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1 Introduction
Internet traffic is characterized as having a self-sim-

ilar or long-range dependent properties, and these 
properties are known to affect the quality of service 
(QoS) of communications [1],[2] due to longer queue-
ing delays and packet loss than in Poisson traffic. 
Traffic on the Science Information Network (SINET) 
has also been shown to have a long-range dependent 
property [3],[4], necessitating network bandwidth pro-
visioning and traffic controls that take this long-range 
dependence into consideration. 

To support the creation of these types of networks, 
our group has developed traffic analysis and network 
bandwidth provisioning software tools for the Linux 
operating system. These tools allow analysis of the 
packet traffic observed using a traffic capturing tool 
such as the tcpdump software[6]. The Hurst parameter 
(H) and queueing buffer tail probability can then be 
estimated from this analysis. The Hurst parameter is 

the main parameter in self-similar or long-range 
dependent traffic analysis, and the tail probability is an 
important value required to estimate the buffer over-
flow probability in network bandwidth provisioning. 

This paper presents the structure of this software and 
the functions of the tools. The estimation function for 
the tail probability is realized using the approximation 
method of Fractional Brownian Motion (FBM) tail 
probability, and the average queueing buffer waiting 
time is determined using the waiting time approxima-
tion method MMPP/G/1. Estimations by these two 
methods are compared with simulations based on 
observed traffic data to demonstrate the effectiveness 
of the proposed tools.

2 Software construction and Tool functionality 
The tools were implemented using Java-based 

graphical user interfaces (GUIs), and all operations 
were executed via these GUIs. The GUIs have a hier-
archical structure, as shown in Fig. 1, with the func-
tions termed Extraction, Analyzer, Plot, and User 
Defined Program. The Analyzer GUI consists of 17 
functions for traffic analysis. The actual GUI displays 
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are shown in Figs. 2 and 3. Figures 2(a) and 3(a) both 
show the main screen.

2.1 Extraction function
The processing flow for the Extraction function 

(Fig. 2(b)) is shown in Fig. 4. The Extraction function 
extracts the packet arrival time and packet length from 
Libpcap-based data captured by programs such as tcp-
dump. Libpcap [6] is a common program used to cap-
ture the packet stream. The extracted data is stored as 
a time sequence, and the start and end times for 
extraction can be specified. 

2.2 Analyzer functions
As shown in Fig. 2(c), the Analyzer function encom-

passes a total of 16 functions (excluding Delete). 
These functions process the packet stream data 

extracted by the Extraction function and output the 
results for estimation of the Hurst parameter. These 
functions can also be used to approximate tail proba-
bility and average waiting time for a router queueing 
buffer.

The Hurst Parameter is estimated using the 
Autocorrelation, Variance, or R/S Analysis functions. 
These functions sample the extracted data in intervals 
of t and calculate the statistics as a function of discrete t and calculate the statistics as a function of discrete t
time with base t. The Hurst Parameter is then esti-t. The Hurst Parameter is then esti-t
mated from the graphed statistics through further man-
ual calculations. The Analyzer functions also include a 
function to display the results graphically, enabling the 
creation of user-defined operations, such as addition of  
a graph.

The tail probability is calculated using the Tail Prob. 
Approx. function from the results of either the 
Variance or Relaxation time functions. The result used 
depends on the approximation method employed to 
obtain tail probability, as explained below. The FBM 
model is used for this approximation, requiring 
approximation of the sampled packet stream by a 
Gaussian process. The K-S test function, based on the 
well-known Kolmogorov-Smirnov test [17], is used to 
check for this packet stream property.

Two different methods for calculating the average 
waiting time are provided by the program: the Markov 
Modulated Poisson Process (MMPP) and the 
Queueing Network Analyzer (QNA). The MMPP 
method uses the results of the Variance, IDC (index 
dispersion for counts), and 3rd Central Moment func-
tions. In the QNA method, the results of the IDC and 
the Relaxation Time functions are used. As the details 

Fig. 1 Hierarchical GUI structure

Fig. 2 GUI display
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of the QNA method have been reported previously [5], 
only the MMPP method is described in this paper.

The Sampled Packet-traffic Sequence function can 
also be used to produce the t-sample packet sequence t-sample packet sequence t
data  form the  extracted data .  However,  the  
Autocorrelation, Variance, and R/S Analysis functions 
already include this function.

In the User Defined Analysis function, parameters 
required for certain functions can be registered before 
execution as parameter sets for custom operations. The 
r e m a i n i n g  f u n c t i o n s ,  — Pa c ke t  S t a t i s t i c s ,  
Autocorrelation for Packet Inter-arrival Time, and 
Autocorrelation for Packet Length— provide basic 
statistics, such as the average, variance, and autocorre-
lation characteristics for the packet inter-arrival time 
and packet length.

2.3 Plot function
This function graphically displays the results 

obtained using the Analyzer functions in Fig. 3(b). 
This function is duplicated as an Analyzer function, 
but in this case allows the graphical output to be 
reshaped and saved as a postscript file.

2.4 User Defined Program function
Any program developed by the user can be executed 

via this function (Fig. 3(c)). This is very convenient 
for users requiring functions that are not provided 
among the Analyzer functions. This function also 
enables execution of traffic simulation programs using 
real network traffic data. Simulation results can be 

compared with estimated tail probability and average 
waiting time to evaluate the accuracy of the estima-
tions. This function is very simple to use. The user-
defined program is registered in the Program column, 
and the input data file, parameter file, and output file 
are associated with the program. For user-defined pro-
grams written in Linux shell script, the information is 
input as follows: 

#!/bin/bash
inputfile=$1
parameter=$2
outputfile=$3
command=user_pro
exec $command $inputfile $parameter $outputfile

In other cases, shell commands such as /bin/bash 
must be registered in the Execution Command col-
umn.

Fig. 3 GUI display

Fig. 4 Processing flow
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3 Traffic analyzer tools
The traffic analyzer tools are used to estimate the 

Hurst parameter for long-range dependent traffic, and 
to calculate FBM tail probability and MMPP average 
waiting time for a queueing buffer.

3.1 Long-range dependence
The definition of long-range dependence is as fol-

lows. Let XnXnX (n=1,2,...) be a sampled process, and be a 
discrete time with the unit time of t. Assuming that the t. Assuming that the t
sample process Xn is a weakly stationary process 
(WSP), the autocorrelation function r(k) = E[(XnXnX −
m)(Xn+kXn+kX −m)]/ s 2, where m is the average and m is the average and m s 2 is the 
variance of XnXnX , is independent of n. The sampled pro-
cess has long-range dependence when the autocorrela-
tion function satisfies the condition

where L(k) is a slowly varying function satisfying 
limkÆ•L(xk)/L)/L)/ (k)=1 for any x > 0 , and b is a decay b is a decay b
factor satisfying 0 < b < 1 for long-range dependence. b < 1 for long-range dependence. b
Such functions can be replaced with a constant func-
tion such as log(k).

Let a random process Sn,m be defined as the sum of  
m consecutive numbers from XnXnX , that is,

S
=

nm

m+1n-1)j
jmn XS

(
, , (2)∫ 

then, we also define

m

S
X

mnm
n

,)( . (3)≡

When XnXnX  has long-range dependence and L(k) is a 
constant, the variance-time function Var[XnXnX(X(X m)] can be 
derived using Theorem 2.2 of reference [7] as 

cm -b X m
n  ; m Æ∞ ,][Var )( (4)≈

where c is a constant and 0 < b < 1.  Moreover, b < 1.  Moreover, b b
can be expressed as the function b = 2(1−H), where H), where H H
is the Hurst Parameter.

Assuming L (k) to be a constant, the autocorrelation 
function and the variance-time function become power 
functions with decay factor b deduced from Eqs. (1) b deduced from Eqs. (1) b
and (4). Using this definition, the long-range depen-
dence of the sampled packet traffic can be determined 
by calculation of Eqs. (1) and (4), and the Hurst 
parameter can be estimated.

Figure 5 shows an example of the variance-time 
curve for the packet traffic bit rate from the Japan 
Internet exchange (JPIX) to SINET over a 1 Gb/s 
(Gigabit Ethernet) connection. The variance-time 
curve is calculated using the Variance function with a 

sampling time of 10-4s for data extracted over 1.2 h 
(14:33−15:45, March 1, 2004). Variance-time curves 
are also shown for start delays of 10, 20, and 30 min. 
As all of the curves are very similar, the sampled 
packet bit rate can be considered to be closely approx-
imate to a weakly stationary process. A Hurst parame-
ter of 0.88 is obtained from the curve of 1.34 × 
108m-0.24 at large values of m. The Hurst parameter can 
be est imated by a similar  process using the 
Autocorrelation function. The R/S Analysis function, 
provided as another method to estimate the Hurst 
parameter, has been described elsewhere [7].

3.2 Tail probability approximation
Tail probability is approximated using the FBM traf-

fic model, which has been proposed as a method for 
analysis of self-similar or long-range dependent traffic 
[8,9]. FBM traffic is defined by

)()( tZattA H+= , t , (5)Œλ λ

where l is the arrival rate for packets (packet rate or l is the arrival rate for packets (packet rate or l
bit rate), a is the variance of the coefficient for the 
arrival packet, and ZHZHZ (t) is the normalized FBM with 
zero mean and variance of Var[ZHZHZ (t)]=| t |t |t 2H, where the 
Hurst parameter satisfies HŒ[0.5,1). 

FBM traffic defined by Eq. (5) is a cumulative 
arrival process, and is completely modeled by the 
three parameters (l, a, H).H).H

The process sampled in the FBM traffic can be con-
sidered as follows. If XnXnX  is a process sampled in each 
interval t of FBM traffic, and since Eq. (2) can be t of FBM traffic, and since Eq. (2) can be t
expressed as Sn,m= A(mt), the variance-time function t), the variance-time function t
(Eq. (4)) becomes

)1(22)( ][Var Hm
n mX −−= ,σ (6)

where s 2=lalal t 2H.

Fig. 5 Variance-time curve for sampled packet bitrate
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r = r = r l / C is the offered load.l / C is the offered load.l
If the observed traffic, that is, the traffic extracted 

using the Extraction function, can be approximated by 
FBM traffic, then the tail probability of the queueing 
buffer with the observed traffic input can be calculated 
using Eq. (10).

In Fig. 5, the curve 1.34 × 108m-0.24 approximates the 
variance-time curve of FBM traffic with large values 
of m with the input parameters l = 564.6Mb/s, a = 2.6 l = 564.6Mb/s, a = 2.6 l
× 106, and H = 0.88. Thus, tail probability can be cal-
culated by Eq. (10) for large time scales (large values 
of m). However, for small time scales, tail probability 
cannot be calculated using these parameters because 
the variance-time curve deviates from the curve for 
1.34 × 108m-0.24. Therefore, a variance-time curve at a 
small time scale is approximated using the FBM curve 
for the parameter set l = 564.6 Mb/s, l = 564.6 Mb/s, l a = 7.2 × 105, 
and H = 0.72, as shown in Fig. 6. Using these two 
parameter sets, tail probability for observed traffic can 
be calculated over all time scales. 

This type of approximation method has been used in 
previous studies. For example, a parameter set (l, a, 
H) has been determined for a single case of offered H) has been determined for a single case of offered H
traffic load using the busy period or relaxation time 
for the queueing buffer, with tail probability calculated 
using this parameter set [3],[4]. The parameter set has 
also been determined from the time scale described by 
Eq. (9) [11],[12]. This latter method allows for simpler 
calculation of tail probability relative to methods that 
use the busy period or relaxation time, which have 
more complex relations. However, the method pre-
sented in this study only requires calculation of Eq. 
(10) using parameter sets that are predefined for cer-
tain time-scale ranges.

For a number of FBM parameter sets n, defined as 
(l,al,HlHlH ),...,(l,an,HnHnH ), the tail probabilities given by Eq. 
(10) for each parameter set can be written Pl,...,Pn. For 
the parameter sets in the downwards convex area of 
the variance-time curve (see reference [12]), the com-
plete tail probability can thus be approximated by 

},...,,{max)( 211 nni PPPxQP <<≈> (11)

This approximation estimates tail probability by tak-
ing the maximum value of all tail probabilities for all 
parameter sets. The approximation given by Eq. (11) is 
shown in Fig. 7 for r =0.85, along with the results of a r =0.85, along with the results of a r
simulation using observed traffic for comparison. In 
this case, the approximation is larger than the simula-
tion, yet by a margin considered acceptable. 

This approximation can be calculated using the 

Comparison of Eq. (4) with Eq. (6) indicates that 
FBM traffic has long-range dependence. Furthermore, 
with r(k) as the autocorrelation function for XnXnX  and 
r(m)(k) as the autocorrelation function for XnXnX(X(X m), the fol-
lowing relationship is easily obtained:

}2)1()1{(
2

1)()( 222)( HHHm kkkkrkr −−++== (7)

When Eqs. (6) and (7) are satisfied, the model is 
said to be exactly second-order self-similarity [10]. 
Thus, FBM traffic has exactly second-order self-simi-
larity and long-range dependence.

The queueing buffer for FBM traffic and service 
speed C is defined as follows. For queue length C is defined as follows. For queue length C Q , the 
tail probability of the queueing buffer is given by 
[8],[9]

))((max)( 0 xCttAPxQP t >−>  

Φ +−=
at

xtC
H

)(
max c , (8)

λ

λ

≥

0t ≥

≥

( )
where F c (∑) is the complementary distribution 

function of the standard Gaussian distribution. The 
time t satisfying Eq. (8) is given byt satisfying Eq. (8) is given byt

))(1( −−
=

CH

Hx
t .

λ
(9)

Substituting Eq. (9) for Eq. (8) and applying the 
approximation F c (u)  exp (−u2/2) yields the follow-
ing tail probability approximation:

Fig. 6 Variance-time curve approximation by FBM
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Variance and Tail Prob. Approx. functions. the IDC of the two-state MMPP is given by [13]

where I(I(I •) = lim tÆ• I(I(I t), I'(0) = limI'(0) = limI tÆ0 dI(I(I t)/dt.
The index of skewness for counts (ISC) is defined as 

S(t)∫E[{N(N(N t)−E[N(N(N t)]}3]/E[N(N(N t)], and is given for the 
two-state MMPP by

where S(•) = lim tÆ• S(t).
Based on results from references [14] and [15], the 

equations for the four parameters, calculated using 
IDC and ISC, are as follows:

EDDrr p21 1/, λ+±= ,  

EFF pp21 1, λλλλ +±+= , (14)

where
D = I'(0)/{I'(0)/{I I(I(I •)−1},
E = I'(0)/I'(0)/I F'(0)/F'(0)/ 2,

and

From Eqs. (14) and (15), the four parameters are 
determined by lplpl , I'(0), I(•) and S(•), which are 
derived using the following functions:

m

mI
X m

n

)(
][Var p)( ττλ

= , (16)

2
p)( )(

][T
m

mS
X m

n

ττλ
= . (17)

First, lplpl  is obtained by calculating the average 
packet rate directly from the sampled packet data. 
Next, using the two y-axis values, i.e. Var[XnXnX (m1)] and  
Var[XnXnX (m2)] on the variance-time curve for the sampled 
packet data, I'(0) and I'(0) and I I(I(I •) can be obtained from Eqs. 
(12) and (16). S(•) can then be obtained from Eqs. 
(13) and (17) using one y-axis value T[XnXnX (m3)] on the 
third central moment curve for the sampled packet 
data.

An example of variance-time curve approximation 
with a small time scale is shown in Fig. 8 for the same 
sampled packet data as that used in Fig. 5. The 

3.3 MMPP waiting time approximation
Since the FBM traffic model is a Gaussian-based 

approximation, it is imperative that the sampled pro-
cess can be approximated by a Gaussian process. It 
has been pointed out that the sampled process is not 
approximated by a Gaussian process with small time 
scales [4]. Thus, the FBM traffic model does not apply 
to small time scales.

Another possible approach consists of a waiting 
time approximation method using the two-state 
MMPP traffic model. The two-state MMPP model is a 
well-known approximation method for analyzing mul-
tiplexed voice-packet processes [13]. It should be 
noted that two-state MMPP has neither self-similarity 
nor long-range dependence. 

Two-state MMPP is completely described by four 
parameters (l1,l2l2l ,r1,r2r2r ) where r1

-1 and r2r2r -1 are the aver-
age first- and second-state durations, which obey an 
exponential distribution, and l1and l2are packet 
arrival rates obeying a Poisson distribution in the first 
and the second state. To use two-state MMPP, the four 
parameters must be determined. In the present case, 
the four parameters are determined from the variance-
time function (Var[XnXnX (m)]) and the third central moment 
function (T[XnXnX (m)]∫E[{XnXnX (m)−E[XnXnX (m)]}3]) of the sampled 
packet traffic data. Once the four parameters have 
been determined, the average waiting time is calcu-
lated from the results of MMPP/G/1 analysis using 
previously published results [13,14,16].

The calculation process is as follows. Let N(N(N t) be the 
number of arrival packets in (0,t], let lplpl  be the packet 
arrival rate, and let Var[N(N(N t)] be the variance of N(N(N t). 
The IDC is defined by I(t)∫Var[N(t)]/E[N(t)]. 
Considering the average of N(N(N t), that is, E[N(N(N t)]=lplpl t, 

Fig 7 Tail probability approximation by FBM
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approximation curve was calculated using I'(0) = 5.41 I'(0) = 5.41 I
× 103 and I(I(I •) = 2.85, which were obtained using the 
values Var[XnXnX (m1)] = 5.09 and Var[XnXnX (m2)] = 2.97 for m1=3 
and m2=7 and a packet arrival rate of lplpl  = 86.3 kpps. 
As shown in the figure, the variance-time curve 
obtained using MMPP provides a good approximation 
for  t ime scales  of  m £ 10.  Moreover,  g iven 
(m3=7,T[XnXnX (m3)] = 1.12), S(•) = 8.73 can be obtained 
from the third central moment of the sampled data.

although the approximation is still good. However, the 
MMPP/G/1 estimate cannot be used for approximation 
at r ≥ 0.78, as the influence of long-range dependence 
must be considered in this range.

The proposed approximation methods therefore pro-
vide results comparable to those obtained by simula-
tion. However, for analysis of a range of traffic condi-
tions, approximation methods are much simpler than 
simulations, as simulations must be performed sepa-
rately for each traffic condition. This is particularly 
notable in the estimation of tail probability, which can 
be calculated easily once the FBM parameter sets have 
been determined. Thus,  approximation methods can 
obtain comprehensive results more efficiently than by 
simulation. Moreover, exact packet arrival times and 
packet lengths are required for simulation, which may 
be difficult to observe at higher transmission speeds. 
This problem is not as critical for the proposed 
approximation methods, in which it is sufficient to 
determine the parameter sets for FMB and MMPP by 
t-sampling observation.t-sampling observation.t

4 Network bandwidth provisioning tool
The traffic analyzer tools can be used to estimate tail 

probability and average waiting time for queueing buf-
fers, which also makes these tools applicable to deter-
mination of network bandwidth required to achieve a 
given QoS. Figure 10 shows the process flow for cal-
culation of the network bandwidth. The traffic flow 
under peak conditions is first estimated from an exam-
ination of past traffic, and a peak traffic hour of data is 
extracted. The extracted traffic is then evaluated to 
determine whether it can be considered to be a weakly 
stationary process. If not, another peak traffic hour 
must be extracted. This check is necessary to ensure 
an accurate estimation of the Hurst parameter. This 
can be achieved most easily by plotting several time-
shifted variance-time curves on the same graph (e.g., 
Fig. 5). Following a successful check, the variance-
time curve is approximated using FBM variance 
curves, and the FBM parameters (l,ai, HiHiH ) are deter-
mined from the FBM variance-time curves.

An objective offered load r is tentatively deter-
mined for the network, and tail probability is calcu-
lated using this load. If the tail probability is satisfied 
with respect to a required buffer overflow probability, 
network bandwidth C is determined by the relation C is determined by the relation C C
= l /r/r/ . If the tail probability is not satisfied, a different 
value of r is used and tail probability is recalculated. r is used and tail probability is recalculated. r
Note that l can be calculated from the average packet l can be calculated from the average packet l
arrival bit rate of the extracted traffic.

WSP checking and FBM variance curve generation 
are included in the Variance function. Thus, this pro-
cess can be accomplished by executing the Extraction, 

Fig. 8 Variance-time curve approximation by MMPP

Fig. 9 Waiting time approximation by MMPP/G/1

For comparison to simulation results for 1.2 h of 
extracted data, Figure 9 shows the average waiting 
time calculated using MMPP/G/1. The MMPP/G/1 
calculations were performed using Eqs. (6.21), (6.22) 
and (6.23) from reference [16]. An exponential distri-
bution was adopted for packet service time because 
the squared coefficient of variation of the observed 
service time was approximately 0.7.

The average waiting time determined by MMPP/G/1 
is larger than the simulation result for r £ 0.78, 
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Variance, and Tail Prob. Approx. functions.

Fig. 10 Processing flow for network bandwidth provision
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5 Conclusion
The paper presented a range of traffic analysis and 

network bandwidth provisioning tools developed for 
network operations in self-similar or long-range 
dependent traffic environments. In the proposed func-
tions, tail probability is estimated using  Fractional 
Brownian Motion (FBM) tail probability, and average 
queueing buffer waiting time is determined using the 
MMPP/G/1 waiting time approximation method. The 
estimations by these two methods are consistent with 
the results of simulations based on observed traffic 
data. These tools can also be used to determine net-
work bandwidth. 
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