of the definition of a dis-
tributive law between directed con-
tainers

We give the derivation of the definition of a distribu-
tive law between directed containers.

Given two comonoids in Cont (C0, hε0, h
δ
0) =

(S 0 � P0, tε0 � qε0 , tδ0 � qδ0 ) and (C1, hε1, h
δ
1) =



01-008

14 Progress in Informatics, No. 10, pp.3–18, (2013)

(S 1 � P1, tε1 � qε1 , tδ1 � qδ1) and a container morphism
hθ = tθ � qθ : C0 ·c C1 → C1 ·c C0, the natural trans-
formation θ : �C0�

c · �C1�
c → �C1�

c · �C0�
c defined

by θ = m−1 ◦ �hθ�c ◦ m satisfies the four equations of
a distributive law between comonads if and only if hθ

satisfies the following four equations:

C0 ·c C1
hθ ��

hε0 ·cC1

��

C1 ·c C0

C1 ·chε0

��
Idc ·c C1

λ
�� C1 C1 ·c Idc

ρ
��

C0 ·c C1
hθ ��

hδ0 ·cC1

��

C1 ·c C0

C1 ·chδ0

��
(C0 ·c C0) ·c C1

α

��

C1 ·c (C0 ·c C0)

α−1

��
C0 ·c (C0 ·c C1)

C0 ·chθ

��

(C1 ·c C0) ·c C0

C0 ·c (C1 ·c C0)
α−1

�� (C0 ·c C1) ·c C0

hθ ·cC0

��

C0 ·c C1
hθ ��

C0 ·chε1

��

C1 ·c C0

hε1 ·cC0

��
C0 ·c Idc

ρ
�� C0 Idc ·c C0

λ
��

C0 ·c C1
hθ ��

C0 ·chδ1

��

C1 ·c C0

hδ1 ·cC0

��
C0 ·c (C1 ·c C1)

α−1

��

(C1 ·c C1) ·c C0

α

��
(C0 ·c C1) ·c C1

hθ ·cC1

��

C1 ·c (C1 ·c C0)

(C1 ·c C0) ·c C1 α
�� C1 ·c (C0 ·c C1)

C1 ·chθ

��

Let us abbreviate (t0 s v, t1 s v) = tθ (s, v) and
(q0 {s} {v} p1 p0, q1 {s} {v} p1 p0) = qθ {s, v} (p1, p0). By
expanding hε0 , hδ0 , hε0 , hδ1 , ρ, λ, α, these equations can
be rewritten into the following 16 equations.

* ∀{s, v}. t0 s v = v (o0 {s}),
∀{s, v, p1}. q0 {s} {v} p1 (o0 {t1 s v p1}) = o0 {s},
∀{s, v, p1}. q1 {s} {v} p1 (o0 {t1 s v p1}) = p1,

* ∀{s, v}. t0 s v =
t0 s (λp0. t0 (s ↓0 p0) (λp′0. v (p0 ⊕0 p′0))),

* ∀{s, v, p1}. t1 s v p1 =

t1 s (λp0. t0 (s ↓0 p0) (λp′0. v (p0 ⊕0 p′0))) p1,

∀{s, v, p1, p0}. t1 s v p1 ↓0 p0 =

t1 (s ↓0 q0 p1 p0) (λp′0. v (q0 p1 p0 ⊕0 p′0))
(q1 p1 p0),

∀{s, v, p1, p0, p′0}. q0 {s} {v} p1 (p0 ⊕0 p′0) =
q0 p1 p0 ⊕0 q0 (q1 p1 p0) p′0,

∀{s, v, p1, p0, p′0}. q1 {s} {v} p1 (p0 ⊕0 p′0) =
q1 (q1 p1 p0) p′0.

∀{s, v}. t1 s v (o1 {v (o0 {s})}) = s,

∀{s, v, p0}. q0 {s} {v} (o1 {v (o0 {s})}) p0 = p0,

∀{s, v, p0}. q1 {s} {v} (o1 {v (o0 {s})}) p0 =

o1 {v (o0 {s})}.

* ∀{s, v}. t0 s v = t0 s v,

* ∀{s, v, p1}. t0 s v ↓1 p1 =

t0 (t1 s v p1) (λp0. v (q0 p1 p0) ↓1 q1 p1 p0),

∀{s, v, p1, p′1}. t1 s v (p1 ⊕1 p′1) =
t1 (t1 s v p1) (λp0. v (q0 p1 p0) ↓1 q1 p1 p0) p′1,

∀{s, v, p1, p′1, p0}. q0 {s} {v} (p1 ⊕1 p′1) p0 =

q0 p1 (q0 p′1 p0),

∀{s, v, p1, p′1, p0}. q1 {s} {v} (p1 ⊕1 p′1) p0 =

q1 p1 (q0 p′1 p0) ⊕1 q1 p′1 p0

Of the equations marked (*), the first one effectively
defines t0 and the remaining four become tautologies
under that definition. The unmarked equations are ex-
actly the equations 1–11 of a distributive law between
directed containers. We see that we only need three op-
erations t1, q0, q1 in the definition of a distributive law
between directed containers together with the 11 equa-
tions governing their interaction with ↓0, o0, ⊕0, ↓1, o1,
⊕1.

B Distributive laws vs. compatible
composite directed containers

Given a distributive law between two directed con-
tainers, we get a compatible composite directed con-
tainer.



01-008

Distributive laws of directed containers 15

Proof. Proof of directed container equation 1.

(s0, v) ↓ o
= {def. of o}

(s0, v) ↓ (o0, o1)
= {def. of ↓}

(t1 (s0 ↓0 o0) (λp′0. v (o0 ⊕0 p′0)) o1,
λp′0. v (o0 ⊕0 q0 o1 p′0) ↓1 q1 o1 p′0)

= {dir. cont. eqs. 1, 1, 4}
(t1 s0 v o1, λp′0. v (q0 o1 p′0) ↓1 q1 o1 p′0)
= {dist. law eqs. 2, 6, 10}

(s0, λp′0. v p′0 ↓1 o1)
= {dir. cont. eq. 1}

(s0, v)

Proof of directed container equation 2.

(s0, v) ↓ ((p0, p1) ⊕ (p′0, p
′
1))

= {def. of ⊕}
(s0, v) ↓ (p0 ⊕0 q0 p1 p′0, q1 p1 p′0 ⊕1 p′1)

= {def. of ↓}
(t1 (s0 ↓0 (p0 ⊕0 q0 p1 p′0))

(λp′′0 . v ((p0 ⊕0 q0 p1 p′0) ⊕0 p′′0 ))

(q1 p1 p′0 ⊕1 p′1),

λp′′0 . v ((p0 ⊕0 q0 p1 p′0) ⊕0

q0 (q1 p1 p′0 ⊕1 p′1) p′′0 ) ↓1

q1 (q1 p1 p′0 ⊕1 p′1) p′′0 )

= {dir. cont. eqs. 2, 5, 5}
(t1 ((s0 ↓0 p0) ↓0 q0 p1 p′0)

(λp′′0 . v (p0 ⊕0 (q0 p1 p′0 ⊕0 p′′0 )))

(q1 p1 p′0 ⊕1 p′1),

λp′′0 . v (p0 ⊕0 (q0 p1 p′0 ⊕0

q0 (q1 p1 p′0 ⊕1 p′1) p′′0 )) ↓1

q1 (q1 p1 p′0 ⊕1 p′1) p′′0 )

= {dist. law eqs. 3, 7, 11}
(t1 (t1 ((s0 ↓0 p0) ↓0 q0 p1 p′0)

(λp′′0 . v (p0 ⊕0 (q0 p1 p′0 ⊕0 p′′0 )))

(q1 p1 p′0))

(λp′′0 . v (p0 ⊕0 (q0 p1 p′0 ⊕0

q0 (q1 p1 p′0) p′′0 )) ↓1 q1 (q1 p1 p′0) p′′0 ) p′1,
λp′′0 . v (p0 ⊕0 (q0 p1 p′0 ⊕0

q0 (q1 p1 p′0)(q0 p′1 p′′0 ))) ↓1

(q1 (q1 p1 p′0) (q0 p′1 p′′0 ) ⊕1 q1 p′1 p′′0 ))

= {dist. law eqs. 5, 9, 5, 9}
(t1 (t1 ((s0 ↓0 p0) ↓0 q0 p1 p′0)

(λp′′0 . v (p0 ⊕0 (q0 p1 p′0 ⊕0 p′′0 )))

(q1 p1 p′0))

(λp′′0 . v (p0 ⊕0 q0 p1 (p′0 ⊕0 p′′0 )) ↓1

q1 p1 (p′0 ⊕0 p′′0 )) p′1,
λp′′0 . v (p0 ⊕0 q0 p1 (p′0 ⊕0 q0 p′1 p′′0 )) ↓1

(q1 p1 (p′0 ⊕0 q0 p′1 p′′0 ) ⊕1 q1 p′1 p′′0 ))

= {dist. law eq. 1, dir. cont. eq. 2}
(t1 (t1 (s0 ↓0 p0) (λp′′0 . v (p0 ⊕0 p′′0 )) p1 ↓0 p′0)

(λp′′0 . v (p0 ⊕0 q0 p1 (p′0 ⊕0 p′′0 )) ↓1

q1 p1 (p′0 ⊕0 p′′0 )) p′1,
λp′′0 . (v (p0 ⊕0 q0 p1 (p′0 ⊕0 q0 p′1 p′′0 )) ↓1

q1 p1 (p′0 ⊕0 q0 p′1 p′′0 )) ↓1 q1 p′1 p′′0 )

= {def. of ↓}
(t1 (s0 ↓0 p0) (λp′′0 . v (p0 ⊕0 p′′0 )) p1,

λp′′0 . v (p0 ⊕0 q0 p1 p′′0 ) ↓1 q1 p1 p′′0 ) ↓ (p′0, p
′
1)

= {def. of ↓}
((s0, v) ↓ (p0, p1)) ↓ (p′0, p

′
1)

Proof of directed container equation 3.

(p0, p1) ⊕ o
= {def. of o}

(p0, p1) ⊕ (o0, o1)
= {def. of ⊕}

(p0 ⊕0 q0 p1 o0, q1 p1 o0 ⊕1 o1)
= {dist. law eqs. 4, 8}

(p0 ⊕0 o0, p1 ⊕1 o1)
= {dir. cont. eq. 3}

(p0, p1)

Proof of directed container equation 4.

o ⊕ (p0, p1)

= {def. of o}
(o0, o1) ⊕ (p0, p1)

= {def. of ⊕}
(o0 ⊕0 q0 o1 p0, q1 o1 p0 ⊕1 p1)

= {dist. law eqs. 6, 10}
(o0 ⊕0 p0, o1 ⊕1 p1)

= {dir. cont. eq. 4}
(p0, p1)

Proof of directed container equation 5.

((p0, p1) ⊕ (p′0, p
′
1)) ⊕ (p′′0 , p

′′
1 )

= {def. of ⊕}
(p0 ⊕0 q0 p1 p′0, q1 p1 p′0 ⊕1 p′1) ⊕ (p′′0 , p

′′
1 )

= {def. of ⊕}
((p0 ⊕0 q0 p1 p′0) ⊕0 q0 (q1 p1 p′0 ⊕1 p′1) p′′0 ,

q1 (q1 p1 p0 ⊕1 p′1) p′′0 ⊕1 p′′1 )

= {dir. cont. eq. 5, dist. law eq. 11}



01-008

16 Progress in Informatics, No. 10, pp.3–18, (2013)

(p0 ⊕0 (q0 p1 p′0 ⊕0 q0 (q1 p1 p′0 ⊕1 p′1) p′′0 ),

(q1 (q1 p1 p′0) (q0 p′1 p′′0 ) ⊕1 q1 p′1 p′′0 ) ⊕1 p′′1 )

= {dist. law eq. 7, dist law eq. 9}
(p0 ⊕0 (q0 p1 p′0 ⊕0 q0 (q1 p1 p′0) (q0 p′1 p′′0 )),

(q1 p1 (p′0 ⊕0 q0 p′1 p′′0 ) ⊕1 q1 p′1 p′′0 ) ⊕1 p′′1 )

= {dist. law eq. 5, dir. cont. eq. 5}
(p0 ⊕0 q0 p1 (p′0 ⊕0 q0 p′1 p′′0 ),

q1 p1 (p′0 ⊕0 q0 p′1 p′′0 ) ⊕1 (q1 p′1 p′′0 ⊕1 p′′1 ))

= {def. of ⊕}
(p0, p1) ⊕ (p′0 ⊕0 q0 p′1 p′′0 , q1 p′1 p′′0 ⊕1 p′′1 )

= {def. of ⊕}
(p0, p1) ⊕ ((p′0, p

′
1) ⊕ (p′′0 , p

′′
1 ))

Proof of compatibility equation 1.

fst ((s0, v) ↓ (p0, o1))
= {def. of ↓}

t1 (s0 ↓0 p0) (λp′0. v (p0 ⊕0 p′0)) o1

= {dist. law eq. 2}
s0 ↓0 p0

Proof of compatibility equation 2.

snd ((s0, v) ↓ (o0, p1)) o0

= {def. of ↓}
v (o0 ⊕0 q0 p1 o0) ↓1 q1 p1 o0

= {dist. law eqs. 4, 8}
v (o0 ⊕0 o0) ↓1 p1

= {dir. cont. eqs. 3/4}
v o0 ↓1 p1

Proof of compatibility equation 3.

o
= {def. of o}

(o0, o1)

Proof of compatibility equation 4.

(p0, o1) ⊕ (p′0, o1)

= {def. of ⊕}
(p0 ⊕0 q0 o1 p′0, q1 o1 p′0 ⊕1 o1)

= {dist. law eqs. 6, 10}
(p0 ⊕0 p′0, o1 ⊕1 o1)

= {dir. cont. eq. 3/4}
(p0 ⊕0 p′0, o1)

Proof of compatibility equation 5.

(o0, p1) ⊕ (o0, p
′
1)

= {def. of ⊕}
(o0 ⊕0 q0 p1 o0, q1 p1 o0 ⊕1 p′1)

= {dist. law eqs. 4, 8}

(o0 ⊕0 o0, p1 ⊕1 p′1)

= {dir. cont. eq. 3/4}
(o0, p1 ⊕1 p′1)

Proof of compatibility equation 6.

snd ((s0, v) ↓ (p0, o1)) o0

= {def. of ↓}
v (p0 ⊕0 q0 o1 o0) ↓1 q1 o1 o0

= {dist. law eqs. 4/6, 8/10}
v (p0 ⊕0 o0) ↓1 o1

= {dir. cont. eqs. 1, 3}
v p0

Proof of compatibility equation 7.

(p0, o1) ⊕ (o0, p1)
= {def. of ⊕}

(p0 ⊕0 q0 o1 o0, q1 o1 o0 ⊕1 p1)
= {dist. law eqs. 4/6, 8/10}

(p0 ⊕0 o0, o1 ⊕1 p1)
= {dir. cont. eqs. 3, 4}

(p0, p1)

�

Given a compatible composite directed container of
two directed containers, we get a distributive law.

Proof. Proof of distributive law equation 1.

t1 s v p1 ↓0 p0

= {def. of t1}
fst ((s, v) ↓ (o0, p1)) ↓0 p0

= {compat. eq. 1}
fst (((s, v) ↓ (o0, p1)) ↓ (p0, o1))

= {dir. cont. eq. 2}
fst ((s, v) ↓ ((o0, p1) ⊕ (p0, o1)))

= {def. of q0, q1}
fst ((s, v) ↓ (q0 p1 p0, q1 p1 p0))

= {compat. eq. 7}
fst ((s, v) ↓ ((q0 p1 p0, o1) ⊕ (o0, q1 p1 p0)))

= {dir. cont. eq. 2}
fst (((s, v) ↓ (q0 p1 p0, o1)) ↓ (o0, q1 p1 p0))

= {def. of t1}
t1 (fst ((s, v) ↓ (q0 p1 p0, o1)))

(snd ((s, v) ↓ (q0 p1 p0, o1))) (q1 p1 p0)

= {compat. eq. 1}
t1 (s ↓0 q0 p1 p0)

(λp′0. (snd ((s, v) ↓ (q0 p1 p0, o1))) p′0) (q1 p1 p0)

= {compat. eq. 6}
t1 (s ↓0 q0 p1 p0)



01-008

Distributive laws of directed containers 17

, (λp′0. snd (((s, v) ↓ (q0 p1 p0, o1)) ↓ (p′0, o1)) o0)

(q1 p1 p0)

= {dir. cont. eq. 2}
t1 (s ↓0 q0 p1 p0)

(λp′0. snd ((s, v) ↓ ((q0 p1 p0, o1) ⊕ (p′0, o1))) o0)

(q1 p1 p0)

= {compat. eq. 4}
t1 (s ↓0 q0 p1 p0)

(λp′0. snd ((s, v) ↓ ((q0 p1 p0 ⊕0 p′0, o1))) o0)

(q1 p1 p0)

= {compat. eq. 6}
t1 (s ↓0 q0 p1 p0) (λp′0. v (q0 p1 p0 ⊕0 p′0)) (q1 p1 p0)

Proof of distributive law equation 2.

t1 s v o1

= {def. of t1}
fst ((s, v) ↓ (o0, o1))
= {compat. eq. 3}

fst ((s, v) ↓ o)
= {dir. cont. eq. 1}

s

Proof of distributive law equation 3.

t1 s v (p1 ⊕1 p′1)

= {def. of. t1}
fst ((s, v) ↓ (o0, p1 ↓1 p′1))

= {compat. eq. 5}
fst ((s, v) ↓ ((o0, p1) ⊕ (o0, p

′
1)))

= {dir. cont. eq. 2}
fst (((s, v) ↓ (o0, p1)) ↓ (o0, p

′
1))

= {def. of t1}
t1 (fst ((s, v) ↓ (o0, p1))) (snd ((s, v) ↓ (o0, p1))) p′1

= {def. of t1}
t1 (t1 s v p1) (snd ((s, v) ↓ (o0, p1))) p′1

= {compat. eq. 6}
t1 (t1 s v p1)

(λp0. snd (((s, v) ↓ (o0, p1)) ↓ (p0, o1)) o0) p′1
= {dir. cont. eq. 2}

t1 (t1 s v p1)

(λp0. snd ((s, v) ↓ ((o0, p1) ⊕ (p0, o1))) o0) p′1
= {def. of. q0, q1}

t1 (t1 s v p1)

(λp0. snd ((s, v) ↓ (q0 p1 p0, q1 p1 p0)) o0) p′1
= {compat. eq. 7}

t1 (t1 s v p1)

(λp0. snd ((s, v) ↓
((q0 p1 p0, o1) ⊕ (o0, q1 p1 p0))) o0) p′1

= {dir. cont. eq. 2}
t1 (t1 s v p1)

(λp0. snd (((s, v) ↓ (q0 p1 p0, o1)) ↓
(o0, q1 p1 p0)) o0) p′1

= {compat. eq. 2}
t1 (t1 s v p1)

(λp0. snd ((s, v) ↓ (q0 p1 p0, o1)) o0 ↓1

q1 p1 p0) p′1
= {compat. eq. 6}

t1 (t1 s v p1) (λp0. v (q0 p1 p0) ↓1 q1 p1 p0) p′1

Proof of distributive law equations 4 and 8.

(q0 p1 o0, q1 p1 o0)
= {def. of. q0, q1}

(o0, p1) ⊕ (o0, o1)
= {compat. eq. 3}

(o0, p1) ⊕ o
= {dir. cont. eq. 3}

(o0, p1)

Proof of distributive law equations 5 and 9.

(q0 p1 (p0 ⊕0 p′0), q1 p1 (p0 ⊕0 p′0))

= {def. of. q0, q1}
(o0, p1) ⊕ (p0 ⊕0 p′0, o1)

= {compat. eq. 4}
(o0, p1) ⊕ ((p0, o1) ⊕ (p′0, o1))

= {dir. cont. eq. 5}
((o0, p1) ⊕ (p0, o1)) ⊕ (p′0, o1)

= {def. of. q0, q1}
(q0 p1 p0, q1 p1 p0) ⊕ (p′0, o1)

= {compat. eq. 7}
((q0 p1 p0, o1) ⊕ (o0, q1 p1 p0)) ⊕ (p′0, o1)

= {dir. cont. eq. 5}
(q0 p1 p0, o1) ⊕ ((o0, q1 p1 p0) ⊕ (p′0, o1))

= {def. of. q0, q1}
(q0 p1 p0, o1) ⊕

(q0 (q1 p1 p0) p′0, q1 (q1 p1 p0) p′0)

= {compat. eq. 7}
(q0 p1 p0, o1) ⊕

((q0 (q1 p1 p0) p′0, o1) ⊕ (o0, q1 (q1 p1 p0) p′0))

= {dir. cont. eq. 5}
((q0 p1 p0, o1) ⊕ (q0 (q1 p1 p0) p′0, o1)) ⊕

(o0, q1 (q1 p1 p0) p′0)



01-008

18 Progress in Informatics, No. 10, pp.3–18, (2013)

= {compat. eq. 4}
(q0 p1 p0 ⊕0 q0 (q1 p1 p0) p′0, o1) ⊕

(o0, q1 (q1 p1 p0) p′0)

= {compat. eq. 7}
(q0 p1 p0 ⊕0 q0 (q1 p1 p0) p′0, q1 (q1 p1 p0) p′0))

Proof of distributive law equations 6 and 10.

(q0 o1 p0, q1 o1 p0)
= {def. of. q0, q1}

(o0, o1) ⊕ (p0, o1)
= {compat. eq. 3}

o ⊕ (p0, o1)
= {dir. cont. eq. 4}

(p0, o1)

Proof of distributive law equations 7 and 11.

(q0 (p1 ⊕1 p′1) p0, q1 (p1 ⊕1 p′1) p0)

= {def. of. q0, q1}
(o0, p1 ⊕1 p′1) ⊕ (p0, o1)

= {compat. eq. 5}
((o0, p1) ⊕ (o0, p

′
1)) ⊕ (p0, o1)

= {dir. cont. eq. 5}
(o0, p1) ⊕ ((o0, p

′
1) ⊕ (p0, o1))

= {def. of. q0, q1}
(o0, p1) ⊕ (q0 p′1 p0, q1 p′1 p0)

= {compat. eq. 7}
(o0, p1) ⊕ ((q0 p′1 p0, o1) ⊕ (o0, q1 p′1 p0))

= {dir. cont. eq. 5}
((o0, p1) ⊕ (q0 p′1 p0, o1)) ⊕ (o0, q1 p′1 p0)

= {def. of. q0, q1}
(q0 p1 (q0 p′1 p0), q1 p1 (q0 p′1 p0)) ⊕

(o0, q1 p′1 p0)

= {compat. eq. 7}
((q0 p1 (q0 p′1 p0), o1) ⊕ (o0, q1 p1 (q0 p′1 p0))) ⊕

(o0, q1 p′1 p0)

= {dir. cont. eq. 5}
(q0 p1 (q0 p′1 p0), o1) ⊕

((o0, q1 p1 (q0 p′1 p0)) ⊕ (o0, q1 p′1 p0))

= {compat. eq. 5}
(q0 p1 (q0 p′1 p0), o1) ⊕

(o0, q1 p1 (q0 p′1 p0) ⊕1 q1 p′1 p0)

= {compat. eq. 7}
(q0 p1 (q0 p′1 p0), q1 p1 (q0 p′1 p0) ⊕1 q1 p′1 p0)

�

Danel AHMAN
Danel AHMAN (b. 1988) is a PhD
student at the University of Edin-
burgh with a BSc (2010) from the
Tallinn University of Technology and
MPhil from the University of Cam-
bridge (2012). His research interests

are in category theory and programming language se-
mantics.

Tarmo UUSTALU
Tarmo UUSTALU (b. 1969) is a
leading researcher at the Institute of
Cybernetics, the Tallinn University
of Technology (TUT) and is cur-
rently leading the Estonian Centre
of Excellence in Computer Science,

EXCS. He has an MSc degree from TUT (1992)
and PhD from the Royal Institute of Technology,
Stockholm (1998). His research interests are in
type theory, category theory, functional programming,
programming language semantics, type systems and
program logics.


