Inventing the Future of Network Society by Information Security

The Role of Cryptography and Information Security

ICT systems ••• Virtual World

(Every information is communicated and recorded by digital data)

Cryptography and Information Security

Cryptography and Information Security

- Protecting Systems
 - Protect systems and databases from hackers to intrude and attack
- Promoting Business over Networks
 - Payment via networks (correctness)
 - Signing and contracting via networks
- Promoting Social Activities over Networks
 - Voting and auction via networks (privacy)
- Promoting Entertainment over Networks
 - Coin flipping and lottery over networks (fairness)

Cryptography: Key Technology in Information Security

- Basic primitives
 - Confidentiality (Encryption, Key distribution)
 - Authentication (Signatures)
- Cryptographic Protocols
 - Privacy-enhanced basic-primitives
 - Electronic voting
 - Electronic payment/money
 - Electronic contracting
 - Electronic gaming

Symmetric and Public-key Encryption

Symmetric Encryption	Encryption-Key = Decryption-Key
Public-key Encryption	Encryption-Key ≠ Decryption-Key

Principle of Public-key Encryption

Public-key Encryption

Principle of Digital Signatures

Digital Signatures

Public-Key Infrastructures (PKI) Certification Authority (CA)

Organization to certify a public-key

New Technology

(for New Network Services like Cloud Computing)

Virtual Private Network Service

Centralized Access Control of Database Services

Advanced Encryption (Predicate Encryption)

Public-Key (system parameters)

PK

Publish

Authority

Public-Key: PK

Secret-Key: SK

(Master-SK)

Predicate

 $\uparrow \qquad Secret-Key \\
for f \\
(SK_f)$

Alice

C=E(x, PK, M)

Bob

Download

(Encryption for attribute *x* and plaintext *M*)

C

 $M=D(SK_f, C)$ (can be decrypted iff f(x)=1)

Advanced Encryption 1 (Predicate Encryption)

Public-Key (system parameters)

PK

Publish

Predicate f =

 $(X=Animation) \land$

(Y=Price Zone 2 V Z=Class 1)

Public-Key: *PK*Secret-Key: *SK*(Master-*SK*)

Authority

 $\uparrow \qquad Secret-Key$ for <math>f $\downarrow \qquad (SK_f)$

Alice

C=E(x, PK, M)

Download

Bob

(Encryption for

attribute x = (X, Y, Z) =

C

(Animation, Price Zone 2, Class 2))

 $M=D(SK_f, C)$ (can be decrypted iff f(x)=1)

Advanced Encryption 2 (Predicate Encryption)

Public-Key (system parameters)

PK

Publish

Download

Attribute x = (X, Y, Z) = (NTT, Age:30, Female)

Public-Key: *PK*Secret-Key: *SK*(Master-*SK*)

Authority

Alice

C=E(f, PK, M)
(Encryption for

predicate f =

Bob

 $X=NTT \land (Y<35 \lor Z=Male)$

 $M=D(SK_x, C)$ (can be decrypted iff f(x)=1)

Summary

- How to guarantee the security in new network services like cloud computing is a key issue in promoting the services.
- New cryptographic (information security) technology guarantees and promotes secure networks services.
 - Multiparty protocols
 - Advanced encryption