
06-006

Special issue: Advanced Programming Techniques for Construction of Robust, General and Evolutionary Programs

Progress in Informatics, No. 10, pp.131–148, (2013) 131

Research Paper

GRoundTram: An integrated framework for
developing well-behaved bidirectional model
transformations∗1

Soichiro HIDAKA1, Zhenjiang HU2, Kazuhiro INABA3, Hiroyuki KATO4 and
Keisuke NAKANO5

1,2,4National Institute of Informatics
3National Institute of Informatics∗2
5University of Electro-Communications

ABSTRACT
Bidirectional model transformation is useful for maintaining consistency between two mod-
els, and has many potential applications in software development including model synchro-
nization, round-trip engineering, and software evolution. Despite these attractive uses, the
lack of a practical tool supporting for systematic development prevents it from being widely
used. In this paper, we solve this problem by proposing an integrated framework called
GRoundTram (Graph Roundtrip Transformation for Models), which is carefully designed
and implemented for compositional development of well-behaved and efficient bidirectional
model transformations. GRoundTram is built upon a well-founded bidirectional framework
and is equipped with a user-friendly language for coding bidirectional model transforma-
tions, a novel tool for validating both models and transformations, an optimization mech-
anism for improving efficiency, and a powerful debugging environment for testing bidirec-
tional behavior. GRoundTram has been used by other reseach groups besides ourselves and
their results show its usefulness in practice.

KEYWORDS
Model-driven development, bidirectional transformation, model transformation, graph transforma-
tion

1 Introduction
Bidirectional model transformation [6], [12], [14],

[44], [45] is an enhancement of model transforma-
tion with bidirectional capability, and is an important
requirement in Object Management Group (OMG)’s
Queries/Views/Transformations (QVT) standard for
defining model transformation languages. It describes
not only a forward transformation from a source model
to a target model, but also a backward transformation
showing how to reflect the changes in the target model

Received April 13, 2012; Revised September 30, 2012; Accepted December
10, 2012.
∗1This paper is an extended version of the conference short paper [30] presented
in ASE’11.
∗2Current affiliation is Google.
1) hidaka@nii.ac.jp, 2) hu@nii.ac.jp, 3) kinaba@nii.ac.jp, 4) kato@nii.ac.jp,
5) ksk@cs.uec.ac.jp

in the source model so that consistency between them
is maintained. Bidirectional model transformation
has many potential applications in software develop-
ment, including model synchronization [6], [21], [50],
round-trip engineering [5], software evolution [38], and
multiple-view software development [19], [22].

Unlike (unidirectional) model transformation where
lots of tools have been developed for supporting de-
sign, validation, and test of model transformation, bidi-
rectional model transformation lacks such useful tools,
and that prevents it from being widely used. In fact, we
have new requirements and challenges in the context of
bidirectional model transformation.

Most importantly, we should be sure that a bidi-
rectional model transformation behaves exactly as we
want. Such a transformation has more complicated be-

DOI: 10.2201/NiiPi.2013.10.7

c©2013 National Institute of Informatics

06-006

132 Progress in Informatics, No. 10, pp.131–148, (2013)

havior than a unidirectional one. It should be well-
behaved in the sense that both the forward and back-
ward transformations are consistent with each other
and have the roundtrip property [12]. As argued in [43]
though, there are semantic issues with many of the ex-
isting tools.

Next, bidirectional model transformations should be
compositional so that they can reuse existing trans-
formations and bigger ones can be constructed from
smaller ones. As indicated in the conclusion of [15],
most model transformation languages based on graph
transformations are rule-based, describing direct rela-
tionships between the source and target models. They
are not compositional in the sense that we cannot in-
troduce intermediate models for gluing together model
transformations. Therefore, rule-based techniques can-
not easily support systematic development of model
transformations in the large [36]. However, composi-
tion comes at the cost of efficiency; many unnecessary
intermediate models might be produced. Therefore, an
optimization method is required to automatically elim-
inate unnecessary intermediate models during execu-
tion.

Furthermore, a bidirectional model transformation
should be general enough because it is to be used at
various stages of the software development life cycle.
It should be able to be applied to different models such
as UML diagrams, sequence diagrams, Petri-nets, and
even lower level control/data flow graphs. While visual
frameworks are useful in high-level design, general
text-based languages play an important role in develop-
ing large-scale transformations, say, to deal with lower
level mappings or complex code refactoring. Moreover,
we would expect to have a set of language-based tools
for type checking (validating) both models and bidirec-
tional model transformations to remove errors before
execution, an efficient execution model, and a tool for
testing/debugging bidirectional behavior. Apart from a
recent attempt in [49] that embed lens [18] as a DSL in
Scala, which benefits from the type system in the host
language, as far as we are aware, no such language-
based modeling environments have been proposed for
bidirectional model transformation.

In this paper, we remedy this situation by proposing
a language-based modeling framework called GRound-
Tram (Graph Roundtrip Transformation for Models),
which is carefully designed and implemented for
compositional development of well-behaved and ef-
ficient bidirectional model transformation at the var-
ious stages of software development. Our work
is inspired by recent research on bidirectional lan-
guages (with well-behavedness) and automatic bidi-
rectionalization in the programming language com-
munity [9], [18], [32], [39]. In particular, it has been

recently shown [27] that a graph query algebra Un-
CAL (Unstructured CALculus) [10], which consists of
carefully designed graph constructors, conditional and
structural recursion operators, can be fully bidirection-
alized. Each graph transformation in UnCAL has clear
bidirectional semantics and is guaranteed to be well-
behaved.

This paper is about a successful application of a bidi-
rectional graph query algebra in the programming com-
munity to the construction of a framework for develop-
ing bidirectional model transformations in the software
engineering community. Our main technical contribu-
tions are summarized as follows.

Well-behavedness. We propose a novel bidirectional
graph contraction algorithm so that we can build well-
behaved bidirectional model transformations upon the
well-founded bidirectional UnCAL algebra. In fact,
there is a gap between UnCAL graphs and the models
used in model transformation: graphs in UnCAL are
edge-labeled and their equivalence is defined by bisim-
ilarity, while models in model transformation may have
labels on both edges and nodes and their equivalence is
defined by unique identifiers. We close this gap so that
every UnCAL graph has a bidirectional correspondence
with a model.

Compositional. We design a user-friendly language
UnQL+, which is the first purely functional language
for developing large bidirectional model transforma-
tions in a compositional way. UnQL+ is an extension
of the graph query language UnQL [10] with new ad-
ditional language constructs for graph transformation.
We show that any UnQL+ program can be correctly
translated into an UnCAL construct and inefficiency
due to intermediate models in the composition can be
automatically eliminated.

Language-based IDE. We implement an integrated
development environment GRoundTram, which has a
novel tool for validating both models and bidirec-
tional model transformations, an automatic optimiza-
tion mechanism for improving efficiency, and a power-
ful debugging environment for testing bidirectional be-
havior. The system (including sources, documents, and
many application examples) is available online [2], and
being used by research groups besides ourselves for de-
veloping some nontrivial applications. Their successes
indicate the usefulness of GRoundTram in practice.

This paper is an enhancement of the emerging idea
of our previous work that was presented in a short pa-
per [26]. Moreover, in relation to the bidirectionaliza-
tion presented in [27], a bidirectional contraction stage
has been added after stage 2 (epsilon edge and un-

06-006

GRoundTram: An integrated framework for developing well-behaved bidirectional model transformations 133

Bidirectional
Transformation

Source Model
(DOT/UnCAL)

Source Schema
(KM3)

Model Validation

Forward
Transformation

Transformation
(UnQL+)

Target Schema
(KM3)

Model Transformation
Validation

Verified Transformation

Target Model
(DOT)

Graph Update

Updated Target Model
(DOT)

Backward
Transformation

Updated Source Model
(DOT)

Graph Update

Source Model
(DOT)

Fig. 1 Overview of GRoundTram.

Fig. 2 Snapshot of GRoundTram.

reachable part elimination stage) of the previous work.
With respect to the surface syntax extension presented
in [25], the present paper can deal with regular path ex-
pressions and treat multiple graph databases. We have
also added a proof of correctness of a translation to an
internal graph algebra and have integrated the verifica-
tion framework presented in [33] into ours.

The rest of the paper is organized as follows. We
begin by demonstrating how the GRoundTram system
works in Section 2. We then briefly review the Un-
CAL bidirectional framework on which GRoundTram
is based in Section 3. After explaining the design archi-
tecture of the GRoundTram system, we show in detail
the definition of UnQL+, the bidirectional graph con-
traction algorithm, and the translation from UnQL+ to
UnCAL in Section 4. We evaluate the system in Section
5, discuss the related work in Section 6, and conclude
the paper in Section 7.

2 Overview of GRoundTram
Before proceeding with the technical details, let us

overview the GRoundTram system to give the reader
an idea of what it can do. Figure 1 shows the basic

Fig. 3 A class diagram.

57 54

56

String
65

53

Class
51

src_of
50

46

Class
47

49

String
61

Class
44

src_of
43

Class

68 42

67

String
33

41

Boolean
27

Attribute
64 39

63

String
32

38

Boolean
23

Attribute
60 36

59

String
31

35

Boolean
19

Attribute

30 8

29

String
26

7

Boolean
5

25

String
18

4

Boolean
16

PrimitiveDataType
22 17

21

String
2

12

PrimitiveDataType
1

Boolean

0

true
3

true
6

true

10

9

"Integer"

11

String

name

14

13

"String"

15

String

name

nametype is_primary

20

"number"

name is_primary type

24

"addr"

name is_primary type

28

"name"

34

true
37

false
40

true

name is_persistent attrs

45

name src Association dest

name is_persistent attrs
48

"phone"

52

name src Association dest

nameis_persistent attrs
55

"address"

58

"Phone"
62

"Address"
66

"Person"

69

AssociationAssociation

Fig. 4 A class model represented by an edge-labeled
graph.

functions the GRoundTram system provides.

2.1 Input
The input to the system is a source model together

with its schema, a transformation described in UnQL+,
and a target model schema. The target model is pro-
duced by the forward transformation.

Model. Models are represented by general edge-
labeled graphs, which form a general representation
of various models. As a running example, consider
the class model diagram in Figure 3, which is taken
from [15]. It consists of three classes and two directed
associations, and each class has a primary attribute∗3.
This model can be represented by the graph in Figure 4,
where the information has been moved to the edges.
The graph is in the standard DOT format which can be
∗3 For this particular example, the diagram could be further simplified by us-
ing simple labeled references instead of model elements for phone number, for
example, and nothing prevents us from doing so. However, we believe this ex-
ample helps us demonstrate the expressiveness of transformations in GRound-
Tram.

06-006

134 Progress in Informatics, No. 10, pp.131–148, (2013)

visualized and edited by the popular Graphviz tool [16].

Model schema (metamodel). Each model has a struc-
ture. For instance, a class diagram has the following
structure. A class diagram consists of classes and di-
rected associations between classes. A class is indi-
cated as persistent or non-persistent. It consists of one
or more attributes, at least one of which must be marked
as constituting the classes’ primary key. An attribute
type is of a primitive data type (e.g. String, Integer). An
association associates classes and is represented here
using a model element. KM3 [35] is used to describe
such a model structure [25], and its definition can be
found in [2]. We currently do not support complex OCL
constraints in the schema.

Model transformation. (Forward) Model transforma-
tion is described compositionally in UnQL+ (Section
4.1), a SQL-like graph query/transformation language.
As an example, consider extracting all persistent classes
from the class model $db, and transforming them into
tables by replacing Attributes with Columns. This can
be described compositionally as follows, using the in-
termediate model $persistentClass.

select {tables : $table} where
$persistentClass in

(* select classes *)
(select $class where
{Association.(src|dest).Class : $class} in $db,
{is persistent : {Boolean : true}} in $class),

$table in
(* replace Attribute *)
(replace attrs→ $g

by (select {Column : $a} where
{attrs.Attribute:$a} in $persistentClass)

in $persistentClass)

2.2 Validation
In order to detect errors during development as early

as possible and help users to develop correct models
and transformations, GRoundTram provides two vali-
dation mechanisms.

Model validation. The system can verify the confor-
mance of the source and the target model to their asso-
ciated schemata. In particular, after editing the models,
it is important to check that they are in valid states.

Model transformation validation. Correct model
transformations should always generate a target model
conforming to the target schema from any source model
satisfying the source schema.

While the model validation is standard, a general
model transformation validation is more challenging

but more useful for ensuring correct model transforma-
tions. As an instance of simple erroneous transforma-
tion, suppose the user made an error writing select $a
instead of select {Column : $a} in the previous exam-
ple. Its outputs do not conform to the schema and hence
an error is reported by the system. The check is au-
tomatic and static. Users neither have to provide any
test cases by hand, nor execute the transformation for
testing; the system automatically finds and displays an
example of a source model that reveals the problem (in
this case, a class model containing at least one persis-
tent class).

2.3 Bidirectional transformation
The GRoundTram system is unique in its execution

of well-behaved bidirectional transformations, as seen
in the lower part of Figure 1.

Forward transformation. After the user specified the
source model and the UnQL+ model transformation,
the target model is computed by running the transfor-
mation with the source model set to the variable $db.
Like the source model, the target model can also be ex-
ported and be edited in the standard DOT format.

Backward transformation. The most distinct fea-
ture of GRoundTram is the automatic derivation of
backward transformations that appropriately propagate
modifications on the target models to the source mod-
els. There is no need to maintain two separate trans-
formations or to worry about their consistency. Users
just write a forward transformation from one model to
another in a compositional way, and a corresponding
backward transformation is automatically derived.

2.4 Graphical user interface
The GRoundTram system combines all its functions

as an integrated framework with a user-friendly GUI
(Figure 2). The user loads a source graph (displayed in
the left pane) and a bidirectional transformation written
in UnQL+. Once they are loaded, the forward trans-
formation can be conducted by pushing the “forward”
button (right arrow icon). The target graph appears
on the right pane. The user can graphically edit the
target graph and apply a backward transformation by
pushing the “backward” button (left arrow icon). The
source graph can be edited as well, of course. The user
can optionally specify the source schema and the target
schema and can run the validation by pushing the check
button on both panes. The transformation itself can also
be checked.

For ease of debugging/understanding the behavior
of the bidirectional computation between two models,
trace information is instantly displayed between the
source and target (red part in Figure 2). If subgraphs

06-006

GRoundTram: An integrated framework for developing well-behaved bidirectional model transformations 135

on either pane are selected, corresponding subgraphs
on the other pane are also highlighted. This helps users
to understand how a modification on the target affects
that on the source, and vice versa.

3 Background: Bidirectional UnCAL
The GRoundTram system is built upon our recent

work [27] on bidirectionalization of UnCAL, a graph
algebra known in the database community for graph
querying [10]. It has been shown that any unidirec-
tional graph transformation written in UnCAL can be
fully bidirectionalized with a backward transformation
such that both forward and backward transformations
are consistent and well-behaved. We briefly explain the
basic results that will be used in this paper.

3.1 Graph data model
Graphs in UnCAL are rooted and directed cyclic

graphs with no order between outgoing edges. They are
edge-labeled in the sense that all information is stored
as labels on edges and labels on nodes serve as unique
identifiers and have no particular meaning. Figure 5(a)
gives a small example of a directed cyclic graph with
six nodes and seven edges. In text, it is represented by

g = {a : {a : g1}, b : {a : g1}, c : g2}
g1 = {d : {}}
g2 = {c : g2}

where the notation {l1 : g1, . . . , ln : gn} denotes a set
representing a graph which contains n edges with la-
bels l1, . . . , ln, each edge pointing to a graph gi, and the
empty set {} denotes a graph with a single node. Two
graphs g1 and g2 can be merged using the set union op-
eration g1 ∪ g2. In addition, the ε-edge is allowed to
represent a shortcut between two nodes, and works like
the ε-transition used in automata.

Two graphs in UnCAL are considered to be equal if
they are bisimilar. An intuitive understanding of bisim-
ilarity is that unfolding of cycles and duplication of
equivalent subgraphs do not affect the equivalence of

1

2

a

3

 b

4

c

5

a

a

c

6

d

(a) A simple graph

0

1

2

a

3

 b

4

 c

51

a

61

52

a

62

41

c

42

c

d

d

c

(b) An equivalent graph

Fig. 5 Graph equivalence based on bisimulation.

graphs, and unreachable parts from the root are ignored.
For instance, the graph in Figure 5(b) is equivalent to
the graph in Figure 5(a); the new graph has an addi-
tional ε-edge (denoted by the dotted line), duplicates
the graph rooted at node 5, and unfolds and splits the
cycle at node 4.

It is worth noting that bisimilarity plays an im-
portant role in bidirectionalization [27], query opti-
mization [10], and verification of graph transforma-
tions [33]. However, bisimilarity is different from
the usual equivalence of models whose elements have
unique identifiers. We will show how to bridge this gap
in Section 4.2.

3.2 UnCAL
The most important feature of UnCAL is that any

graph transformation in UnCAL is described by struc-
tural recursions or their composition.

A structural recursive function f in UnCAL is a re-
cursive computation scheme on graphs defined by

f ({}) = {}
f ({l : g}) = (l, g) � f (g)
f (g1 ∪ g2) = f (g1) ∪ f (g2)

where � is a given binary operator. Different choices of
� define different recursive functions. For simplicity,
the definition above is abbreviated to

sfun f ({l : g}) = (l, g) � f (g).

Note that even for a graph g having cycles, the com-
putation of f (g) always terminates under the usual re-
cursive semantics, where all recursive calls are memo-
ized and their results are reused to avoid entering infi-
nite loops.

As a simple example, we may use the following re-
cursive function a2d xc to replace all edges labeled a
by d and skip all edges labeled c for the graph in Fig-
ure 5(a).

sfun a2d xc ({l : g}) = if l = a then {d : a2d xc(g)}
else if l = c then a2d xc(g)
else {l : a2d xc(g)}

We can naturally extend the structural recursion
above so that it allows mutual recursion. Any number
of mutually recursive functions can be merged into one
by using the standard tupling method [31].

3.3 Bidirectional semantics of UnCAL
A query in UnCAL is usually run in the forward di-

rection: under an environment (a mapping from vari-
ables to graphs) ρ, a query Q generates a result graph
denoted by F [[Q]]ρ.

Let g = F [[Q]]ρ be a result graph. Assume that a
user has edited it into g′. For example, one may add

06-006

136 Progress in Informatics, No. 10, pp.131–148, (2013)

a new subgraph, modify some labels, or delete several
edges. In our previous study [27], we gave backward
semantics that properly reflect back the editing to the
original inputs. Formally speaking, given the modified
result graph g′ and the original input environment ρ,
we presented a method that computes the modified en-
vironment ρ′ = B[[Q]](ρ, g′).

By “properly reflecting back” (or well-behaved), we
mean the following two properties hold:

F [[Q]]ρ = g
B[[Q]](ρ, g) = ρ

(GETPUT)

B[[Q]](ρ, g′) = ρ′

B[[Q]](ρ,F [[Q]]ρ′) = ρ′
(WPUTGET)

The (GETPUT) property says that if no change is made
to the output g, there should be no change in the in-
put environment. The (WPUTGET) property is an un-
restricted version of the (PUTGET) property that ap-
peared in [17], which requires g′ ∈ Range(F [[Q]]) and
B[[Q]](ρ, g′) = ρ′ to imply F [[Q]]ρ′ = g′. The (PUT-
GET) property states that if a result graph is modified to
g′, which is in the range of the forward evaluation, this
modification can be reflected in the source such that a
forward evaluation will produce the same result g′. In
contrast, the (WPUTGET) property allows the modi-
fied result to be different (this difference is sometimes
called the view side-effect) from the result obtained by
a backward evaluation followed by a forward evalua-
tion, but requires both results to have the same effect
on the original source if the backward evaluation is ap-
plied again.

Although the (WPUTGET) property is weaker than
the (PUTGET) property that forbids view side-effect,
this property enables us to make flexible modifications
on the result graphs. For example, if the transforma-
tion includes a duplication, the target will include two
copies of the same data. If a user, being unaware of
the duplicates, edits only one of them, then this mod-
ification would be forbidden in the (PUTGET) setting,
because updating only one of the copy will make the
updated target out of the range of the transformation.
Instead, we reflect the updates and the user has a chance
to do another forward transformation to see the update
reflected in another copy in the view.

Even with the flexibility of (WPUTGET) explained
above, we reject updating of values that come from
transformation, like label d in a2d xc described ear-
lier. Because whatever reflection was made, another
forward transformation will always produce d again,
so the user’s modification in the target would not have
been preserved.

Note that these properties are true under bisimula-
tion equivalence. We additionally need encoding in

order to represent models whose equivalence is based
on isomorphism. In our earlier study in [42], we fill
this gap by encoding identifiers of the model elements
with dedicated edges. In this way, no distinct value-
equivalent subgraph encoding different model elements
will be contracted.

We use three different editing reflection mecha-
nisms [27] for different editing operations: edge renam-
ing, edge deletion, and subgraph insertion. Trace infor-
mation is used to reflect edge deletion and determine
the insertion point in the source. Insertion is handled
by using a general inversion technique [3] to enumerate
the pairs of the updated target and the corresponding
source. Unspecified edge label (corresponding to de-
fault values) in the source should be filled in by users.

Although we have an SQL-like select/replace/
delete-where surface syntax (described in section 4.1),
bidirectional interpretation of the transformation takes
place at the UnCAL level. Therefore, although we
can encode join operations by using consecutive where
clauses, this join operation is not our unit of bidirec-
tionalization (this join operation is translated to nested
structural recursions which are units of bidirectional-
ization), so we can not exploit these high level seman-
tics to reflect changes like relational lenses [8]. Diskin
et al. [13] pointed out a similar composability issue in
the state-based setting under the context of keys. We
do not use the concept of a key, so we do not have this
problem. We do not have a control over update policy
using the notion of key.

Hermann et al. [24] discuss the correctness of the
synchronization algorithm for TGGs. Compared with
this related work, our well-behavedness (correctness)
reasoning is only at the graph level of representation.
We could have better notion of correctness for users
at model level as in [24]. These related works are im-
portant towards our reasoning about correctness in the
model level.

4 Design and implementation of
GRoundTram

Figure 6 depicts the architecture of GRoundTram.
We provide a new user-friendly model transformation
language UnQL+ that is functional (rather than rule-
based as in many existing tools) and compositional with
high modularity for reuse and maintenance, and the ar-
chitecture handles models that are described by edge-
labeled graphs that are general enough to express var-
ious models. GRoundTram system runs on the power-
ful engine of bidirectional UnCAL, which has a set of
language-based tools: a bidirectional interpreter [27], a
graph and graph transformation verifier [33], an opti-
mizer to improve efficiency [28], and a checker of valid
updates in the backward transformation [40]. The key

06-006

GRoundTram: An integrated framework for developing well-behaved bidirectional model transformations 137

contributions in this implementation are (1) a transla-
tion of UnQL+ into UnCAL to enable the engine of
bidirectional UnCAL to execute UnQL+ bidirection-
ally, and (2) a bidirectional graph contraction algorithm
for contracting bisimilar UnCAL graphs so that an or-
dinary model will have a bidirectional correspondence
with an UnCAL graph.

In the rest of this section, we will focus on the ex-
ploration of UnQL+, the bidirectional graph contraction
algorithm, and the translation from UnQL+ to UnCAL.

4.1 Model transformation in UnQL+

UnQL+ is the language the GRoundTram system
provides for users to describe (bidirectional) model
transformations. It is an extension of the well-known
UnQL [10], a graph querying language, which is com-
positional and can be implemented by FO (TC) (first
order with transitive closure) with PTIME time com-
plexity for graph querying.

Model Transformation in UnQL+

(Compositional and Functional)

Model Transformation in UnQL+

(Compositional and Functional)

UnCAL Graph Algebra

(Structural Recursion)

UnCAL Graph Algebra

(Structural Recursion)

UnQL+ to UnCAL
Translation

UnQL+ to UnCAL
Translation

Source/Target ModelsSource/Target Models

Bidirectional

Interpreter

Bidirectional

Interpreter
OptimizerOptimizer

Transformation

Verifier

Transformation

Verifier

Graph

Verifier

Graph

Verifier

Update

Checker

Update

Checker

Backend Engine for Bidirectional UnCAL

UnCAL GraphsUnCAL Graphs

Bidirectional Graph
Contraction

Bidirectional Graph
Contraction

Frontend of Bidirectional UnCAL

Fig. 6 GRoundTram implementation on bidirectional Un-
CAL engine.

(template) T ::= {L : T, . . . , L : T } | T ∪ T | $g
| if BC then T else T
| select T where B, . . . , B
| replace Rp→ $G by T in T where B, . . . , B
| extend Rp→ $G with T in T where B, . . . , B
| delete Rp→ $G in T where B, . . . , B
| let sfun fname(L : $G) = . . . in fname(T)

(binding) B ::= Gp in $G | BC
(condition) BC ::= not BC | BC and BC | BC or BC

| isEmpty($G) | L = L | L � L | L < L | L ≤ L
(label) L ::= $l | a
(label pattern) Lp ::= $l | Rp
(graph pattern) Gp ::= $G | {Lp : Gp, . . . , Lp : Gp}
(regular path pattern) Rp ::= a | | Rp.Rp | (Rp|Rp) | Rp? | Rp∗ | Rp+

Fig. 7 Syntax of UnQL+.

Figure 7 gives the core syntax of UnQL+. A graph
transformation is described by a template expression to
construct a graph from graphs that are bound by graph
variables. The expression {l1 : t1, . . . , ln : tn} creates a
new node having n outgoing edges labeled li and point-
ing to the root of the graph computed from ti. The union
g1∪g2 constructs a graph with a root sharing the roots of
g1 and g2. The variable expression $g returns the graph
that is bound by $g in the environment (i.e., a mapping
from variables to graphs). The conditional expression
has the usual meaning, i.e., choosing different branch
according to the (binding) condition B.

Like other query languages, UnQL+ has a convenient
template expression select t where bs, which is used to
select the subgraphs satisfying the a sequence of condi-
tions bs, binds them to variables, and construct a result
according to the template expression t. For instance, the
following query extracts all persistent classes from the
class model in Figure 4, which is assumed to be bound
by $db.

select $class where
{Association.(src|dest).Class : $class} in $db,
{is persistent : {Boolean : true}} in $class

This query returns all bindings of the variable $class
satisfying the two conditions in the where clause. The
first condition is to find bindings of $class by matching
the regular path pattern Association.(src|dest).Class
with the graph bound by $db, while the second con-
dition is to ensure that the class is persistent.

In model transformations, one often wants to replace
a subgraph satisfying a certain condition by another
graph, and it is onerous to describe such transforma-
tions using select-where because some context structure
must be copied and propagated. To this end, we intro-
duce three new template expressions, namely, replace-

06-006

138 Progress in Informatics, No. 10, pp.131–148, (2013)

where, extend-where, and delete-where.

• The replace-where expression replaces a subgraph
with a new graph. For the following replace-where
expression,

replace r → $v by e1 in e2 where b1, . . . , bn

the semantics of this expression are that, starting
from the root node of e2, it traverses every path
and replaces the node $v, which is on each path
that matches r and satisfies b1...bn, by e1. Consider
the class model again, prefixing every name of the
class by “class ” can be done as follows. Note that
”ˆ” is a built-in function for string concatenation.

replace ∗ .Class.name.string→ $u

by {(”class ”ˆ$name) : {}} in $db

where {$name : {}} in $u

• The delete-where expression is used to describe
the deletion of part of the graph.

For the following delete-where expression,

delete r → $v in e where bs

the semantics of this expression are that, starting
from the root node of e, it traverses every path
and deletes the node $v, which is on each path that
matches r and satisfies bs. For instance, we may
eliminate all persistent classes by

delete Association.(src|dest).Class → $c

in $db

where {is persistent.Boolean : true}
in $c

where the subgraph matching $c will be deleted
from its original graph $db.

• The extend-where expression describes the exten-
sion of a graph with another graph.

For the following extend-where expression,

extend r → $v with e1 in e2 where bs

the semantics of this expression are that, starting
from the root node of e2, it traverses every path
and extends the node $v, which is on each path that
matches r and satisfies bs, with e1. For example,
we write the following transformation to add date
information to each class.

extend ∗ .class→ $c

with {date : ”2008/8/4”}
in $db

These three new template expressions can be auto-
matically translated to structural recursions in UnCAL
(see Section 4.3).

Unlike most rule-based model transformation lan-
guages, where model transformation composition is not
straightforwardly supported [15], UnQL+ is functional
and compositional; smaller model transformations can
be composed to form bigger ones (see Section 2 and
Section 5).

4.2 Bidirectional graph contraction
As explained in Section 3, our graph model is based

on bisimulation equivalence, which means bisimilar
graphs cannot be distinguished. Moreover, since Un-
CAL is based on bisimulation, a transformation may in-
troduce redundant nodes that are bisimilar to each other.
Therefore, after a transformation such redundancy has
to be eliminated in a normalization phase.

Fortunately, for any set of graphs that are bisimilar
to each other, there exists a unique normal form up to
isomorphism and we can obtain the normal form af-
ter a transformation by using the partition refinement
algorithm of Paige and Tarjan [41]. The algorithm’s
complexity is O(|E| log |V |), where |E| and |V | are the
numbers of edges and nodes, respectively, and we con-
sider that this level of complexity would be acceptable
in practice. Although this algorithm works on node-
labeled graphs, we lift the algorithm to our edge-labeled
graph model by converting edges labeled by l into two
unlabeled edges and a node between them labeled by l,
as described in [10]. Any bisimilar subgraphs are then
contracted to one subgraph, in which no pairs of nodes
are bisimilar to each other. In particular, leaf nodes
(nodes that have no outgoing edges) are bisimilar to
each other, so they all shrink to one node.

We carefully design our contraction algorithm so
that it forms a well-behaved bidirectional transforma-
tion that has the (GETPUT) and (WPUTGET) proper-
ties explained in Section 3.3, in the sense that no mod-
ification on the contracted graph results in no mod-
ification on the uncontracted graph, while the mod-
ified uncontracted graph can be obtained again after
re-uncontracting the graph obtained by contracting the
modified uncontracted graph. For example, suppose the
set of nodes V1 = {v11 , . . . , v1M } are contracted to v1,
and the set of nodes V2 = {v21 , . . . , v2N } are contracted
to v2. Further, suppose an edge (v1, l, v2) is inserted in
the contracted graph. As a result, edges labeled l are in-
serted between V1 and V2 in the uncontracted graph. If
M > 1 and N > 1, then edges labeled l are inserted only
between pairs of nodes that were originally connected
in the uncontracted graph, although all-to-all connec-
tions from V1 to V2 are also well-behaved. If no pair of
nodes were originally connected, then the above all-to-

06-006

GRoundTram: An integrated framework for developing well-behaved bidirectional model transformations 139

all connection is used.
It is worth noting that (WPUTGET) law (instead

of PURGET) here is not caused by the duplication
of forward transformation. Violation of (PUTGET)
law occurrs when the modification of the target makes
non-bisimilar nodes bisimilar. For example, sup-
pose source graph {a:{b:{}}, a:{c:{}}}. Contraction will
produce {a:{b:{}}, a:{c:{}}}. And suppose the label
c is modified to b in the contracted graph. Then
backward transformation will produce {a:{b:{}}, {b:{}}}.
Next foward transformation (contraction) will produce
{a:{b:{}}}, which is not isomorphic to previous target
{a:{b:{}}, {b:{}}}, although they are bisimilar. Since con-
traction transforms bisimilar graphs to its normal form
up to isomorphism, the non-isomorphic targets should
be considered different, so only (WPUTGET) law is
satisfied.

4.3 Translating UnQL+ to UnCAL
UnQL+ is different from UnCAL in that it uses four

important template expressions, namely select, replace,
extend, and delete, to describe graph transformations
rather than using structural recursion. In this section,
we show that all these template expressions can be
translated into structural recursions in UnCAL.

The select expression, which is inherited from
UnQL, can be translated into structural recursion in
[10] (the explanation is omitted). According to the se-
mantics described in Section 4.1, the delete and extend
expressions can be defined in terms of the replace ex-
pression as:

delete Rp→ $v in e1 where bs
⇒ replace Rp→ $v by {} in e1 where bs

extend Rp→ $v with e1 in e2 where bs
⇒ replace Rp→ $v by $v ∪ e1 in e2

where bs

Therefore, what we need to show is how the replace
expression is translated into a structural recursion.

Our idea for this translation is to use structural recur-
sion to simulate the behavior of a deterministic finite
automaton (DFA) for finding the nodes in the graph
where the replace operation is to be applied. For the
select expression in UnQL, NFA is used to define the
structural recursion for finding the nodes in graph to be
selected [10]. The reason we use a DFA instead of an
NFA is to keep the context correct. The detailed expla-
nation is provided at the end of this section.

Now, consider the following general form of the re-
place expression.

replace Rp→ $v by e1 in e2 where bs

First, we translate the regular path pattern Rp into a

DFA (Q,Σ$l, δ, q0, F), where Q = {q0, . . . , qN} is a finite
set of states, Σ$l = Σ ∪ {$l} (where Σ = {l0, . . . , lK}) is
a finite set of labels used in Rp, δ : Q × Σ → Q is the
transition function, q0 ∈ Q is the start state, and F ⊆ Q
is a set of accept states. We use the special label $l to
denote a label other than those used in Rp.

Next, we introduce N + 1 functions hq0 , . . . , hqN ,
where hqi corresponds to state qi, and define each hqi

as a structural recursion in the following way. For each
label l ∈ Σ$l, we define

hqi({l : $v}) = ei j

and construct a graph with ei j by considering two cases.
Note that j ranges over transitions from qi. If δ(qi, l) �
F (i.e., transition from qi through l does not reach to an
accept state), we keep the context by propagating l and
continuing the recursive computation by defining

ei j = {l : hδ(qi ,l)($v)}.
Otherwise, we check whether $v satisfies the condition
bs. If it does, we replace the graph with the query result
of e1 satisfying bs:

ei j = if isEmpty (select {“found”} where bs)

then {l : hδ(qi ,l)($v)}
else {l : (select e1 where bs)}.

The condition isEmpty(...) in the if-expression checks
whether the condition bs holds. Note that since e1

might be evaluated to {}, the checking expression
should not be select e1 where bs.

By applying the function associated with the initial
state to e2, we get a UnQL expression having both
structural recursions and select expressions. Finally,
since the select expressions can be translated into struc-
tural recursions by using the existing method, we can
get structural recursions in UnCAL.

Example 1. Our algorithm maps the replace expres-
sion shown in Figure 8(a) to the structural recursion in
Figure 8(c) via the DFA obtained from ∗.(a|c) in Fig-
ure 8(b).

This example also demonstrates the user-friendliness
of the replace syntax, since without this extension, we
have to directly code the mutually recursive function
in Figure 8(c), after manually constructing the corre-
sponding DFA in Figure 8(b). This manual coding
would be error-prone and much more verbose than the
replace syntax.

Now, let us show the correctness of the above trans-
lation from UnQL+ to UnCAL. As described in Sec-
tion 4.1, we interpret the expression

replace r → $v by e1 in e2 where bs

06-006

140 Progress in Informatics, No. 10, pp.131–148, (2013)

replace ∗ .(a|c)− > $v
by $v′

in $db
where {g : $u} in $v,

{ ∗ .d : $v′} in $v
(a) A replace expression

s1

a
c

s0

$l
c

a

$l

(b) DFA for ∗ .(a|c)

let sfun hs0({a : $v}) = if isEmpty(e1)
then {a : hs1($v)}
else {a : e2}

| hs0({c : $v}) = if isEmpty(e1)
then {c : hs1($v)}
else {c : e2}

| hs0({$l : $v}) = {$l : hs0($v)}
sfun hs1({a : $v}) = if isEmpty(e1)

then {a : hs1($v)}
else {a : e2}

| hs1({c : $v}) = if isEmpty(e1)
then {c : hs1($v)}
else {c : e2}

| hs1({$l : $v}) = {$l : hs0($v)}
in hs0($db)
where e1 ≡ select {“found” : {}}

where ({g : $u} in $v), ({ ∗ .d : $v′} in $v)
e2 ≡ select $v′

where ({g : $u} in $v), ({ ∗ .d : $v′} in $v)
(c) Translated structural recursion

Fig. 8 A translation example.

so that, starting from the root node of e2, it traverses ev-
ery path and replaces the node $v, which is on each path
that simultaneously matches r and satisfies bs, by e1

(actually select e1 where bs should be used instead of
e1 to obtain the bindings from bs). More formally, it is
intended to work equivalently to the following pseudo
code.

let sfun f ({$l : $v}) =
if MATCH[r, bs]($v)
then {$l : select e1 where bs}
else {$l : f ($v)}

in f (e2)

where MATCH[r, bs] is a pseudo predicate that is eval-
uated to be true if and only if $v is the first node
on the path from the root that matches r and satis-
fies bs. All branches in our desugaring have either
the form {$l : select e1 where bs} or {$l : f ($v)}.
Thus, what we have to prove is that the MATCH[r, bs]
pseudo predicate is correctly encoded in the mutual re-
cursion of structural recursive functions. First, whether
the node $v matches r is encoded in the mutual re-
cursion, which simulates the behavior of the determin-
istic finite automaton (DFA). This is a standard tech-

(a) A source graph (b) A target graph

Fig. 9 Source graph and and its transformation by replace
expression in Figure 8(a).

nique to represent regular patterns. Next, whether the
node $v satisfies bs is encoded in a if-expression having
isEmpty(select {“found”} where bs) as its condition.
This condition holds if and only if bs does not hold,
since isEmpty(e) holds if and only if e is evaluated into
{}. Thus, this if-expression results in select e1 where bs
when bs holds. Otherwise, it results in keeping the in-
put label as $l, together with calling the function as-
sociated with the next state in the DFA. Therefore, the
MATCH[r, bs] pseudo predicate is correctly encoded in
our desugaring code.

Example 2. Figure 9(b) shows the result of using
the replace expression in Figure 8(a) to transform the
cyclic graph in Figure 9(a). This example illustrates
what happens if a pattern matches the middle of a cycle.
Since the replace expression captures the first match
along the path, node 4 in Figure 9(a) matches for re-
placement. Note that DFA in Figure 8(b) only corre-
sponds to a path in the replace clause, but the where
clause also works to specify the matching node. There-
fore, even though node 5 also matches by virtue of the
DFA, it does not actually match since it does not sat-
isfy the where clause. The obtained binding of $v′ is a
subgraph under node 0, bound by the regular path pat-
tern ∗.d The subgraph under node 8 in Figure 9(b) is
a copy of the subgraph under node 0. The entire corre-

06-006

GRoundTram: An integrated framework for developing well-behaved bidirectional model transformations 141

spondence of the source nodes to target nodes is

7→ {0}
6→ {10, 7}
5→ {9, 6}
4→ {5}
3→ {4}
2→ {3}
1→ {2}
0→ {8, 1}

The ’first match’ semantics correspond to a translation
algorithm which uses select to generate subgraphs in
the by clause, since the select construct itself does not
conduct recursive replacement as replace can.

Necessity of DFA in the translation of UnQL+
We give a detailed explanation of why DFA is nec-

essary for translation of replace/delete/extend con-
structs.

Automata created for replace/delete/extend play a
role that is different from those created for select.

For select, a regular path pattern (RPP) represents
the paths from a node to target nodes reached by the
paths and all the subgraphs below the target nodes are
unified by graph union ∪ and returned as a result. Mul-
tiple matches from a given node through identical la-
bels are encoded in an automaton by transitions (non-
deterministic branches) to different sub-automata that
encodes different subsequent patterns. This is imple-
mented in sfun that calls different sfuns associated with
the target states and unify the graphs returned by those
called sfuns by graph union ∪. If, during the traver-
sal, no further match is possible for the RPP, then no
further transition in the automata is possible (i.e., dead
state is reached) and correspondingly the sfun returns
empty ({}). Note that there is no semantic problem if
the NFA for select is determinized. It is just unneces-
sary to determinize in order to preserve semantics. Also
note that by dead sates, we mean states with no transi-
tions, not useless states like those unreachable from the
initial state.

Instead, extend uses RPP to specify target nodes and
unify the subgraphs below each of these nodes with a
given subgraph by ∪, while the rest of the input graph
is kept intact. It is implemented by traversing from the
top as select does, copying the traversed path, instead of
discarding the traversed path in case of select. Before
reaching the target node during the traversal, if no more
match is possible, then the original subgraph should just
be returned. This situation is also represented by a spe-
cial dead state in the automata encoding RPP, and cor-
responding sfun just returns the subgraph. On the other
hand, if transitions with an identical label have multi-
ple matches, NFA based encoding would utilize differ-

ent sub-automata for the targets of these transitions and
corresponding sfun unifies the results by ∪. Suppose
input graph $db = {a : {b : {x : {}}}} and transformation

extend (a.b)|(a.c)→ $v with {y : {}} in $db

The NFA approach would generate an automaton in
which target sub-automata from the initial state via
transition by a would be different, each encoding the
rest of the patterns b and c. So corresponding sfun
would call two sfuns for input a and unify them.
Then, the former sub-automaton would copy b and
then produce matching result by unifying {x : {}}
and given graph {y : {}}, thus, {b:{x:{}, y:{}}}. On
the other and, the latter sub-automaton would produce
non-matching result after copying b the original sub-
graph, thus, {b:{x:{}}}. So the unified result would be
{a:{b:{x:{}, y:{}}}, a:{b:{x:{}}}}. However, semantics of
extend should return {a:{b:{x:{}, y:{}}}} instead. Al-
though they are trace equivalent, they are not bisimi-
lar. On the contrary, DFA approach produces DFA with
only one target state from the transition by label a from
the initial state. The target sub-automaton is only one.
Therefore, corresponding sfun produces linear preced-
ing paths before reaching target node of the RPP, i.e.,
{a : {b : }}. Similar arguments apply for replace
and delete. Therefore, DFA is essential to implement
extend/replace/delete correctly. It is true that exponen-
tial blowup might occur during determinization, how-
ever, if the RPP is not complex, i.e., it is not large
and corresponding NFA does not include many nonde-
terministic branches, the number of states will remain
moderate. Note that the need of DFA does not come
directly from the dead states, but from the problem of
unifying the result of subautomaton which might be-
have differently (some of which might reach dead state
and the other reach matching state, as in the example
given above).

5 Evaluation and applications
Here, we demonstrate the power (expressiveness and

efficiency) of the GRoundTram system through the de-
velopment of a known nontrivial (bidirectional) model
transformation between UML class diagrams and rela-
tional databases models, and highlight its usefulness in
practice by giving a list of important applications de-
veloped by other groups using it.

5.1 Developing bidirectional Class2RDB
Class2RDB is a model transformation proposed by

Bézivin et al. [7] as a common benchmark example
for all the participants of the Model Transformation in
Practice workshop for comparing and contrasting var-
ious approaches to model transformation. Class2RDB
maps Class models to RDB models. For instance, it can

06-006

142 Progress in Informatics, No. 10, pp.131–148, (2013)

Fig. 10 An RDB model.

be used to transform the Class model in Figure 3 into
the RDB model in Figure 10. Class2RDB maps each
persistent class in a Class model to a table in the RDB
model. All attributes of the class and its subclasses are
mapped to columns in the corresponding table. If a pri-
mary attribute belongs to the class, a pkey reference
from the table model element pointing the correspond-
ing column model element is established. If an attribute
belongs to its subclass which is persistent, a reference
describing foreign key to the corresponding table model
element is established.

We show that UnQL+ is powerful enough to (com-
positionally) describe the forward transformation (from
class diagrams to relational database models), while
getting the backward transformation for free in our
framework. Figure 11 shows the whole transformation
in UnQL+. Let us briefly explain how this UnQL+ pro-
gram was developed by splitting the transformation into
two steps. In the first step (denoted by the binding of
$tables_step1), every persistent class is mapped
to a subgraph representing table, which is connected to
subgraphs that correspond to columns originated from
attributes of the class and its subclasses. All subclasses
are collected by using regular path patterns as shown in
Section 4.1. If necessary, references pkey and fkeys
are added by an extend construct in UnQL+, provided
that the references refs of Fkey do not point to the
referring table because the table may not have been con-
structed yet. They point to the name of the referring
table instead. In the second step (denoted by the bind-
ing of $tables_step2), each name pointed to by
refs is replaced by the corresponding table by using a
replace construct.

5.2 Optimization and efficiency
Next, we show that the forward and backward trans-

formations can be run efficiently in a scalable manner,
while the inefficiency due to composition can be au-
tomatically removed through our fusion optimization.
The fusion operation was originally designed to merge
two successive applications of structural recursions into
one [10]. It was later enhanced in [28], [29].

Table 1 summarizes the performance of bidirectional

Table 1 Summary of experiments (running time is in CPU
seconds).

direction no rewriting rewriting

Class2RDB
forward 1.18 0.68

backward 14.5 7.90

PIM2PSM
forward 0.08 0.07 (13)

backward 1.62 0.75

C2Osel
forward 0.04 0.05 (11)

backward 0.26 0.27

C2Osel’
forward 0.05 0.04 (11)

backward 2.53 1.26

Ex1
forward 0.036 0.007 (1)

backward 0.83 0.69

transformations on various compositional transforma-
tions. The test used a MacOSX on a 17 inch Mac-
BookPro, with a 3.06 GHz Intel Core 2 Duo CPU. An
edge-renaming algorithm was used in the measurement,
and no modification was actually made, since it does
not significantly affect the running time. The right-
most column shows the running time with rewriting op-
timization. The number of nodes and edges of the graph
(Figure 4) that encoded the Class model (Figure 3) in
Class2RDB were respectively 70 and 73. The sizes
of the source models in the other transformations were
similar. (See the analysis at the end of this subsection
for the performance with respect to the size of the in-
put graph.) In the table, PIM2PSM stands for Platform
Independent Model to Platform Specific Model trans-
formation, C2Osel for transformation of a customer
oriented database into an order oriented database, fol-
lowed by a simple selection, and Ex1 for the example
from our previous paper [25], which in tern was bor-
rowed from [10]. Ex1 is a composition of two structural
recursions. The numbers in parentheses show how of-
ten the fusion transformation happened. Our rewrites
led to performance improvements in both directions.
As the run-time optimization, unreachable parts were
removed after every application of the UnCAL struc-
tural recursion operator. This run-time optimization is
effective when the composed transformation has high
selectivity (generates small output from large input),
whereas fusion is effective when the selectivity is low.
Note that this optimization was turned off for C2Osel’.
The slowdown in C2Osel after rewriting accounts for
this trade-off. For the principles of this rewriting opti-
mization, please refer to our papers [28], [29]. You can
test other optimizations, like, e.g., subgraph computa-
tion optimization, at our project’s website [2].

To account for the slowdown of the backward trans-
formation compared with the forward transformation,
we took a sample execution profile. The backward

06-006

GRoundTram: An integrated framework for developing well-behaved bidirectional model transformations 143

select $tables_step2 where
$tables_step1 in
(select $tables where

{Class:$class} in (select $assoc where {Association.(src|dest):$assoc} in $db),
{is_persistent.Boolean:true} in $class,
$dests in (select {Class:$dest} where {(src_of.Association.dest.Class)+:$dest} in $class),
$related in ({Class:$class} U $dests),
$cols in (select {cols:{Column:{name:$n,type:$t}}}

where {Class.attrs.Attribute:{name:$n,type:$t}} in $related),
$tables in (select {Table:{name:$cname} U $cols} where {name:$cname} in $class),
$tables in (extend Table -> $table with $pkeys U $fkeys in $tables where

{cols:$cols} in $table,
{Column.name.String:{$cname:{}}} in $cols,
$pkeys in (select {pkey:$cols} where

{attrs.Attribute: {is_primary.Boolean:true, name.String:{$pname:{}}}} in $class,
$cname = $pname),

$fkeys in (select {fkeys:{Fkey:{cols:$cols, ref:$ref}}} where
{Class:{is_persistent.Boolean:true,

attrs.Attribute.name.String:{$aname:{}}, name:$ref}} in $dests,
$cname = $aname))),

$tables_step2 in (replace Table.fkeys.Fkey.ref -> $ref by {Table:$table} in $tables where
{Table:$table} in $tables_step1,
{String:{$rname:{}}} in $ref,
{name.String:{$tname:{}}} in $table,
$tname = $rname)

Fig. 11 Class2RDB in UnQL+.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000

E
xe

cu
tio

n
C

P
U

 ti
m

e[
se

c]

No. of Nodes in the Source Graph

a2d_xc(bwd)
5.93e-7*x**2.65

a2d_xc(fwd)
9.29e-7*x**2.23

Fig. 12 Transformation time v.s. source graph size.

transformation decomposes a graph using reachable
subgraph extraction computation. In addition, the struc-
tural recursion let sfun . . . eb . . . in ea involves restoring
the input of the argument expression ea, which in turn
requires examining environment produced by the back-
ward transformation of the structural recursion and su-
perposing the resultant graphs in order to restore the
entire graph as the updated target of the argument ex-
pression. The backward transformation of PIM2PSM
(after rewriting) uses 15 times more node id compari-
son operations compared with the forward transforma-
tion. The node comparisons are a result of adding or
looking up nodes or edges in sets or maps that are im-
plemented by using balanced binary trees in the OCaml
standard library.

Figure 12 shows how the size of the source model
affects time to execute the a2d xc transformation de-

scribed in Section 3, in both directions. Lattice-like
regularly shaped strongly connected graphs are used as
the source. These execution times match the complex-
ity of PTIME mentioned in Section 4.1 for relatively
large (several thousand nodes) graphs.

5.3 Other applications
The GRoundTram website [2] has a bunch of exam-

ples, big and small, and all the examples presented
in this paper can be tried through the demo website.
In addition, we would like to give the reader a rough
idea about the current status of GRoundTram uses by
listing applications that have been or are being devel-
oped by other groups: they include bidirectional feature
model transformation [48] (Peking University), bidirec-
tional transformation between VDM (Vienna Devel-
opment Method) specifications and Java implementa-
tion [34] (another group at National Institute of Infor-
matics), bidirectional transformation between Simulink
diagrams and UML diagrams [47] (Waseda Univer-
sity), bidirectionalizing ATL (ATLAS Transformation
Language) with GRoundTram [42] (Shibaura Institute
of Technology), and co-evolution of Java models and
codes [51] (Open University & Shanghai Jiao Tong
University). Moreover, Chen [11] at Shanghai Jiao
Tong University identifies GRoundTram as a potential
means to synchronize the behavior model of concur-
rent systems. All these activities indicate the promise
of GRoundTram as a practical tool.

As an example of our own experience in [51], we ex-
tensively used the UnQL+ syntax as an internal rep-

06-006

144 Progress in Informatics, No. 10, pp.131–148, (2013)

resentation that was automatically generated by the
blinkit∗4 tool. Although it was not directly used by
users, it was a concise way of describing the user
editing operations to Java code, and also for exploit-
ing high-level optimization opportunities at this syntax
level.

6 Related work
Besides the related work in the introduction, we

highlight some others related to graph-based model
transformation and linguistic approach to bidirectional
transformation.

Our work is much related to research on model trans-
formation based on graph transformation. AGG [46] is
a rule-based visual tool that supports typed (attributed)
graph transformations, including type inheritance and
multiplicities. Triple Graph Grammars (TGG) [21],
[37] is intended as a declarative specification of model-
to-model integration rules. MOFLON [4] implements
TGG and adopts the visual notation of QVT Rela-
tional, the OMG standard bidirectional model transfor-
mation language. Giese and Hildebrandt [20] proposed
a model synchronization algorithm based on TGG that
can synchronize large-scale models. Guerra et al. [23]
proposed more general notion called “inter-modelling”,
where a specification can be compiled into different
operational mechanisms not only for model-to-model
transformation but also for model matching and model
traceability. To perform forward and backward trans-
formations, a pattern specification is compiled into
Triple Graph Grammar (TGG) operational rules.

Different from these rule-based approaches, ours is a
functional one that supports model transformation com-
position and its automatic optimization. As far as we
are aware, this is the first nontrivial functional and al-
gebraic framework for model transformation.

This study was inspired by the recent linguistic ap-
proach to bidirectionalization of the tree transforma-
tion [9], [17], [18], [32], [39] for tree data synchroniza-
tion. One important feature of this approach is clear
bidirectional semantics, something that is missing from
most of the existing bidirectional model transformation
systems [43]. Although some attempts at using the lin-
guistic approach have been made [6], [50], it remains a
challenge to provide a general bidirectional framework
for graphs which are more complicated than trees, and
our work is a big step in this direction.

GRoundTram has grown out of our two-year effort
to realize the emergent idea presented in our short pa-
per [26]. UnQL+ is based on the graph query language
UnQL [10] but it is significantly extended with a pow-
erful language construct replace that can handle trans-

∗4 http://computing-research.open.ac.uk/linkit/

formation context. It is also worth noting that a simple
replace expression was studied in [25] but it can nei-
ther deal with regular path expressions nor treat multi-
ple graph databases.

7 Conclusions
We proposed a novel algebraic framework called

GRoundTram to support systematic development of
bidirectional model transformation. Different from
many rule-based frameworks, our framework is func-
tional and algebraic, and based on a graph algebra
and structural recursion. Our new framework supports
systematic development of model transformations in a
compositional manner, has a clear semantics for bidi-
rectional model transformation, and can be efficiently
implemented.

This is our first step towards bidirectional model pro-
gramming, a linguistic framework to support system-
atic development of model transformation programs. In
the future, we will look more into relation between the
rule-based approach and the algebraic and functional
approach, and see how to integrate them into a more
powerful framework for bidirectional model transfor-
mation. One initial attempt has already been made by
integrating GRoundTram with ATL [42], and we plan
to continue this line of research by collaborating with
the AtlanMod [1] team. In such an integration of model
transformation frameworks, we need to automate the
graph encoding of UML-like generic diagrams that are
not yet fully automated. Several attempts towards au-
tomation had been made [52], and we plan to deal with
Eclipse Modeling Framework (EMF) models as well.
Another direction towards integration is the approach
by Wider [49]. In this approach, asymmetric lens was
implemented as an internal DSL in Scala. Although it
is not graph-based, the Java-friendliness of the host lan-
guage may make it easier to integrate with the model
driven engineering framework.

Last but not least, we currently do not have any ex-
plicit control over update policy in backward trans-
formations. The only property we have is well-
behavedness described by the (GETPUT) and the
(WPUTGET). Even if multiple source models may be
possible as a result of backward transformation, pro-
grammer do not have a way to choose them. Control-
ling the choice is one of our important future work.

Acknowledgments
We would like to thank the anonymous reviewers

for their thorough comments and constructive sugges-
tions to improve the paper. The anonymous ASE’11
reviewers for the prior version of this paper also made
helpful suggestions. We also thank Kazutaka Matsuda,
Kazuyuki Asada, and Isano Sasano for their valuable

06-006

GRoundTram: An integrated framework for developing well-behaved bidirectional model transformations 145

discussions with us. The research was supported in part
by the Grand-Challenging Project on the “Linguistic
Foundation for Bidirectional Model Transformation”
of the National Institute of Informatics, and a Grant-
in-Aid for Scientific Research for Encouragement of
Young Scientists (B) No. 20700035, and a Grant-in-Aid
for Scientific Research (B) No. 22300012.

References
[1] The AtlanMod team web site: http://www.emn.fr/x-

info/atlanmod/
[2] The BiG project web site: http://www.biglab.org/
[3] S. M. Abramov and R. Glück, “Principles of inverse

computation and the universal resolving algorithm,” In
The Essence of Computation, pp.269–295, 2002.

[4] C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr,
MOFLON, “A Standard-Compliant Metamodel-
ing Framework with Graph Transformations,” In
A. Rensink and J. Warmer, editors, Model Driven
Architecture - Foundations and Applications: Second
European Conference, vol.4066 of Lecture Notes in
Computer Science (LNCS), pp.361–375, Heidelberg,
Springer Verlag, 2006.

[5] M. Antkiewicz and K. Czarnecki, “Framework-specific
modeling languages with round-trip engineering,” In
MoDELS 2006: Proceedings of the 9th International
Conference on Model Driven Engineering Languages
and Systems, pp.692–706, Springer-Verlag, 2006.

[6] M. Antkiewicz and K. Czarnecki, “Design space of
heterogeneous synchronization,” In GTTSE ’07: Pro-
ceedings of the 2nd Summer School on Generative and
Transformational Techniques in Software Engineering,
2007.

[7] J. Bézivin, B. Rumpe, A. Schürr, and L. Tratt, “Model
transformation in practice workshop announcement,”
In Satellite Events at the MoDELS 2005 Conference,
pp.120–127, Springer-Verlag, 2005.

[8] A. Bohannon, B. C. Pierce, and J. A. Vaughan, “Re-
lational lenses: a language for updatable views,” In S.
Vansummeren, editor, PODS, pp.338–347, ACM, 2006.

[9] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz,
and A. Schmitt, “Boomerang: resourceful lenses for
string data,” In G. C. Necula and P. Wadler, editors,
POPL ’08: ACM SIGPLAN–SIGACT Symposium on
Principles of Programming Languages, pp.407–419.
ACM, 2008.

[10] P. Buneman, M. F. Fernandez, and D. Suciu, “UnQL:
a query language and algebra for semistructured data
based on structural recursion,” VLDB Journal: Very
Large Data Bases, vol.9, no.1, pp.76–110, 2000.

[11] Yuting Chen, “A bidirectional graph transformation ap-
proach to analysis of concurrent software models,” In
Software Engineering and Service Sciences (ICSESS),
2010 IEEE International Conference on, pp.339–343,
july 2010. doi: 10.1109/ICSESS.2010.5552447.

[12] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr,
and J. F. Terwilliger, “Bidirectional transformations: A
cross-discipline perspective,” In International Confer-
ence on Model Transformation (ICMT 2009), pp.260–
283, LNCS 5563, Springer, 2009.

[13] Z. Diskin, Y. Xiong, and K. Czarnecki, “From state-
to delta-based bidirectional model transformations:
the asymmetric case,” Journal of Object Technology,
vol.10, no.6, pp.1–25, 2011.

[14] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and G.
Taentzer, “Information preserving bidirectional model
transformations,” In Proceedings of the 10th interna-
tional conference on Fundamental approaches to soft-
ware engineering, FASE’07, pp.72–86, Berlin, Heidel-
berg, 2007. Springer-Verlag. ISBN 978-3-540-71288-6.

[15] K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Leven-
dovszky, U. Prange, G. Taentzer, D. Varró, and S. Varró-
Gyapay, “Model transformation by graph transforma-
tion: A comparative study,” Presented at MTiP 2005.
http://www.inf.mit.bme.hu/FTSRG/Publications/varro/
2005/mtip05.pdf, 2005.

[16] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North,
and G. Woodhull, “Graphviz and dynagraph - static and
dynamic graph drawing tools,” In GRAPH DRAWING
SOFTWARE, pp.127–148, Springer-Verlag, 2003.

[17] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce,
and A. Schmitt, “Combinators for bi-directional tree
transformations: a linguistic approach to the view up-
date problem,” In POPL ’05: ACM SIGPLAN–SIGACT
Symposium on Principles of Programming Languages,
pp.233–246, 2005.

[18] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C.
Pierce, and A. Schmitt, “Combinators for bidirectional
tree transformations: A linguistic approach to the view-
update problem,” ACM Trans. Program. Lang. Syst.,
vol.29, no.3, 2007.

[19] M. Garcia, “Bidirectional synchronization of multiple
views of software models,” In Proceedings of DSML-
2008, vol.324 of CEUR-WS, pp.7–19, 2008.

[20] H. Giese and S. Hildebrandt, “Efficient model synchro-
nization of large-scale models,” Technical Report 28,
Hasso Plattner Institute at the University of Potsdam,
2009.

[21] H. Giese and R. Wagner, “Incremental model syn-
chronization with triple graph grammars,” In MoDELS
2006: Proceedings of the 9th nternational Conference
on Model Driven Engineering Languages and Systems,
pp.543–557, Springer Verlag, 2006.

[22] J. Grundy, J. Hosking, and W. B. Mugridge, “Inconsis-
tency management for multiple-view software develop-
ment environments,” IEEE Trans. Softw. Eng., vol.24,
no.11, pp.960–981, 1998.

[23] E. Guerra, J. Lara, and F. Orejas, “Inter-modelling
with patterns,” Software & Systems Modeling, pp.1–

06-006

146 Progress in Informatics, No. 10, pp.131–148, (2013)

30, 2011. ISSN 1619-1366. doi: 10.1007/s10270-011-
0192-1.

[24] F. Hermann, H. Ehrig, F. Orejas, K. Czarnecki, Z.
Diskin, and Y. Xiong, “Correctness of model syn-
chronization based on triple graph grammars,” In Lec-
ture Notes in Computer Science, vol.6981, pp.668–682,
Springer, 2011. ISBN 978-3-642-24484-1.

[25] S. Hidaka, Z. Hu, H. Kato, and K. Nakano, “Towards
a compositional approach to model transformation for
software development,” In SAC’09: Proceedings of the
2009 ACM symposium on Applied Computing, pp.468–
475, ACM, 2009.

[26] S. Hidaka, Z. Hu, H. Kato, and K. Nakano, “A composi-
tional approach to bidirectional model transformation,”
In ICSE Companion, pp.235–238, IEEE, 2009.

[27] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and
K. Nakano, “Bidirectionalizing graph transformations,”
In ACM SIGPLAN International Conference on Func-
tional Programming, pp.205–216, ACM, 2010.

[28] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, K.
Nakano, and I. Sasano, “Marker-directed Optimization
of UnCAL Graph Transformations,” In Proceediings
of 21st International Symposium on Logic-Based Pro-
gram Synthesis and Transformation (LOPSTR 2011),
vol.7225 of LNCS, pp.123–138, Odense, Denmark,
2011.

[29] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, K.
Nakano, and I. Sasano, “Marker-directed Optimization
of UnCAL Graph Transformations (revised version),”
Technical Report GRACE-TR-2011-06, GRACE Center,
National Institute of Informatics, Nov. 2011.

[30] S. Hidaka, Z. Hu, K. Inaba, H. Kato, and K. Nakano,
“GRoundTram: An integrated framework for develop-
ing well-behaved bidirectional model transformations
(short paper),” In 26th IEEE/ACM International Confer-
ence On Automated Software Engineering, pp.480–483,
IEEE, 2011.

[31] Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano, “Tu-
pling calculation eliminates multiple data traversals,”
In ACM SIGPLAN International Conference on Func-
tional Programming (ICFP’97), pp.164–175, Amster-
dam, The Netherlands, ACM Press, June 1997.

[32] Z. Hu, S.-C. Mu, and M. Takeichi, “A programmable ed-
itor for developing structured documents based on bidi-
rectional transformations,” Higher-Order and Symbolic
Computation, vol.21, no.1-2, pp.89–118, 2008.

[33] K. Inaba, S. Hidaka, Z. Hu, H. Kato, and K. Nakano,
“Graph-transformation verification using monadic
second-order logic,” In P. Schneider-Kamp and Michael
Hanus, editors, PPDP, pp.17–28, ACM, 2011.

[34] F. Ishikawa, “Towards customizable and bi-
directionally traceable transformation between vdm++
and java,” In The 9th Overture/VDM Workshop, June
2011.

[35] F. Jouault and J. Bézivin, “KM3: A DSL for metamodel
specification,” In Formal Methods for Open Object-
Based Distributed Systems, pp.171–185, LNCS 4037,
Springer, 2006.

[36] F. Klar, A. Königs, and A. Schürr, “Model transforma-
tion in the large,” In I. Crnkovic and A. Bertolino, edi-
tors, ESEC/SIGSOFT FSE, pp.285–294, ACM, 2007.

[37] A. Königs and A. Schürr, “Tool integration with triple
graph grammars - a survey,” Electronic Notes in The-
oretical Computer Science, vol.148, no.1, pp.113–150,
Feb. 2006.

[38] R. Lämmel, “Coupled Software Transformations (Ex-
tended Abstract),” In First International Workshop on
Software Evolution Transformations, Nov. 2004.

[39] K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and
M. Takeichi, “Bidirectionalization transformation based
on automatic derivation of view complement func-
tions,” In 12th ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP 2007), pp.47–
58, ACM Press, Oct. 2007.

[40] K. Nakano, S. Hidaka, Z. Hu, K. Inaba, and H. Kato,
“Simulation-based graph schema for view updatability
checking of graph queries,” Technical Report GRACE-
TR11-01, GRACE Center, National Institute of Infor-
matics, May 2011.

[41] R. Paige and R. Tarjan, “Three partition refine-
ment algorithms,” SIAM Journal of Computing,
vol.16, no.6, pp.973–988, 1987. DOI: http://dx.doi.org/
10.1137/0216062.

[42] I. Sasano, Z. Hu, S. Hidaka, K. Inaba, H. Kato, and
K. Nakano, “Toward bidirectionalization of ATL with
GRoundTram,” In Theory and Practice of Model Trans-
formations, Fourth International Conference, ICMT
2011, vol.6707 of LNCS, pp.138–151, Springer, June
2011.

[43] P. Stevens, “Bidirectional model transformations in
QVT: Semantic issues and open questions,” In G. En-
gels, B. Opdyke, D. C. Schmidt, and F. Weil, editors,
Proc. 10th MoDELS, vol.4735 of Lecture Notes in Com-
puter Science, pp.1–15, Springer, 2007.

[44] P. Stevens, “A landscape of bidirectional model trans-
formations,” In R. Lämmel, J. Visser, and J. Saraiva,
editors, Generative and Transformational Techniques in
Software Engineering II, pp.408–424, Springer-Verlag,
Berlin, Heidelberg, 2008. ISBN 978-3-540-88642-6.

[45] P. Stevens, “Bidirectional model transformations in qvt:
semantic issues and open questions,” Software and Sys-
tem Modeling, vol.9, no.1, pp.7–20, 2010.

[46] G. Taentzer, “AGG: A graph transformation environ-
ment for modeling and validation of software,” In J.
L. Pfaltz, M. Nagl, and B. Böhlen, editors, AGTIVE,
vol.3062 of LNCS, pp.446–453, Springer, 2003.

[47] T. Kozawa, “Bidirectionaltransformation with UML
model for Simulink model maintainability improve-
ment (in Japanese),” http://www.washi.cs.waseda.ac.

06-006

GRoundTram: An integrated framework for developing well-behaved bidirectional model transformations 147

jp/papers/2011/submission/1w070119.pdf, Feb. 2011.
Summary of the bachelor’s thesis at the Department of
Conputer Science, Waseda University.

[48] B. Wang, Z. Hu, Q. Sun, H. Zhao, Y. Xiong, and H. Mei,
“Supporting feature model refinement with updatable
view,” Technical Report GRACE-TR-2010-05, GRACE
Center, National Institute of Informatics, May 2010.

[49] A. Wider, “Towards combinators for bidirectional
model transformations in scala,” In A. M. Sloane and
U. Aßmann, editors, SLE, vol.6940 of Lecture Notes in
Computer Science, pp.367–377, Springer, 2011. ISBN
978-3-642-28829-6.

[50] Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and H.
Mei, “Towards automatic model synchronization from
model transformations,” In 22nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE 2007), pp.164–173, ACM Press, Nov. 2007.

[51] Y. Yu, Y. Lin, Z. Hu, S. Hidaka, H. Kato, and L.
Montrieux, “Blinkit: Maintaining Invariant Traceability
through Bidirectional Transformations,” In Proceedi-
ings of the 34th International Conference on Software
Engineering (ICSE 2012), Zurich, Switzerland, pp.540–
550, June 2012.

[52] Y. Zhu, T. Zan, S. Hidaka, and Z. Hu, “iGRT: A generic
interface for GRoundTram,” Technical Report GRACE-
TR-2012-06, GRACE Center, National Institute of In-
formatics, 2012.

Soichiro HIDAKA
Soichiro Hidaka is an assistant pro-
fessor at the National Institute of In-
formatics and The Graduate Univer-
sity for Advanced Studies in Japan.
He received his bachelor’s degree and
Ph. D in Engineering from The Uni-

versity of Tokyo in 1994 and 1999 respectively. He had
involved in research projects such as parallel program-
ming language implementation, micro-kernel based op-
erating system and document processing system. His
research interests include infrastructure software sys-
tems, and database programming languages in particu-
lar. Recently he has been conducting research on bidi-
rectional graph transformations that are intended to fa-
cilitate bidirectional model transformations. He is a
member of ACM, IPSJ, IEICE and JSSST.

Zhenjiang HU
Zhenjiang Hu is Professor of Na-
tional Institute of Informatics (NII)
and The Graduate University for Ad-
vanced Studies in Japan. He received
his BS and MS from Shanghai Jiao
Tong University in 1988 and 1991 re-

spectively, and PhD degree from University of Tokyo
in 1996. He was a lecture (1997-1999) and an associate
professor (2000-2007) in University of Tokyo, before
joining NII as a full professor in 2008. His main interest
is in programming languages and software engineering
in general, and functional programming, parallel pro-
gramming and bidirectional model-driven software de-
velopment in particular. He is now serving on the steer-
ing committees of ACM ICFP, APLAS and FLOPS,
and is the academic committee chair of the NII Shonan
Meetings.

Kazuhiro INABA
Kazuhiro Inaba is a software engi-
neer of Google Inc. He received PhD
degree from University of Tokyo in
2009. He was a researcher in Na-
tional Institute of Informatics from
2009 to 2011. His main interest is in

formal languages, in particualr in the complexity of au-
tomata and transducers over strings and trees.

06-006

148 Progress in Informatics, No. 10, pp.131–148, (2013)

Hiroyuki KATO
Hiroyuki Kato is Assistant Professor
of National Institute of Informatics
(NII) and The Graduate University
for Advanced Studies in Japan. He
received BS from Tokyo University
of Science in 1990, and MS and PhD

degree from Nara Institute of Science and Technology
in 1996 and 1999 respectively. He joined National Cen-
ter for Science Information Systems (NACSIS) from
1999 as a research associate. His research interests in-
clude semistructured databases, database programming
languages and query optimization by program transfor-
mation.

Keisuke NAKANO
Keisuke Nakano is an associate pro-
fessor at the University of Electro-
Communications, Japan. He re-
ceived his Ph.D. degree from Gradu-
ate School of Science, Kyoto Univer-
sity. He was a postdoctoral researcher

at the University of Tokyo from 2003 to 2008. He has
assumed his current post since April 2012 after working
there as an assistant professor from 2008. His research
interests include formal language theory, programming
language theory, functional programming, and theorem
proving. He is a member of JSSST, IPSJ, and ACM.

