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ABSTRAGE—

This paper reviews the current state of single-photon sources based on the semiconductor
quantum dots that will play a central role in future quantum information systems. By opti-
cally pumping a system consisting of a semiconductor single quantum dot confined in a
monolithic microcavity, it is possible to produce a single-photon pulse stream at the Fourier
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> transform limit with high efficiency and a high repetition rate. This technique is not only

useful for BB84 quantum cryptography using single photons, but will also find applications
information systems such as BBM92 quantum cryptography using entan-
antum teleportation, quantum repeaters, and linear optical quantum
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1 Introduction
The protection of privacy in secure communications
gaml the ability to analyze complex problems by high-
power computers will be increasingly important issues
in the fields of information science and physical sci-
ence in the 21st century. The former is required to
guarantee the security of personal information in tele-
communications and computer systems, and the latter
is essential in the design of computer hardware and
software that can process very large amounts of data in
such applications as predicting weather patterns, ana-
lyzing biological phenomena, controlling traffic, and

Kpredicring economic fluctuations.
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Quantum informgtion science has progressed rapidly
in recent years ig the context of efforts to address
these needs. Although it is very hard to predict exactly
how the field will develop in the future, it scems clear
that as far as a hardware is concerned, important roles
will be played by photonic qubits for quantum com-
munication, nuclear spin qubits for quantum memeory,
and electron spin qubits for applications linking the
above two areas. This paper reviews the latest research
trends relating to the production of photonic qubits for
quantum communication and computation, with par-
ticular reference to the results obtained by the author’s
group.

In BB84 quantum cryptography,[1] the security of
systems that involve quantum communication using an
ordinary Poisson light source (such as a semi-
conductor laser) can be threatened by an eavesdropper”

Qﬁholon-splilling *ll:-tck (i.e., the process of scrrbly

N

29mm(83pt)

23mm(66pt)

78mm(221pt)

\ 4



probability arbitrarily close to one[7].[50].

We use quantum mechanically indistinguishable
photons from a quantum-dot single-photon source,
featuring high suppression of two-photon pulses. The
fidelity of the teleportation depends critically on the
quantum indistinguishability of two photons emitted
independently by the single-photon source. A similar
experiment was performed in the past using two pho-
tons emitted spontancously by parametric down con-
version (PDC)[51]. However, the efficiency of such a
process is intrinsically limited by the presence of two-
photon pulses, which makes it unsuitable when more
identical photons are needed, e.g. to implement the
improved teleportation scheme. To date, demonst-
ration of single-mode teleportation with a single-pho-
ton source remains a capital step in efforts toward
scalable LOQC.

Single-mode teleportation in its simplest form
involves two qubits, a target and an ancilla, each
defined by a single photon occupying two optical
modes (see Fig. 16).

The target qubit can a priori be in an arbitrary state
0]0), + PI1), where the logical [0), and |1), states cor-
respond to the physical states |[1),10), and [0),]1},

rocnactivaly in a dAnal rail ranracantatinn Tha aneilla
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qubit is prepared with a beam-splitter (BS a) in the

coherent superposition :}_(| 0y, +|1), = :;,2_(|]}J|0)4

+|(})__‘|])4 ) One rail of the target (mode 2) is mixed

with one rail of the ancilla (mode 3) with a beam-split-
ter (BS 1), for subsequent detection in photon counters
C and D. For a given realization of the procedure, if
only one photon is detected at detector C, and none at
detector D, then we can infer the resulting state for the

target

output qubit composed of mode (1) and (4):
e =al0), + B, = a|1),[0), + B0)[1),

which is the initial target qubit state. Similarly, if D
clicks and C does not, then the output state is inferred
to be:

vy =al0), - BI1), = a[1),|0), - B0}, 1),

which again is the target state -- except for an addi-
tional phase shift of &, which can be actively correct-
ed. Halfl of the time, either zero or two photons are
present at counters C or D, and the teleportation proce-
dure fails. It is interesting and somewhat enlightening
to describe the same procedure in the framework of
single rail logic. In this framework, each optical mode
supports a whole qubit, encoded in the presence or
absence of a photon, and single-mode teleportation
can be viewed as entanglement swapping. Indeed, for

the parLiCular values a:ﬁ:\}; modes 1 and 2 find

themselves initially in the Bell state |y'), while
modes 3 and 4 are in a similar state |y),,. Partial Bell

meacenramaent taloae nlara neina RC 1 and canntare
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C/D, which (if it succeeds) leaves the system in the
entangled state [y ), so that entanglement swapping
occurs. In the rest of this paper, we will consider the
scheme in the dual rail picture, since it is a more
robust, and hence realistic, way of storing quantum
information (at the expense of using two modes per
qubit).

The success of teleportation depends mainly on the
transfer of coherence between the two modes of the
target qubit. If the target qubit is initially in state |0}, =

10>
1>

f\ 0>

output

NS

ancilla BS a

v 1>

Fig. 16 Schematic of single-mode teleportation. Target and ancilla qubits are each defined by a single photon occupying two op-
tical modes. When detector C clicks and D does not, the state of the remaining modes reproduces the state of the target.
The coherence between modes (1) and (2) of the target was transferred to coherence between the same mode (1) of the

target and mode (4) of the ancilla. Prepas
transfer of coherence.

the target in an equal superposition state makes it easier to measure the
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