
09-001

Progress in Informatics, No. 10, pp.167–174, (2013) 167

Research Paper

An efficient exact algorithm for the Minimum
Latency Problem

Ha BANG BAN1, Kien NGUYEN2, Manh CUONG NGO3 and Duc NGHIA
NGUYEN4

1,3,4Hanoi University of Science and Technology
2National Institute of Informatics

ABSTRACT
The Minimum Latency Problem (MLP) is a class of combinational optimization problems
that has many practical applications. In the general case, the MLP is proved to be NP-
hard. One of the approaches to solve the problem is using exact algorithms. However, the
algorithms which were recently proposed are applied only to the problems with small size,
i.e., 26 vertices. In this paper, we present a new exact algorithm to solve the MLPs with a
larger size. Our algorithm is based on the branch and bound method and it has two new
rules that improve the pruning technique. We have evaluated the algorithm on several data
sets. The results show that the problems up to 40 vertices can be solved exactly.

KEYWORDS
Minimum Latency Problem (MLP), exact algorithm, branch and bound method

1 Introduction
The minimum latency problem is also known in the

literature as the delivery man problem or the traveling
repairman problem. In the general case, the problem
was described as NP-hard, and unless P = NP, a poly-
nomial time approximation scheme is unlikely to ex-
ist [12]. Howerver, the reduction from the general MLP
to the problem in a metric case can be done by a sim-
ple transformation as in [15]. The metric case reflects a
condition in which a complete graph with distances be-
tween vertices satisfying the triangle inequality. In this
paper, we consider the problem in the metric case, and
formulate the MLP as follows:
Given a complete graph Kn with the vertex set V =
{v1, v2, . . . , vn} and a symmetric distance matrix C =
{c(vi, v j) | i, j = 1, 2, . . . , n}, where c(vi, v j) is the dis-
tance between two vertices vi and v j. Suppose that T =
{v1, . . . , vk, . . . , vn} is a tour in Kn. Denote by P(v1, vk)
the path from v1 to vk on this tour and by l(P(v1, vk)) its
length. The latency of a vertex vk(1 < k ≤ n) on T is

Received June 25, 2012; Revised October 1, 2012; Accepted December 4,
2012.
1) bangbh@soict.hut.edu.vn, 2) kienng@nii.ac.jp, 3) kirimaru148@gmail.com,
4) nghiand@soict.hut.edu.vn

the length of the path from starting vertex v1 to vk:

l(P(v1, vk)) =
k−1∑

i=1

c(vi, vi+1).

The total latency of the tour T is defined as the sum of
latencies of all vertices

L(T) =
n∑

k=2

l(P(v1, vk))

The minimum latency problem asks for a minimum la-
tency tour, which starts at a given vertex v1 and visits
each vertex in the graph exactly once.

Minimizing L(T) arises in many practical situations
because whenever a server (i.e., a repairman or a disk
head) has to accommodate a set of requests with their
minimal total (or average) waiting time [6], [12]. In the
scope of our paper, we are interested in finding the min-
imum latency in a tour other than a cycle. In this case,
the repairman need not to return v1. This variant can be
seen in [2]–[4], [6], [7], [9], [14].

The MLP can be solved in polynomial time in sev-
eral cases, for example when the graph of the problem
is a path [1], [8], an edge-unweighted tree [11], a tree

DOI: 10.2201/NiiPi.2013.10.10

c©2013 National Institute of Informatics

09-001

168 Progress in Informatics, No. 10, pp.167–174, (2013)

with diameter 3 [6], a tree with a constant number of
leaves [10](for example with constant k, there exists an
exact algorithm with complexity O(nk)). In the general
case, the problems can be solved by using approxima-
tion algorithms or exact algorithms. In order to describe
related works we denote an approximation algorithm as
p-approximation when the algorithm finds the solution
at most p times worse than the optimal solution. Here p
is an approximation ratio with constant value. Blum et
al. [6] provided a 144-approximation in the metric case
and an 8-approximation for weighted trees. Goemans
et al. [9] presented a 21.55-approximation in the metric
case and a 3.59-approximation in the tree case. Arora
et al. [4] then gave a 17.24-approximation in the metric
case. The approximation algorithm of Archer et al. [2]
obtained a 7.18-approximation in the metric case and a
3.01-approximation on the tested Euclidean instances.
Kamalika et al. [7] presented a 3.59-approximation for
the metric case. Recently, Archer et al. [3] improved an
approximation ratio for trees to 3.03.

Beside the approximation algorithms, several exact
algorithms have been proposed for solving the prob-
lems. In [14], Wu presented a dynamic programming
algorithm for the MLP, but the algorithm was very time-
consuming. Wu et al. then improved the algorithm and
proposed a more efficient one [15]. In the new algo-
rithm, they have designed a lower bound and utilized a
combination of the dynamic programming and a branch
and bound method. The experimental results showed
that the latter algorithm in [15] is much more efficient
than the previous one [14]. However, the better algo-
rithm was evaluated only on instances with small size,
i.e, 26 vertices. Since there was a lack of experiments
on larger instances, the real efficiency of their algorithm
cannot be evaluated. We choose the algorithm in [15] as
a baseline in our research, and call it Wu et al.’s.

In this paper, we propose a new exact algorithm
based on the branch and bound method. In our algo-
rithm, we improve a pruning technique by introducing
two new rules. The efficiency of the algorithm was ex-
tensively evaluated on both random test data and real
test data. The results indicate that our algorithm ex-
actly solves the problems up to 40 vertices. Moreover
the algorithm was also compared with Wu et al.’s in the
case of real test data with small size. The comparision
results show that our algorithm consumes less time than
Wu et. al.’s.

The rest of this paper is organized as follows: section
2 presents the proposed algorithm. The experimental
results are reported in section 3, and finally section 4
concludes the paper.

2 The proposed algorithm
On the tour T = (v1, v2, v3, ..., vn), we realize that the

first arc (v1, v2), the second arc (v2, v3),. . . , and the last
arc (vn−1, vn) gives a contribution (n − 1) × c(v1, v2),
(n − 2) × c(v2, v3),. . . , 1 × c(vn−1, vn), respectively to
the latency L(T). Therefore, the latency of T can be
rewritten as follows:

L(T) =
n−1∑

k=1

(n − k)c(vk, vk+1)

We denote F = (v1, v2, . . . , vk) as a prefix subtour and
B = (vk+1, vk+2, . . . , vn) as a suffix subtour of the tour T.
Then we describe several lemmas in order to construct
the algorithm. The lemmas are proven by contradiction.

Lemma 1. Let T = (v1, v2, . . . , vk−1, vk, . . . , vn) be an
optimal tour. If the following condition

l(P(vk−1, vk)) = l(P(v1, vk)) − l(P(v1, vk−1))

holds, then l(P(vk−1, vk)) is the length of the shortest
path from vk−1 to vk.

Proof. Assume that l(P(vk−1, vk)) > m(vk−1, vk), where
m(vk−1, vk) is the length of the shortest path from vk−1

to vk. We have

L(T) >
n∑

j=2, j�k

l(P(v1, v j)) + l(P(v1, vk−1))

+ m(vk−1, vk)

We denote l(P
′
(v1, vk)) = l(P(v1, vk−1) + m(vk−1, vk). It

is clear that there exists a tour T
′

which has

L(T
′
) =

n∑

j=2, j�k

l(P(v1, v j)) + l(P
′
(v1, vk)).

Therefore, L(T) > L(T
′
). This implies that T is not the

optimal tour. �

Lemma 2. Let V = (v1, v2, ..., vk, ..., vn) be the ver-
tex set and F = (v1, v2, . . . , v j, v j+1, . . . , vk) be a pre-
fix subtour. If there exists a vertex vp ∈ V

′
= V \ F

(k + 1 ≤ p ≤ n) and an index j (1 < j < k) such that the
following condition

(n − j)c(v j, v j+1) > (n − j)c(v j, vp) +

(n − j − 1)c(vp, v j+1) (1)

holds, then F cannot be extended to an optimal tour.

Proof. Assume that T = (v1, v2, . . . , v j, v j+1, . . . , vk,
vk+1, vk+2, vk+3, vk+4, . . . , vn) is an optimal tour. We
have F = (v1, v2, . . . , v j, v j+1, . . . , vk) and B = (vk+1,
vk+2, vk+3, vk+4, ..., vn). We insert vp ∈ B (p = k + 2)

09-001

An efficient exact algorithm for the Minimum Latency Problem 169

between (v j, v j+1) ∈ F to obtain T
′
= (v1, v2, . . . , v j,

vp, v j+1, . . . , vk, vk+1, vk+3, vk+4, . . . , vn). The latency of
tour T , T

′
can be rewritten as follows:

L(T) =
n−1∑

k=1

(n − k)c(vk, vk+1)

L(T
′
) =

j−1∑

k=1

(n − k)c(vk, vk+1) + (n − j)c(v j, vp)

+ (n − j − 1)c(vp, v j+1)

+

p−2∑

k= j+1

(n − k − 1)c(vk, vk+1)

+ (n − k − 2)c(vp−1, vp+1)

+

n−1∑

k=p+1

(n − k)c(vk, vk+1)

If we denote �T = L(T) − L(T
′
), we obtain

� T = (n − j)c(v j, v j+1) − (n − j)c(v j, vk+2)

− (n − j − 1)c(vk+2, v j+1) + c(v j+1, v j+2)

+ c(v j+2, v j+3) + ... + c(vk, vk+1) + (n − k

− 1)c(vk+1, vk+2) + (n − k − 2)c(vk+2, vk+3)

− (n − k − 2)c(vk+1, vk+3). (2)

On the other hand, by the triangle inequality and as-
suming that c(vk+1, vk+2) > 0, we have

(n − k − 1)c(vk+1, vk+2) + (n − k − 2)c(vk+2, vk+3) − (n −
k − 2)c(vk+1, vk+3) > 0

So if condition (1) is satisfied, then �T > 0. This im-
plies that T is not the optimal tour. Similar arguments
hold for the case when p is not equal to k + 2 �

Lemma 3. Let V = (v1, v2, ..., vk, ..., vn) be the ver-
tex set and F = (v1, v2, ..., v j, v j+1, ..., vk) be a prefix
subtour. If there exists a vertex vp ∈ V

′
= V \ F

(k + 1 ≤ p ≤ n) and an index j (1 < j < k) such
that the following condition

(n − j)c(v j, v j+1) + l(P(v j+1, vk)) + c(vk, vp)

> (n − j)c(v j, vp) + (n − j − 1)c(vp, v j+1) (3)

holds, then F cannot be extended to an optimal tour.

Proof. Assume that T = (v1, v2, ..., v j, v j+1, ..., vk,
vk+1, vk+2, vk+3, vk+4, ..., vn) is an optimal tour. We de-
fine F = (v1, v2, ..., v j, v j+1, ..., vk) and B = (vk+1,
vk+2, vk+3, vk+4, ..., vn) is a prefix, and a suffix tour of
T , respectively. If we insert vp (p = k + 2) ∈ B
between (v j, v j+1) ∈ F, we have the new tour T

′
=

Algorithm The Proposed Algorithm
Input: The starting vertex v1.
Output: The optimal tour T .

1: Initiate UB;
2: Try(v1, 1, 0, 0) ;
3: return UB;

(v1, . . . , v j, vp, v j+1, . . . , vk, vk+1, vk+3, vk+4, ..., vn). Ac-
cording to the proof of lemma 2, we obtain a similar
�T :

�T = (n − j)c(v j, v j+1) − (n − j)c(v j, vk+2)

− (n − j − 1)c(vk+2, v j+1) + l(P(v j+1, vk))

+ c(vk, vk+1) + c(vk+1, vk+2) + (n − k − 2)

× c(vk+1, vk+2) + (n − k − 2)c(vk+2, vk+3)

− (n − k − 2)c(vk+1, vk+3)

By the triangle inequality, we also get

(n − k − 2)c(vk+1, vk+2) + (n − k − 2)c(vk+2, vk+3)

≥ (n − k − 2)c(vk+1, vk+3).

and

c(vk, vk+1) + c(vk+1, vk+2) ≥ c(vk, vk+2).

Therefore,

�T ≥ (n − j)c(v j, v j+1) + l(P(v j+1, vk))

+ c(vk, vk+2) − (n − j)c(v j, vk+2)

− (n − j − 1)c(vk+2, v j+1)

If condition (3) is satisfied, then �T > 0. This implies
that T is not the optimal tour. Similar arguments hold
for the case when p is not equal to k + 2 �

In the following part, we describe our proposed algo-
rithm in detail.

The pseudo-code of our algorithm is shown in the Al-
gorithm. The algorithm always records an upper bound
(UB) of an optimal solution, which may be a solution of
a feasible tour. In the initial stage, the value of UB is de-
rived from either the nearest neighbour method in [13]
or the GA algorithm in [5]. In the following stage, the
algorithm invokes Procedure 1, which is a recursive
function. In Procedure 1, in the trivial case a subtour
(e.g., F) is pruned if its latency (denoted as L(F)) is not
less than UB. In the other case, the lower bound of F
(LB), which is an underestimation of any complete tour
containing F as a prefix, is computed. When the LB
is larger than the UB, the subtour is also pruned. As a
result, the efficiency of the algorithm depends on how
the UB and LB are computed. Therefore, we need to
estimate the lower bound of a complete tour containing
subtour F as a prefix. Assume that E = {e1, e2, . . . , en−k}

09-001

170 Progress in Informatics, No. 10, pp.167–174, (2013)

Procedure 1 Try (u, k, l(P(v1, u)), L(F))
Input: u is the vertex in k-th position of the tour, l(P(v1, u)),

L(F).
1: if (L(F) >= UB)//L(F) is latency of subtour F then
2: Exit(); //prune
3: end if
4: if (LB(F) >= UB)//LB(F) is calculated by (5) then
5: Exit(); //prune
6: end if
7: if (k == n) then
8: UB = L(F);
9: Update the best tour as F;

10: end if
11: for v ∈ V do
12: if v is not visited then
13: select v;
14: if (PruningRules(F, v)==true) then
15: Exit(); //prune
16: end if
17: F = F ∪ v; // Add v
18: Try(v, k + 1, l(P(v1, u))+ c(u, v), L(F)+ l(P(v1, u))+

c(u, v));
19: F = F \ v; //remove v
20: end if
21: end for

is a set of the cheapest costs in matrix C such that
e1 < e2 < . . . < en−k. Note that F = (v1, v2, . . . , vk),
L(vi) is the latency of vi and m(vk−1, vk) is the length
of the shortest path from vk−1 to vk. Since Kn is the
complete graph in the metric case, m(v1, vk) is equal to
c(v1, vk). Then we have the following observation:

L(vk+1) = L(vk) + m(vk, vk+1)

= l(P(v1, vk)) + c(vk, vk+1)

≥ l(P(v1, vk)) + e1.

L(vk+2) = L(vk+1) + m(vk+1, vk+2)

= L(vk) + m(vk, vk+1) + m(vk+1, vk+2)

= L(vk) + c(vk, vk+1) + c(vk+1, vk+2)

≥ l(P(v1, vk)) + e1 + e2.

........

L(vn) = L(vk) + m(vk, vk+1) + m(vk+1, vk+2)

+ ... + m(vn−1, vn)

≥ l(P(v1, vk)) + e1 + e2 + ... + en−k.

Therefore,

L(T) = L(F) + L(vk+1) + L(vk+2) + ... + L(vn)

≥ L(F) + (n − k)l(P(v1, vk)) + (n − k)e1

+ (n − k − 1)e2 + ... + en−k (4)

Procedure 2 PruningRules(F, v)
Input: F, v is the prefix subtour, and an unvisited vertex, re-

spectively
Output: The variable pruned is true or false.
1: pruned = false;
2: for (i = 2; i < F.length; i + +) do
3: w1 = (n − i)c(F[i], F[i + 1]);
4: w2 = (n − i)c(F[i], v);
5: w3 = (n − i − 1)c(v, F[i + 1]);
6: if (w1 > w2 + w3) then
7: pruned = true; //rule in lemma 2
8: break;
9: end if

10: w4 = l(P(F[i + 1], F[F.length]));
11: if ((w1 + w4 + c(F[F.length], v) > w2 + w3)) then
12: pruned = true; //rule in lemma 3
13: break;
14: end if
15: end for
16: return pruned;

From (4), we obtain an estimation function for the
lower bound:

LB = L(F) + (n − k)l(P(v1, vk)) + (n − k)e1

+ (n − k − 1)e2 + ... + en−k. (5)

Beside that, when an unvisited vertex is added to F,
the rules in Lemma 2 and 3 will be applied by invok-
ing Procedure 2. If one of the rules is satisfied then F
is pruned. The global variables used in the algorithm
include UB, Kn and Ci j. In all procedures, each tour is
represented by a list of n vertices (v1, v2, . . . , vk, . . . , vn),
where vk is the k-th vertex to be visited in the tour and
takes the k-th position in the list. The function length
returns the number of elements in the list.

3 Experimental results
We have implemented the algorithm in C language to

evaluate its performance. The experiments were con-
ducted on a personal computer, which is equipped with
an Intel Pentium IV 2.4 GHz CPU and 256 M bytes
memory. The input data of the experiments includes
two random and one real test data. In the experiments,
our algorithm was implemented with two upper bounds.
The first upper bound UB1 was calculated by the near-
est neighbour algorithm in [13]. The second one UB2

was the solution of the genetic algorithm in [5]. We
also use experimental results to evaluate efficiency of
the algorithm in comparison against Wu et al.’s algo-
rithm [15].

The results are shown in the last page. We denote
EA1, EA2 as our algorithm with the different values of
upper bound UB1 and UB2, respectively. BA is used for

09-001

An efficient exact algorithm for the Minimum Latency Problem 171

Table 1 The results of the algorithms in the random test data 1.

Group Group one Group two Group three

Instance test1 test2 test3 test4 test5 test6 test7 test8 test9

n 30 35 40 30 35 40 30 35 40

OS 2697 3209 3028 3172 4104 4070 4169 2659 2375

UB1 4017 5126 4327 5028 5663 6382 6619 7767 3162

UB2 2697 3209 3128 3172 4104 4070 4179 2759 2380

Time(EA1) 3.4 24 125 4.0 25 121 3.4 26 118

Time(EA2) 2.1 19 100 2.2 18 106 2.2 20 98

Table 2 The results of the algorithms in the random test data 2.

Group Group one Group two Group three

Instance test1 test2 test3 test4 test5 test6 test7 test8 test9

n 30 35 40 30 35 40 30 35 40

OS 3625 3897 4521 3751 4012 4621 3451 4101 4652

UB1 4321 5764 6354 5121 5641 5954 4232 5841 5865

UB2 3625 3912 4521 3751 4065 4696 3451 4101 4695

Time(EA1) 3.5 25 120 5.0 35 140 4.6 35 135

Time(EA2) 2.0 20 100 3.0 30 120 2.0 30 120

Table 3 The results of the algorithms in Group1 of the partial instances.

Group Eil51 St70 Eil76 Rat195

Instance test1 test2 test3 test4 test5 test6 test7 test8 test9 test10 test11 test12

n 30 35 40 30 35 40 30 35 40 30 35 40

OS 4049 5165 5006 3435 6731 6574 3676 4247 4947 7759 9203 11224

UB1 6126 7723 7485 5101 9423 9992 5588 6349 7396 16953 18688 25122

UB2 4097 5165 5101 3495 6798 6574 3676 4247 5001 11309 12451 16741

Time(EA1) 2.5 4.0 80 1.5 4.2 82 1.6 4.0 80 1.8 4.1 80

Time(EA2) 2.0 3.0 62 2.5 3.1 68 2.0 3.5 65 2.1 3.2 62

Wu et al.’s algorithm in [15]. In Tables 1 to 5, the values
in the third row is the size of the instance. The fourth
row gives the total latency L(T) for the optimal solution
(OS). The fifth and sixth rows give the value of UB1

and UB2, respectively. The seventh and eighth rows
give the running time of the EA1 and EA2 algorithms in
minutes.

3.1 Experiment for random test data
Two random test data comprises non-Euclidean and

Euclidean instances, and was named as random test
data 1 and random test data 2, respectively. In the for-
mer one, the instances were generated artificially with
an arc cost drawn from a uniform distribution. The val-
ues of the arc costs were integers between 1 and 100.
In the latter one, the Euclidean distance between two
vertices was calculated. The coordinates of the vertices
were randomly generated according to a uniform distri-

bution in a 200 × 200 square. We chose the number of
vertices as n = 30, 35 and 40. For each value of n, we
generated three different instances. Hence, each ran-
dom test data included nine instances that were divided
equally among three groups.

Each instance was tested ten times, and the results
are illustrated in Table 1 and 2. The average value of
the running times are shown in Fig. 1 and Fig. 2. We
can conclude that a better upper bound makes the algo-
rithm prune the bad branches more quickly. Since the
upper bound is the solution of the GA algorithm, the av-
erage running times are shown significantly in compar-
ison with the nearest neighbour upper bound method.

3.2 Experiment for real test data
The data instances chosen include Ulysses22, Fir26,

and Gr24 from TSPLIB [16](where 22, 26, 24 are the
number of vertices). Besides that, we added more real

09-001

172 Progress in Informatics, No. 10, pp.167–174, (2013)

Table 4 The results of the algorithms in Group2 of the partial instances.

Group KroA100 KroB100 KroC100 Berlin52

Instance test1 test2 test3 test4 test5 test6 test7 test8 test9 test10 test11 test12

n 30 35 40 30 35 40 30 35 40 30 35 40

OS 163478 183985 202756 142148 198334 235091 141581 207946 177070 71427 86252 91091

UB1 246852 274138 304379 212099 301468 345584 208124 303601 265605 107141 130241 134815

UB2 164512 187541 208451 142148 198652 251214 141598 212114 177985 71498 86541 91451

Time(EA1) 5.1 14 90 5.0 15 90 4.5 16 90 4.0 14 88

Time(EA2) 3.5 6.0 72 3.0 7.5 68 3.5 5.0 70 3.0 8.0 65

Table 5 The results of the algorithms in Group3 of the partial instances.

Group Tsp225 Tss225 Pr76 Lin105

Instance test1 test2 test3 test4 test5 test6 test7 test8 test9 test10 test11 test12

n 30 35 40 30 35 40 30 35 40 30 35 40

OS 10143 13549 17588 267200 373280 469965 873523 910679 959268 116606 114670 146662

UB1 15012 20324 26382 403472 563653 690849 1284079 1375125 1448495 172577 169712 219993

UB2 10143 13651 17784 268741 374151 470121 873598 910698 959298 116641 114700 146671

Time(EA1) 5.0 15 91 5.5 14 92 4.6 14 91 4.5 14 87

Time(EA2) 3.5 6.0 72 3.5 7.0 70 3.7 5.5 74 3.0 8 68

Fig. 1 The running time for the random test data 1.

Fig. 2 The running time for the random test data 2.

instances by randomly choosing partial data from the
larger instances in TSPLIB. The number of vertices of
each partial instance is between thirty to forty. We
divided the partial instances into three groups based
on the following method: Suppose that Xmax, Xmin is
the max, min abscissa of an instance, and Ymax, Ymin

is the max, min ordinate of an instance, respectively.
We denote �x = Xmax−Xmin

n and �y = Ymax−Ymin
n . We

have analyzed the data of TSPLIB and found that in-
stances mostly belong to one of the following three
groups. Group one with �x,�y ≤ 3 where vertices
are concentrated; group two, �x, �y ≥ 9 where ver-
tices are scattered; or group three where vertices are
spaced in a special way such as along a line or evenly

distributed. Specifically, group one includes instances
extracted from Eil51, St70, Eil76, and Rat195. In group
two, the instances are chosen from KroA100, KroB100,
KroC100, and Berlin52. In the last group, the instances
are from Tsp225, Tss225, Pr76, and Lin105.

In the experiment, the instances are also tested ten
times. We show the results in Table 3 to 6 and Fig. 3 and
4. In Table 6, the second to fourth rows give the running
time of the EA1, EA2 and BA algorithms in seconds,
respectively.

Figure 3 shows the average running time of the EA1

and EA2 algorithms. We can see that if the upper bound
is computed by the GA algorithm instead of the near-
est neighbour method, the running time becomes much
better. Figure 3 also shows that the running time of the
algorithm in group one is much better than the one in
the other groups. Obviously, our estimation function
in (5) gives a better lower bound for the instances in
group one. Hence, the algorithm is more efficient for
the instances where vertices are concentrated. Accord-
ing to Fig. 1 to 3, our algorithm works for the real data
much better than for the random data. The reason is
that the real data is more structured. The results also
indicate that the GA algorithm in [5] produces nearly
optimal solutions. This implies that the GA algorithm
is a promising approach for solving the problems.

In Fig. 4, we show the running time of our algorithm
against the BA in case of solving the MLP with smaller
size. The running time of the BA algorithm in Table 6
is derived from the experimental results in [15]. In this

09-001

An efficient exact algorithm for the Minimum Latency Problem 173

Table 6 The results of the algorithms in the small size in-
stances from TSPLIB.

Group Ulysses22 Gr24 Gr26

Time(EA1) 4.00 25.24 20.00

Time(EA2) 3.00 22.12 15.00

Time(BA) 3.40 30.23 27.41

Fig. 3 The running time for the partial test data.

Fig. 4 The running time for the small size real data.

case, we also obtain that the EA1 consumes more time
than the EA2, but the EA1 consumes less time than the
BA with all smaller instances.

4 Conclusion
In the paper, we have proposed a new exact algorithm

based on the branch and bound method for solving the
MLP problem in the metric case. Two new rules are
applied to improve the pruning technique. The experi-
mental results on the random data and the real data in-
dicate that the algorithm exactly solve the problems up
to 40 vertices. Additionally, the running time of the al-
gorithm is superior to that of the Wu et al.’s algorithm
in the case of solving the MLP problem with smaller
size. However, our algorithm only applies for the prob-
lems up to 40 vertices. The upper limit depends on the
efficiency of the algorithm, and with our algorithm, the
result is generic for all computers. Enhancing the lim-
itation using the branch and bound approach is still a
challenge. This is our aim in future research.

References
[1] F. Afrati, S. Cosmadakis, C. Papadimitriou, G. Papa-

georgiou, and N. Papakostantinou, “The complexity of
the traveling repairman problem,” J. ITA, vol.20, no.1,
pp.79–87, 1986.

[2] A. Archer, A. Levin, and D. Williamson, “A faster, bet-
ter approximation algorithm for the minimum latency
problem,” J. SIAM, vol.37, no.1, pp.1472–1498, 2007.

[3] A. Archer and Anna Blasiak, “Improved approximation

algorithms for the minimum latency problem via prize-
collecting stroll,” Proc. ACM-SIAM SODA, pp.429–447,
2010.

[4] S. Arora and G. Karakostas, “Approximation schemes
for minimum latency problems,” Proc. ACM STOC,
pp.688–693, 1999.

[5] H.B. Ban and D.N. Nguyen, “Improved genetic al-
gorithm for minimum latency problem,” Proc. ACM
SOICT, pp.9–15, 2010.

[6] A. Blum, P. Chalasani, D. Coppersmith, W. Pulleyblank,
P. Raghavan, and M. Sudan, “The minimum latency
problem,” Proc. ACM STOC, pp.163–171, 1994.

[7] K. Chaudhuri, B. Goldfrey, S. Rao, and K. Talwar,
“Path, tree and minimum latency tour,” Proc. IEEE
FOCS, pp.36–45, 2003.

[8] A. Garcia, P. Jodr, and J. Tejel, “A note on the traveling
repairmen problem,” J. Networks, vol.40, no.1, pp.27–
31, 2002.

[9] M. Goemans and J. Kleinberg, “An improved approxi-
mation ratio for the minimum latency problem,” Proc.
ACM-SIAM SODA, pp.152–158, 1996.

[10] E. Koutsoupias, C. Papadimitriou, and M. Yan-
nakakis, “Searching a fixed graph,” Proc. ICALP, LNCS,
vol.1099, pp.280–289, 1996.

[11] E. Minieka, “The delivery man problem on a tree net-
work,” J. AOR, vol.18, no.1, pp.261–266, 1989.

[12] S. Sahni and T. Gonzalez, “P-complete approximation
problem,” J. ACM, vol.23, no.3, pp.555–565, 1976.

[13] D.S. Johnson and L.A. McGeoch, “The traveling sales-
man problem: A case study in local optimization,” Lo-
cal Search in Combinatorial Optimization, John Wiley
and Sons, Ltd., pp.215–310, 1997.

[14] B.Y. Wu, “Polynomial time algorithms for some mini-
mum latency problems,” Inform. Proc. Letters, vol.75,
no.5, pp.225–229, 2000.

[15] B.Y. Wu, Z.-N. Huang, and F.-J. Zhan, “Exact algo-
rithms for the minimum latency problem,” Inform. Proc.
Letters, vol.92, no.6, pp.303–309, 2004.

[16] http://www.iwr.uniheidelberg.de/groups/comopt/
software/TSPLIB95

Ha BANG BAN
Ha Bang Ban is a phd student

at Hanoi University of Science and
Technology, Vietnam. He received
the Engineer and Master of Science
degree from Hanoi University of Sci-
ence and Technology in 2006 and

2008, respectively. During March to November, 2011,
he was an internship student in National Institute of In-
formatics. His main research interests include combi-
natorial optimization, algorithm design and graphs.

09-001

174 Progress in Informatics, No. 10, pp.167–174, (2013)

Kien NGUYEN
Kien Nguyen received a B.Eng. from
Hanoi University of Technology in
2004, and Ph.D. from the Graduate
University for Advanced Studies in
2012. He is currently a postdoctoral
researcher at National Institute of In-

formatics, Japan. His research interests include quality
of service provisioning in wired and wireless networks,
network protocols, and network virtualization.

Manh CUONG NGO
Manh Cuong Ngo received the En-
gineer degree from Hanoi Univer-
sity of Science and Technology in
2011. Currently, he has stud-
ied about combinatorial optimization
at Fondation Mathematique Jacques

Hadamard, France. His main research interests include
combinatorial optimization and graphs.

Duc NGHIA NGUYEN
Duc Nghia Nguyen is an associate
professor of Department of Computer
Science, Hanoi University of Science
and Technology. He received Ph.D.
from Belarusian State University. His
main research interests include com-

binatorial and global optimization, algorithm design
and implementation. Recently he is interested in de-
veloping metaheuristic algorithms for some NP-hard
graph optimization problems.

