Online ISSN:1349-8606
Progress in Informatics  
No.1 March 2005  
Page 5-37  
 
Single photons for quantum information systems
Yoshihisa Yamamoto, Charles Santori, Glenn Solomon, Jelena Vuckovic, David Fattal, Edo Waks, Eleni Diamanti

LINK [1] C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” Proc. IEEE Int. Conf. on Computers Systems and Signal Processing, Bangalore, India, p. 175., 1984.

LINK [2] N. Lutkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A, vol. 61, no. 5, p. 2304, 2000.

LINK [3] A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. , vol. 67, p. 661, 1991. ; C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. , vol. 68, p. 557, 1992.

LINK [4] E. Waks, A. Zeevi, and Y. Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A, vol. 65, no. 5, p. 2310, 2002.

LINK [5] P. G. Kwiat, K. Mattle, H. Weinfurther, and A. Zeilinger, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. , vol. 75, p. 4337, 1995.

LINK [6] L. Duan, M. Lukin, J. Cirac, and P. Zoller, “Longdistance quantum communication with atomic ensembles and linear optics,” Nature, vol. 414, pp. 413-418, 2001.

LINK [7] E. Knill, R. Laflamme, and G. J. Milburn, “Efficient linear optics quantum computation,” Nature, vol. 409, pp. 46-52, 2001.

LINK [8] A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic Single-Photon Source for Distributed Quantum Networking,” Phys. Rev. Lett. , vol. 89, no. 6, p. 7901, 2002.

LINK [9] A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature, vol. 423, pp. 731-734, 2000.

LINK [10] Ch. Schwedes, Th. Becker, J. von Zanthier, H. Walther, and E. Peik, “Laser sideband cooling with positive detuning,” Phys. Rev. A, vol. 69, no. 5, p. 3412, 2004.

LINK [11] B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature, vol. 407, pp. 491-493, 2000.

LINK [12] C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered Source of Single Photons based on Controlled Single Molecule Fluorescence,” Phys. Rev. Lett. , vol. 83, p. 2722, 1999.

LINK [13] R. Brouri, A. Beveratos, J. P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. , vol. 25, pp. 1294-1296, 2000.

LINK [14] C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable Solid-State Source of Single Photons,” Phys. Rev. Lett. , vol. 85, p. 290, 2000.

LINK [15] A. Imamoglu and Y. Yamamoto, “Turnstile device for heralded single photons: Coulomb blockade of electron and hole tunneling in quantum confined p-i-n heterojunctions,” Phys. Rev. Lett. , vol. 72, p. 210, 1994. ; Y. Yamamoto, “A Photon in Solitary Confinement,” Nature, vol. 390, pp. 17-18, 1997.

LINK [16] J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A Single-Photon Turnstile Device,” Nature, vol. 397, pp. 500-503, 1999.

LINK [17] C. Santori, M. Pelton, G. S. Solomon, Y. Dale, and Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. , vol. 86, p. 1502, 2001.

LINK [18] G. S. Solomon, M. Pelton, and Y. Yamamoto, “Singlemode Spontaneous Emission from a Single Quantum Dot in a Three-Dimensional Microcavity,” Phys. Rev. Lett. , vol. 86, p. 3903, 2001.

LINK [19] J. Vuckovic, D. Fattal, C. Santori, G. S. Solomon, and Y. Yamamoto, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. , vol. 82, no. 21, pp. 3596-3598, 2001.

LINK [20] C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable Photons from a Single-Photon Device,” Nature, vol. 419, pp. 594-597, 2002.

LINK [21] E. Waks, K Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Quantum Cryptography with a Photon Turnstile,” Nature, vol. 420, p. 762, 2002.

LINK [22] D. Fattal, K. Inoue, J. Vuckovic, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement Formation and Violation of Bell’s Inequality with a Semiconductor Single Photon Source,” Phys. Rev. Lett. , vol. 92, no. 3, p. 7903, 2004.

LINK [23] D. Fattal, E. Diamante, K. Inoue, and Y. Yamamoto, “Quantum Teleportation with a Quantum Dot Single Photon Source,” Phys. Rev. Lett. , vol. 92, no. 3, p. 7904, 2004.

LINK [24] M. Atac, J. Park, D. Cline, D. Chrisman, M. Petroff, and E. Anderson, Nucl. Instrum. Meth. Phys. Res. A, vol. 314, p. 56, 1992.

LINK [25] S. Takeuchi, J. Kim, Y. Yamamoto, and H. Hogue, “Development of a high-quantum-efficiency singlephoton counting system,” Appl. Phys. Lett. , vol. 74, p. 1063, 1999.

LINK [26] J. Kim, Y. Yamamoto, and H. Hogue, “Noise-free avalanche multiplication in Si solid state photomultipliers,” Appl. Phys. Lett. , vol. 70, p. 2852, 1997.

LINK [27] J. Kim, S. Takeuchi, Y. Yamamoto, and H. Hogue, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett. , vol. 74, p. 902, 1999.

LINK [28] K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. , vol. 27, pp. 179-181, 2002.

LINK [29] C. Santori, G. S. Solomon, M. Pelton, and Y. Yamamoto, “Time-resolved spectroscopy of multiexcitonic decay in an InAs quantum dot,” Phys. Rev. B, vol. 65, no. 7, p. 3310, 2002.

LINK [30] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science, vol. 290, pp. 2282-2285, 2000.

LINK [31] E. Moreau, I. Robert, J. M. Gerard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. , vol. 79, p. 2865, 2001.

LINK [32] V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M. Pistol, L. Samuelson, and G. Bjork, “Single quantum dots emit single photons at a time: Antibunching experiments,” Appl. Phys. Lett. , vol. 78, p. 2476, 2001.

LINK [33] Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single photon source,” Science, vol. 295, pp. 102-105, 2002.

LINK [34] J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics,” Phys. Rev. A, vol. 66, no. 2, p. 3808, 2002.

LINK [35] M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum Electron. , vol. 38, no. 2, pp. 170-177, 2002.

LINK [36] M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant and Y. Yamamoto, “Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,” Phys. Rev. Lett. , vol. 89, no. 23, p. 3602, 2002.

LINK [37] M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/ GaAs self-assembled quantum dots,” Phys. Rev. B, vol. 65, no. 4, p. 1308, 2002.

LINK [38] H. Fearn and R. Loudon, J. Opt. Soc. Am. , vol. B6, p. 917, 1989.

LINK [39] S. Popescu, L. Hardy, and M. Zukowski, “Revisiting Bell’s theorem for a class of down-conversion experiments,” Phys. Rev. A, vol. 56, pp. R4353-R4356, 1997.

LINK [40] A. Aspect, J. Dalibard, and G. Roger, “Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers,” Phys. Rev. Lett. , vol. 49, pp. 1804-1807, 1982.

LINK [41] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. , vol. 75, pp. 4337-4341, 1995.

LINK [42] J. Clauser, M. Horne, A. Shimony, and R. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. , vol. 23, pp. 880-884, 1969.

LINK [43] A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally Entangled States: Production, Characterization, and Utilization,” Phys. Rev. Lett. , vol. 83, pp. 3103-3107, 1999.

LINK [44] A. Peres, “Separability Criterion for Density Matrices,” Phys. Rev. Lett. , vol. 77, pp. 1413-1415, 1996.

LINK [45] T. C. Ralph, A. G. White, W. J. Munro, and G. J. Milburn, “Realization of quantum process tomography in NMR,” Phys. Rev. A, vol. 65, no. 1, p. 2314, 2002.

LINK [46] T. Pitman, M. Fitch, B. Jacobs, and J. Franson, “Experimental controlled-NOT logic gate for single photons,” Quantph, 0303095, 2003.

LINK [47] D. Gottesman and I. L. Chuang, Nature, 402, 390, 1999.

LINK [48] C. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. , vol. 70, pp. 1895-1899, 1993.

LINK [49] D. Bouwmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Nature, vol. 390, no. 575, 1997.

LINK [50] J. Franson, M. Donegan, M. Fitch, B. Jacobs, and T. Pitman, “High-Fidelity Quantum Logic Operations Using Linear Optical Elements,” Phys. Rev. Lett. , vol. 89, no. 13, p. 7901, 2002.

LINK [51] E. Lombardi, F. Sciarrino, S. Popescu, and F. De Martini, “Teleportation of a Vacuum-One-Photon Qubit,” Phys. Rev. Lett. , vol. 88, no. 7, p. 402, 2002.

LINK [52] A. Kuhn, M. Heinrich, and G. Rempe, “Deterministic Single-Photon Source for Distributed Quantum Networking,” Phys. Rev. Lett. , vol. 89, no. 6, p. 7901, 2002.

LINK [53] E. Waks, C. Santori, and Y. Yamamoto, “Security aspects of quantum key distribution with sub-Poisson light,” Phys. Rev. A, vol. 66, no. 4, p. 2315, 2002.

LINK [54] O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and Entangled Photons from a Single Quantum Dot,” Phys. Rev. Lett. , vol. 84, pp. 2513-2616, 2000.

LINK [55] C. Santori, D. Fattal, M. Pelton, G. S. Solomon, and Y. Yamamoto, “Polarization-correlated photon pairs from a single quantum dot,” Phys. Rev. B, vol. 66, no. 4, p. 5308, 2002.

LINK [56] E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, IEEE J. Quantum Electron. , vol. 9, p. 1502, 2003.

LINK [57] R. J. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron Devices, vol. ED-13, pp. 164-168, 1966.

LINK [58] R. LaViolette and M. Stapelbroek, “A non-Markovian model of. avalanche gain statistics for solid-state photomultiplier,” J. Appl. Phys. , vol. 65, pp. 830-836, 1989.

LINK [59] R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett., vol. 29, no. 13, pp. 1518-1520, 2004.