
NII Journal No. 8 (2004.2)

13

研究論文

A Hybrid Approach to Packet Classification

Xiaohui ZHAO

Graduate University for Advanced Studies

Yusheng JI

National Institute of Informatics

Yongcheng LEI

Lenovo R&D Institute

ABSTRACT

Packet classification is one of the key technologies to support differentiated services to classified flows. Combining the top-down

lookup tree structure and intelligent constructing strategy of present algorithms, this paper proposes a hybrid approach to packet clas-

sification. The filter set, which is used to classify packets, are stored in the leaf chains of a special data structure, in which an index

table acts as index to locate several lookup trees. Also, an evaluation formula shows the major criteria on how to build lookup trees

and distribute filters to obtain satisfactory efficiency. The performance of the proposed algorithm is discussed by analytical computa-

tion and simulation. Theoretically, it has a logarithmic execution time cost with a polynomial space (storage) cost. Further, a simula-

tion of packet classifier built on IBM Power Network Processor is performed to test its performance and do a comparison between

multi-tree applied cases and the unapplied. The results show its superiority in complex filter handling and matching modes.

[Keywords]

IP flow, packet classification, filter set, lookup tree

1 Introduction
There are a number of network services that require

packet classification, such as access-control in firewalls,

IP routing, policy based routing, provisioning of differen-

tiated qualities of service, and traffic billing[1-3]. In each

case, it is necessary to determine which flow an arriving

packet belongs to, so as to determine, for example,

whether to forward or filter it, where to forward it to, what

class of service it should receive, or how much should be

charged for transporting it. This categorization function is

performed by a packet classifier (also called a flow classi-

fier), which maintains a set of filters, where each flow

obeys at least one filter. To classify which flow a packet

belongs to is based on the contents of the packet header(s).

For example, a flow could be defined by particular values

of source and destination IP addresses, and particular

transport port numbers. Or a flow could be simply defined

by a destination prefix and a range of port values. Table 1

lists some typical application areas of packet classification.

Also this table gives the related requirements of number of

fields for matching classification types, and filter exam-

Table 1: Packet Classification Examples.
Application Number of Fields

/ Classification
type

Filter Example

Switching,
MPLS

Single / Exact
Match

Send packets with
Dest_MAC==68:10:01:ab:12:7a
directly to end hosts

Forwarding Single / Longest
Prefix Match

Send all packets with
Dest_IP==192.168.0.* to the
ISP’s router

Flow Inden-
tification,
IntServ

Multiple / Exact
Match

Give packet with Src_IP,
Dest_IP, Src_Port, Dest_Port
==(192.168.4.5, 200.10.2.3, 21,
1030) highest priority

Filtering,
DiffServ

Multiple / Prefix
or Range Match

Drop all packets with
Src_IP==192.168.* &&
Src_Port>1023 && Dest_Port
<5000

Load Bal-
ancing

Multiple / Scan
with Exact or
Prefix Match

Re-direct packets having file-
names ending with “.ra” in
DATA field to audio server.

Intrusion
Detection

Multiple / Scan
and Match Reg.
Expressions

Create alarm when packets hav-
ing “get *.vbs” in DATA field.

A Hybrid Approach to Packet Classification

14

ples.

In this area, a lot of work, such as [4-7], has been done

from classification algorithms to hardware design. Typi-

cally, Stanford High-performance Networking Group[8]

and Princeton Extensible Router Group[9] are two active

teams in this field.

2 Related Work
The idea for packet classification was initiated in [10] and

was later expanded in [11,12]. The architecture and algo-

rithms presented in these papers were targeted mainly for a

single end-point and their main goal was to isolate packets

that are destined to specific protocols or specific connec-

tions. A variation was presented in [13] where the first

hardware implementation of packet classification was

reported.

The general packet classification problem can be

viewed as a point location problem in multidimensional

space. This is a classical problem in Computational Ge-

ometry, and is defined as follows: Giving a point in a d-

dimensional space and a set of n-dimensional regions (n≤d,

d represents the number of fields to be matched), the prob-

lem is to find the region that the point belongs to. When

considering the general case of d>3 dimensions, as is the

problem of packet classification, the best algorithms con-

sidering time or space have either an O(logd-1 n) time-

complexity with O(n) space, or an O(log n) time-

complexity with O(nd) space. Let us assume that we want

the router to be able to process 1000 filters of five dimen-

sions with 1 µs (to sustain one million packets per second

throughput). Unfortunately, since we have to spend 10000

memory accesses per packet or 1012 memory units, either

of which seems impractical at present.

As same as the point location problem, packet classifi-

cation algorithms also use two dominant resources, mem-

ory and time. All existing packet classification algorithms

trade memory for time, ranging from schemes like Recur-

sive Flow Classification (RFC)[14,15] (which is fast but

takes excessive storage), to linear search (which is slow

but takes minimal storage). The current algorithms with

the best time-space tradeoffs appear to be EGT-PC[16] and

HiCuts[17]. However, while the tradeoffs have been con-

stantly improving, the time taken for a reasonable amount

of memory is still too poor for practical deployment.

Because of problems with existing algorithmic schemes,

most venders use ternary Content Addressable Memory

(CAM), which uses brute-force parallel hardware to simul-

taneously check for all filters[18]. The main advantages of

TCAMs over algorithmic solutions are speed and versatil-

ity (TCAM works for all classifiers, not only typical ones).

However, CAM fundamentally has to contend with re-

duced density (using comparing logic per bit) and in-

creased power (using parallel comparison). Two less fun-

damental problems are the need for filters with range

specifications to be translated into several CAM entries,

and the need for gluing logic. Actually, these problems

have already made venders consider about algorithmic

alternatives. These venders include Cypress, Fast-Chip,

EZchip, and Integrated Silicon.

This paper aims to propose a generalized classification

algorithm with efficient time-space tradeoffs and flexible

supports to filter matching modes. And the rest of this

paper is organized as follow: Chapter 3 defines the formal

description of classification problem; Chapter 4 gives our

basic idea of algorithm, as well as design goals; Chapter 5

and 6 respectively set out the data structure and detailed

steps of the proposed algorithm; Chapter 7 discusses its

performance and does comparisons with other present

algorithms; Chapter 8 describes the simulation on IBM

NP4GS3.

3 Packet Classification Problem
Giving a set of filters defining packet attributes or con-

tent, packet classification is the process of identifying the

filter or filters to which a packet conforms or matches[19].

In this section, we formally define the packet classification

problem. First, we develop some useful definitions.

Definition 1. A destination address D is a string of L bits,

each bit can be 0,1 or * (‘*’ is a wildcard character).

Definition 2. A prefix P is a string of 0 to L bits,

length(P) denotes its length in bit.

Definition 3. Prefix P matches address D, when the first

length(P) bits of D equals to P.

Definition 4. The information relevant for classifying a

packet is contained in K distinct header fields in the packet.

These header fields are denoted as H[1], H[2], ..., H[K].

Definition 5. A classifier (also known as filter table or

filter database), FT, consists of N filters F1, F2,..., FN.

Each filter Fj is an array of K values, where Fj[i] is a

specification in the i-th header field. The i-th header field

NII Journal No. 8 (2004.2)

15

is sometimes referred to as the i-th dimension. The value

Fj[i] specifies what the i-th header field of a packet must

contain in order for the packet to match filter Fj.

These specifications often have (but need not be re-

stricted to) the following forms: exact match, for example

source address must equal to 192.168.0.16 or prefix match,

like destination address must match prefix 192.168.*.

Definition 6. Each filter Fj has an associated directive,

which specifies the action to perform for a packet that

matches this filter. This directive may indicate whether to

block the packet, send it to a particular interface, or per-

form some other actions.

Definition 7. Since a packet may match more then one

filter, we associate a cost Wi for each filter Fi in this paper

to resolve ambiguous matches. Wi is imported to help

constructing the arbitrary mechanism so as to improve

classification efficiency. Anyway, the cost can be set to 1

in the simplest case.

Finally, the packet classification problem is to find the

lowest cost filter matching a given packet P, and it can be

defined as follows,

Find the filter Fm in FT such that,

-Fm is a filter match for P;

-There is no other Fn in FT such that Fn is a filter

matches for P and Wn<Wm.

Filter Source
Address

Destination
Address

Source
Port

Destination
Port

Protocol
Type Action

F0 000* 111* 10 * UDP Act0
F1 000* 111* 01 10 UDP Act0
F2 000* 10* * 10 TCP Act1
F3 000* 10* * 01 TCP Act2
F4 000* 111* 10 11 TCP Act1
F5 0* 111* 10 01 UDP Act0
F6 0* 1* 10 10 UDP Act0
F7 0* 01* * * TCP Act2
F8 * 0* * * TCP Act2
F9 * 0* * 01 UDP Act0
F10 * * * * UDP Act3
F11 * * * * TCP Act4

Figure 1: A Simple Example with 12 Filters on Five Fields.

4 Basic Idea and Design Goals
We summary the present classification strategies as two

characteristics, listed as below:

 Binary Search on Prefix Length: Filters can be

mapped to tuples, according to different length of

prefixes. Each tuple is maintained as a hash table that

can be searched in one memory access. Inside a tuple,

even a simple linear search of the tuple space can

provide significant speedup over naive linear search

over the filters. The most typical representative is Tu-

ple Space Search (TSS) algorithm[20], which fully

utilizes such pre-handling to diminish searching

range.

 Pulling Filters onto the Decision Tree: Recursive

cutting can be embodied using a decision tree in

which each node represents a cut and leaves represent

filters. HiCut algorithm[17] has applied this structure

to store filters, the intermediate nodes of the tree rep-

resent the intelligent cutting over multi-dimensional

filter set. In general, some linear searching at leaves

is useful to reduce storage.

Our basic idea is just to combine the advantages of the

both, i.e. borrowing the ideas of tuple grouping and lookup

tree. And in the view of data structure, we joint the lookup

trees to one hash table, which comes from tuple grouping.

Further, a hybrid approach using such data structure is

proposed.

Due to the high throughput and speed requirements of

present network control as well as various requirements

for different application listed in table 1, we outline the

major criteria that an efficient classification algorithm

must meet:

1. The algorithm must be fast enough for use in

routers with gigabits links.

2. The algorithm must be able to process every packet

arriving to the physical interfaces at wire-speed.

Since the algorithm cannot use buffering to absorb

the variation in execution times caused by packet

size.

3. Classification filters must be based on several

fields of the packet header, including among others

source and destination IP addresses, source and

destination port numbers and protocol types. The

filters must be able to handle prefix match and not

just exact values.

4. It is possible that some packets may match more

than one filter. The algorithm must allow arbitrary

priorities to be imposed on these filters, so that

only one of these filters will finally be applicable

to the packet.

A Hybrid Approach to Packet Classification

16

5. Even though memory prices have continued to fall,

the memory requirements of the algorithm should

not be prohibitively expensive.

5 Data Structure Design
The basic strategy to multidimensional search, as used

for packet filtering, is to use decomposable search so that

the intersection step does not take more time than the re-

quired bound. However, as it was pointed out before, even

a log4n solution for five-dimensional packet filtering is not

practical for our application where n can be in the thou-

sands. Therefore, our aim is to lower the dimensions by

unfolding one or more prefix fields into a hash table,

called index table. And decompose the filters into several

trees connecting to the index table, according to the de-

pendency among filters. While the leaf nodes store the

actual filters within a so-called leaf chain.

Figure 2 shows the diagram of this classification data

structure.

Leaf
Chains

Lookup
trees

Index Table

Intermediate
nodes

Figure 2: A modular classification data structure

In view of searching space, this model divides the

searching space into several parts as follows:

Index table - All filters are grouped on proper bits of bit

string. The entries of these groups, i.e. the entries of

lookup trees, are stored in index table.

Lookup tree - The grouped filters construct a 2m-ary

lookup tree, searching m bits of the rule, and dividing into

2m groups. These m bits are chosen from the unvisited of

current filter bit string, following two basic principles:

decrease filter replication and balance the 2m sub trees.

The building of lookup tree is a continuous course of filter

grouping, and this course ends at leaf nodes, i.e. leaf

chains.

Leaf chain - When the number of remaining filters is

under a threshold, the decomposition stops. This node is

called the leaf node. As there are not many filters in leaf

nodes, we use another searching method, different from

the method in lookup tree.

Intermediate nodes - The nodes positioning between

root and leaf node are called intermediate nodes. Without

function of filter storing, these nodes are only used for

pattern searching.

After mapping the filter table in figure 1 into B, a two-

dimensional array, and we define:

B[i,.] - Elements in i-th row;

B[.,j] - Elements in j-th column;

B-x - x-th column deleted in B;

B-x..y - Columns x to y deleted in array B;

Wi - The cost of i-th row of B, i.e. the cost of Fi.

As to each column, e.g. j-th column, we give the follow-

ing two formulas:

()
1 , [,]

j i
i n B i j x

Nx B W
≤ ≤ =

= ∑ (1)

Here, X ∈{0,1, *}, and Nxj(B) is the sum of costs of all

rows in B, whose j-th columns are X.

() () ()0 1j j jD B N B N B= − (2)

Here, Dj(B) is the absolute value of the sum of costs of

rows, whose j-th columns are 0, minus those with costs of

1 in j-th column.

As to the filter table FT, we relate the ordered pairs, i.e.

(N*j(FT),Dj(FT)), to j-th column of FT. This relationship

is shown in Figure 3.

1st

Field

2nd

Field

K-th

Field
Wi…

0
1
...
0
*
1

j-th Column
Weight

(N*j(FT), Dj(FT))
Figure 3: Concatenated view of packet filter table

6 Algorithm Description
The process of packet classification follows four steps,

i.e. data structure initialization, new nodes insertion, se-

lected nodes deletion, and proper filter searching. The

former three steps are to create and maintain the whole

structure, while the last does the actual classification.

NII Journal No. 8 (2004.2)

17

6.1 Initialization Work

Suppose a k-dimensional filter table, FT, which can be

viewed as a table-styled filter list. As to each dimension j

(1≤ j≤ k), field hj is used to build the index table. This

step has two important missions, i.e. to build the index

table, and to build the lookup tree.

To build the index table, it will divide the original filter

rule set into subsets according to hj;

To build the lookup tree, it will try to enhance the

searching performance following two principles:

I. Try to avoid filter replication, in order to save mem-

ory space;

II. Try to balance subtrees, in order to lower the mean

searching time and the worst-case searching time.

6.2 Lookup Tree Building

This step focuses on the structure determination of

lookup tree, following the two principles mentioned in

previous section.

As to Principle I, i.e. for space saving, the replication

often happens in the case that filters intercross. To keep

the categoricalness and avoid searching back, we have to

import some redundant filters, which may cost additional

space. The trade-off between time and space complexities

also needs to be considered.

As to Principle II, the memory access is a main bottle-

neck of tree’s searching time. Hence, we can improve the

efficiency by shortening the depth of tree, which may

decrease the number of memory accesses. Actually this is

also the best way to balance tree. Moreover, shortening the

tree is also the key point of bit selection.

Analyzing the ordered pair (N*j(FT),Dj(FT)), where

N*j(FT) denotes the number of filters needed to replicate

in the case that the j-th column of FT is selected to create

index table. Dj(FT) represents the balance extent of the

lookup tree. Obviously, N*j(FT) and Dj(FT) represent

space and time complexities respectively. The smaller they

are, the better that tree is.

Then, we give the following evaluation formula to

quantitate the preference.
min min

max min max min

() () * () * ()
[]

() () * () * ()
j jD FT D FT N FT N FT

preference j
D FT D FT N FT N FT

 (3)

Where Dmin(FT) is the minimum in Dj(FT); Dmax(FT) is

the maximum in Dj(FT); N*min(FT) is the minimum

in N*(FT); and N*max(FT) is the maximum in

N*(FT).

In fact, we use a greedy algorithm in selection of j, i.e.

every time select the best column, which has the current

minimal preference value, to build the subtrees. This

evaluation formula can be adapted to practical scenario by

modifying the cost values. Therefore, this proposed strat-

egy for tree building is flexible and general, since Wi can

be given various meaning according to practical scenarios.

6.3 Leaf Chain Handling

A leaf chain is one of the basic elements in this algo-

rithm. It has the following attributes:

 The filters positioning at the same leaf chain, should

be relatively short.

 The filters positioning at the same leaf chain, should

be as similar as possible.

 One filter may belong to multiple leaf chains, e.g. in

the case that filters intercross each other in particular

bits.

Due to the above reasons, to do the searching inside a

leaf chain, it is not hard to find an appropriate method

from present algorithms, e.g. linear searching, binary

searching or CAM based searching.

6.4 Lookup Process

All fields of the packet header are considered as a bit

string, called header string. The lookup process is ex-

plained below:

Step 1. Use specific bits of the header string as index, to

query the index table and get the entry address of the cor-

responding lookup tree.

Step 2. Following the tree, trace until getting into one

leaf node, as the value of 'm' (refer to 2m-ary lookup

tree) falls down every time.

Step 3. Inside the searched leaf node, find the filter with

minimal cost.

7 Performance Analysis
This proposed modular classification model is not easy

to analyze on time and space complexity. Its implementa-

tion is always affected by practical applied scenario, also

its final performance parameters change with different

filter set. For this reason, we try to analyze it by importing

some additional parameters.

Let V denote the maximal capacity of leaf chain, and the

root contain M filters. The time complexity can be ap-

A Hybrid Approach to Packet Classification

18

proximated to be O(log(M/V)+V), in the simplest case that

the filters are uniformly distributed in leaf chains of

lookup trees, therefore, / 2 khM N ∑= , here 2 kh∑ de-

notes the number of bits selected to create the index table.

And its space complexity is roughly

O((1 2 /) 2)khN V ∑+ − . Anyway, its complexity rockets

quickly when the wildcard characters increase. In the

worst case, that can be infinite. Also, V does opposite im-

pacts in space and time aspects, i.e. it requires less space

but costs longer time when V increases, and vice versa.

Therefore, a trade-off should be considered. When this

model is applied in practice, it needs some adjustments on

parameters according to concrete demands and

characteristics, in order to meet performance requirements.

Table 2 lists the time and space complexities of present

classification algorithms.

Table 2: Performance Comparison of
Classification Schemes

Algorithm Worst time complexity Worst space complexity
Linear search N N
Hierarchical trie
tree

Wd NdW

Pruning trie tree DW Nd
Grid-of-tries Wd-1 NdW
Corss product DW Nd
RFC D Nd
Tuple Space N N
TCAM 1 N
Non-collision
hash trie-tree

Wd-1 -

Bitmap-
intersection

DW+N/(bits of
memory unit)

DN 2

Our algorithm 2 khlog(N/(V))+V∑
(1 2 /) 2 khN V ∑+ −

N - Number of filters
W - Length of the bit string
D, d - Number of dimensions

Algorithms listed above the bottom row, are all de-

signed under specific conditions, and applied in different

scenarios. GOT is good at 2-dimensional prefix matching;

RFC is strong in multi-dimensional application, and so on.

Interested readers are referred to [16] for details of the im-

plemented algorithms. These present algorithms lack of

abilities of handling complex or flexible filters within

economical resources. For example, some algorithms such

as GOT etc., are only good at searching on two fields, i.e.

source IP and destination IP; some can only deal with

exact matching. And some, such as TCAM, are good at

searching speed, but fail in implementation cost. Com-

pared to these, our approach is good at filter adaptation

and relatively small time and space complexities, i.e. logN

and N level respectively.

8 Simulation

8.1 Simulation Environment

In order to approximate the actual performance of this

algorithm, we developed a test bed built on IBM

PowerNP4GS3. NP4GS3 is a programmable network

processor optimized for packet processing at speeds up to

OC48 (4Gbps). As superior as a switching and routing

system on a single chip, NP4GS3 supports cost-efficient

designs for high-level packet forwarding and filtering.

NP4GS3 consists of two parts, i.e. central processor (CP)

and network processor (NP), and NP4GS3 uses software-

managed tree (SMT) as the classifier.

Figure 4 shows the process from tree building to search-

ing execution. First, define the filter set for the simulation.

Next, apply ChoiceBit algorithm to build lookup tree, i.e.

the CP converts the filter set into a matrix, chooses the

column with current minimal preference value to fill in the

index table, builds SMT tree, and repeats this process until

the filter set is empty. Then download a copy of the SMT

tree with the same structure of nodes and leaves, to NP.

Data Packet

Get the Key

Perform the searched/default action to packet

SMT tree

Search SMT tree

Match to Leaf Chain

Get the proper action

Start

Tree building

Lookup for
the best column

ChoiceBit
algorithm

Setup rules

Send to NP
NP

CP

Figure 4: Flowchart for SMT Building and

Search Mechanism

When a packet arrives, the header is extracted, and the

classifier traces the SMT tree to find a matchable filter.

The corresponding action will be performed if a result

returns successfully, or a default action will be taken in-

stead.

NII Journal No. 8 (2004.2)

19

In this test, the packets are generated with special pro-

grams. The IP addresses of both source and destination

follow a uniform distribution. And the protocol type fol-

lows the distribution of about TCP~35%, UDP~35%,

ICMP~20%, others~10%, according to the statistics of real

network traffic. Actually, the result data are obtained from

NPSim, a soft simulator of NP4GS3. The filters are also

generated with computers, in the five-tuple format as

shown in figure 1. And the evaluation formula is denoted

as follows,
2 2 2[] (0) (1) (*)

2 2
N Npreference i a a a ab= − + − + +

Inside the leaf chain, we use linear searching to trace

filters.

8.2 Simulation Result

Figure 5 shows the relationship between number of fil-

ter, and some attributes of lookup tree, namely the longest

leaf chain, the number of leaf chains and intermediate

nodes, in the case that there exists only one tree. This case

means that index table is not valid at all.

8 5 9 9 9 9 10 9
2

11

36 41 46
57 57

63

11 12

50
63

95 89 91

109

35
23

99

126

189

207 211 207

0

50

100

150

200

250

20 132 510 808 1010 1111 1313 1515

Number of filters

Depth of Tree Longest L.C. # of L.C. Total I.N.

Figure 5: Relationship between the Number of Filters and

Parameters of Lookup Tree
I.N. - Intermediate nodes
L.C. - Leaf chain

From above figure, we can see that the lookup tree is

well balanced, i.e. with satisfactory depth and short leaf

chains, when there are not so many filters. While in the

case of more filters, the leaf chains grow very long and

occupy much memory space, due to the intersection and

dependency among these filters. When filters are over one

thousand, the tree stops growing, as its depth and number

of intermediate nodes and leaf chains change little. How-

ever, at the same time, the filters stored in leaf chains keep

increasing, which can be witnessed from the number of

filters in the longest leaf chain. This trend denotes that the

lookup efficiency is decaying to be a linear searching.

To prevent this situation, a direct and simple solution is

to put those filters into more trees. Theoretically, the filter

set can be dynamically grouped so as to balance the distri-

bution of filters within different trees. And the index table

works as an index to locate the proper tree. In this scenario,

our algorithm shows its superiority.

In the following simulation, the field of protocol type is

chosen to create the index table, i.e. to classify the filters

into four groups, namely TCP, UDP, ICMP and the others.

Each group distributes its filters into one specific lookup

tree. Actually, this step is just the process of “ChoiceBit”

and “Tree building”.

The test data, before and after grouping, are shown in

figure 6. The result of the ungrouped in the case that the

filters are over 1600, is not available.

400 filters

89

25

23

30

10

8

5

5

6

4

42

11

10

20

3

34

11

12

18

2

0 10 20 30 40 50 60 70 80 90 100

Before

TCP

UDP

ICMP

Others
of I.N. Len. of I.N. # of L.C. Len. of L.C.

1000 filters

196

53

53

49

42

9

6

6

6

6

92

31

31

26

19

42

23

24

29

18

0 50 100 150 200 250

Before

TCP

UDP

ICMP

Others

of I.N. Len. of I.N. # of L.C. Len. of L.C.

1600 filters

216

92

87

49

42

9

8

8

6

6

110

37

31

26

19

91

38

34

29

18

0 50 100 150 200 250

Before

TCP

UDP

ICMP

Others

of I.N. Len. of I.N. # of L.C. Len. of L.C.

Figure 6 (1-4): Simulation Results

A Hybrid Approach to Packet Classification

20

2000 filters

196

204

126

42

9

9

8

6

92

106

48

19

42

46

33

18

0 50 100 150 200 250

Before

TCP

UDP

ICMP

Others

of I.N. Len. of I.N. # of L.C. Len. of L.C.

2500 filters

201

192

126

42

9

9

8

6

100

94

48

19

57

59

33

18

0 50 100 150 200 250

Before

TCP

UDP

ICMP

Others

of I.N. Len. of I.N. # of L.C. Len. of L.C.

3000 filters

256

274

126

42

10

10

8

6

122

94

48

19

101

101

33

18

0 50 100 150 200 250 300

Before

TCP

UDP

ICMP

Others

of I.N. Len. of I.N. # of L.C. Len. of L.C.

Figure 6 (5-6): Simulation Results

From figure 6, we can see that the longest leaf chain be-

comes shorter, because each tree has fewer filters to store

than before. And the shorter depth will result in a shorter

searching time. Anyway, another problem emerges as the

number of filters keeps increasing. The groups of TCP and

UDP congregate much more filters, due to the asymmetri-

cal distribution of filters in different protocols. This trend

will cause the decrease of efficiency.

9 Conclusion
Today, as internet has become more open and sharable,

the requirement for differentiated and sophisticated service

stands out increasingly. Thus, to find fast and adaptive

packet classification algorithms, as a key factor to network

management, is a hot topic.

This paper proposed an idea of combining the static top-

down tree structure and tuple grouping strategy. Based on

this hybrid approach, a classification algorithm is dis-

cussed, which groups the filters as several top-down

lookup trees according to the inner dependency. Following

the strategy of lowering dimensions, this algorithm un-

folds selected header fields into index table to shorten the

depth of lookup tree, and the final search is done inside the

leaf chain, lying at leaf nodes. As to its implementation

speed, running on the powerful NP chip, this algorithm

with logarithmic time cost, is fast enough to deal with

present packet flow without any loss. Also, by importing

wildcards into filter formats, this algorithm is able to han-

dle more flexible filters besides exact matching. In addi-

tion, the evaluation system based on filter cost, i.e. Wi,

enables the arbitrary mechanism of filter selection.

Our future work is to refine and configure this algo-

rithm into several schemes according to typical application

scenarios. Besides, more simulations are also needed to

test and validate its feasibility and practicability.

References

[1] Vijay, P. Kumar; T.V., Lakshman; D., Stiliadis, “Be-

yond Best Effort: Router Architectures for the Dif-

ferenti-ated Services of Tomorrow's Internet”, IEEE

Commu-nication Magazine, 1998, p.152-164.

[2] Yusheng, Ji; Shoichiro, Asano, “Virtual Rate-Based

Queueing: A Generalized Queueing Discipline for

Switches in High-Speed Networks”, IEICE Transac-

tions on Communications, Vol.E77-B, No.12,

p.1537-1545, 1994.

[3] T. V., Lakshman; Dimitrios, Stiliadis, “High-Speed

Policy-Based Packet Forwarding Using Efficient

Multi-Dimensional Range Matching”, Proceedings

of ACM SIGCOMM, 1998, p.203-214.

[4] P., Warkhede et al., “Fast Packet Classification for

Two-Dimensional Conflict-Free Filters”, Proceed-

ings of IEEE INFOCOM, 2001, p.214-228.

[5] V., Srinivasan, “A Packet Classification and Filter

Management System”, Proceedings of IEEE

INFOCOM, 2001, p.1464-1473.

[6] T.Y.C., Woo, “A Modular Approach to Packet Clas-

sifi-cation: Algorithms and Results”, Proceedings of

IEEE INFOCOM, 2000, p.174-185.

[7] H.Y., Tzeng, “Longest Prefix Search Using Com-

pressed Trees”, Proceedings of IEEE GLOBECOM,

1998, p.8-12.

NII Journal No. 8 (2004.2)

21

[8] Stanford High-performance Networking Group,

http://klamath.stanford.edu/.

[9] Princeton Extensible Router,

http://www.cs.princeton. edu/nsg/router.html.

[10] J.C., Mogul; R.F., Rashid; M.J., Accetta, “The

Packet Filter: An Efficient Mechanism for User

Level Network Code”, Technical Report 87.2, Digi-

tal WRL, 1987.

[11] S., McCanne; V., Jacobson, “The BSD Packet Filter:

A New Architecture for User-level Packet Capture”,

Proceeding of USENIX Technical Conference, 1994,

p.259-269.

[12] M., Yuhara; B.N., Bershad; C., Maeda; J., Eliot; B.,

Moss, “Efficient Packet Demultiplexing for Multi-

ple Endpoints and Large Messages”, Proceeding of

USENIX Technical Conference, 1994.

[13] M.L., Bailey; B., Gopal; M., Pagels; L.L., Peterson;

P., Sarka, “PATHFINDER: A Pattern-based Packet

Classifier”, Symposium on Operating Systems De-

sign and Implementation, 1994.

[14] S., Singh; F., Baboescu; G., Varghese; J., Wang,

“Packet Classification Using Multidimensional Cut-

ting”, Proceedings of ACM SIGCOMM, 2003,

p.213-224.

[15] P., Gupta; N., McKeown, “Packet Classification on

Multiple Fields”, Proceedings of ACM SIGCOMM,

1999, p.147-160.

[16] F., Baboescu; S., Singh; G., Varghese, “Packet Clas-

sifi-cation for Core Routers: Is there an alternative

to CAMs?”, Proceedings of IEEE INFOCOM, 2003.

[17] P., Gupta; N., McKeown, “Packet Classification

using Hierarchical Intelligent Cuttings”, IEEE Mi-

cro, Vol. 20, No.1, p.34-41, 2000.

[18] SiberCore Technologies Inc. Ultra TCAM Product

Briefs. http://www.sibercore.com/.

[19] S., Iyer et al., “ClassiPl: An architecture for Fast and

Flexible Packet Classification”, IEEE Network,

p.141-152, 2001.

[20] V., Srinivasan; S., Suri; G., Varghese, “Packet Clas-

sification using Tuple Space Search”, Proceedings

of ACM SIGCOMM, 1999, p.135-146.

