Application of Game Theory in Wireless Ad Hoc Networks

Mingmei Li, Eiji Kamioka and Shigeki Yamada
National Institute of Informatics

Motivation and Goal
We model a Non-cooperative Game based framework to find a good balance between the two conflicting objectives. Allow nodes to learn operating point, by considering payoffs that reflect the behaviors and feedback of real network status.

Tradeoff

Optimal Points - Nash Equilibrium

The situation \(x_1^*, \ldots, x_N^* \) is called Nash Equilibrium in the Game \(G \), if for all nodes give strategies \(x_i \) and \(x_{-i} \), there is

\[U_i(x_i, x_{-i}) \geq U_i(x_i^*, x_{-i}) \]

The equilibrium strategy under this is that the value of \(x_i \) that maximizes the \(U_i(x) \)

\[U_i(x^*) = \max_{x_i} U_i(x_i, x_{-i}) \]

Evaluation Results

Non-cooperative Game Model

- **Player:** There are \(N \) nodes in the network
- **Utility Function:** \(U_i(x_1, \ldots, x_N) \)

 \[U_i(x) = \alpha \cdot \sum_{j \neq i} x_j + (1 - \alpha) \cdot x_i \]

\(\alpha \) is normalized as packet generating rate by node \(i \), \(x_i \) is the strategy set.

Case I: Power Consumption

Case II: Delay in Own Data

Application Scenario

Optimal Points - Nash Equilibrium

The situation \(x_1^*, \ldots, x_N^* \) is called Nash Equilibrium in the Game \(G \), if for all nodes give strategies \(x_i \) and \(x_{-i} \), there is

\[U_i(x_i, x_{-i}) \geq U_i(x_i^*, x_{-i}) \]

The equilibrium strategy under this is that the value of \(x_i \) that maximizes the \(U_i(x) \)

\[U_i(x^*) = \max_{x_i} U_i(x_i, x_{-i}) \]