
00-000

Special issue: Advanced Programming Techniques for Construction of Robust, General and Evolutionary Programs

Progress in Informatics, No. 10, pp.1–2, (2013) 1

Guest Editorial

Advanced programming techniques for
construction of robust, generic and
evolutionary programs

Zhenjiang HU1, Shin-Cheng MU2 and Stephanie WEIRICH3

1National Institute of Informatics
2Academia Sinica
3University of Pennsylvania

In computer science, the way that we investigate
computation is with programming. Programming is
more than just writing programs to instruct the com-
puter to do something, it seeks formal and reliable
means of ensuring that programs possess crucial prop-
erties. Therefore, developers must be concerned with
many issues such as robustness, reliability, adaptabil-
ity, and maintainability, while meeting program speci-
fications. Advanced programming techniques, such as
dependently typed programming, generic programming
and bidirectional programming, have been developed to
deal with these issues.

Programming languages with static type systems
have had great success in ensuring that data and control
structures are used in appropriate ways. Dependently
typed programming is a powerful programming mech-
anism based on the dependent type system. By allow-
ing types to refer to data, programmers can define more
fine-grained program behaviors which is often dynamic
in practice, being able to communicate the design of
software to computers and negotiate their place in the
spectrum of precision from basic memory safety to total
correctness.

Generic programming techniques have been a spe-
cific focus of research in the functional and object-
oriented programming communities. They make pro-
grams more adaptable by embodying non-traditional
kinds of polymorphism; ordinary programs are ob-
tained from them by suitably instantiating their param-
eters. In contrast with normal programs, the parame-
ters of a generic program are often quite rich in struc-
ture, which could be other programs, types or type
constructors, class hierarchies, or even programming
paradigms. Generic programming has been gradually
spreading to more and more mainstream languages, and

Received January 8, 2013.

today is widely used in industry.
Bidirectional programming is a recent techniques

aiming to construct well-behaved bidirectional pro-
grams (bidirectional transformations) that can be ex-
ecuted both forwardly and backwardly. Bidirectional
transformation, originated from the known view updat-
ing mechanism in the database community, has been
attracting more and more attention from researchers
in the communities of programming and programming
languages. Bidirectional transformation provides a
powerful mechanism for synchronizing and maintain-
ing the consistency of information between input and
output, and has seen many interesting applications, in-
cluding the synchronization of replicated data in differ-
ent formats, presentation-oriented structured document
development, interactive user interface design, and cou-
pled software transformation.

This special issue aims to publish high quality pa-
pers on these advanced programming techniques that
can lead to practical and effective processes for con-
structing robust, general and evolutionary programs.
In response to the Call for Papers for this special is-
sue, eight papers were submitted, and out of them six
papers have been accepted. Each submission was re-
viewed by at least three referees, and the decisions
on selecting papers are based on originality, technical
contribution, practical contribution and relevance. We
believe that the accepted papers exhibit important as-
pects of advanced programming techniques. In addition
to the research papers, this special issue includes the
technical reports of two NII Shonan Meetings: “Auto-
mated Techniques for Higher-Order Program Verifica-
tion” organized by David Van Horn (Northeastern Uni-
versity), Naoki Kobayashi (Tohoku University), and C.-
H. Luke Ong (University of Oxford); and “Dependently
Typed Programming” organized by Shin-Cheng Mu
(Academia Sinica, Taiwan), Conor McBride (Univer-

DOI: 10.2201/NiiPi.2013.10.1

c©2013 National Institute of Informatics



00-000

2 Progress in Informatics, No. 10, pp.1–2, (2013)

sity of Strathclyde, UK), and Stephanie Weirich (Uni-
versity of Pennsylvania, USA).

We, the guest editors, would like to thank the au-
thors contributed to the special issue. We would also
like to express the deep appreciation to the referees who
worked with us through the tight schedule. Finally, we
thank Ayumi Shimizu for her support throughout the
editorial process.

Zhenjiang HU
Zhenjiang HU is Professor of Na-
tionalInstitute of Informatics (NII)
and The Graduate University for Ad-
vanced Studies in Japan. He received
his BS and MS from Shanghai Jiao
Tong University in 1988 and 1991 re-

spectively, and PhD degree from University of Tokyo
in 1996. He was a lecture (1997-1999) and an associate
professor (2000-2007) in University of Tokyo, before
joining NII as a full professor in 2008. His main interest
is in programming languages and software engineering
in general, and functional programming, parallel pro-
gramming and bidirectional model-driven software de-
velopment in particular. He is now serving on the steer-
ing committees of ACM ICFP, APLAS and FLOPS,
and is the academic committee chair of the NII Shonan
Meetings.

Shin-Cheng MU
Shin-Cheng MU is an associate re-
search fellow in Academia Sinica,
Taiwan. He graduated from the Al-
gebra of Programming group in Ox-
ford University, and once worked
as a postdoc researcher in the Pro-

grammable Structured Document project in Informa-
tion Processing Lab, University of Tokyo. His interests
include program derivation, program calculation, and
type theory.

Stephanie WEIRICH
Stephanie WEIRICH is an Associate
Professor at the University of Penn-
sylvania. She joined Penn after re-
ceiving her PhD from Cornell Uni-
versity in 2002. Her research con-
cerns the type systems of functional

programming languages, generic programming, depen-
dent type systems and type inference.


