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Abstract

The thesis studies the logical mechanism and its computational proce-

dures in hypothesis finding. Given a background theory and an observation

that is not logically derived by the prior theory, we try to find a hypothesis

that explains the observation with respect to the background theory. The

hypothesis may contradict with a newly observed fact. That is why the logic

in hypothesis finding is often regarded as ampliative inference.

In first-order logic, the principle of inverse entailment (IE) has been ac-

tively used to find hypotheses. Previously, many IE-based hypothesis finding

systems have been proposed, and several of them are now being applied to

practical problems in life sciences concerned with the study of living or-

ganisms, like biology. However, these state-of-the-art systems have some

fundamental limitation on hypothesis finding: They make the search space

restricted due to computational efficiency. For the sake of incompleteness in

hypothesis finding, there is an inherent possibility that they may fail to find

such sufficient hypotheses that are worth examining.

The thesis first provides such a practical problem, where those incomplete

procedures cannot work well. In contrast, this motivating problem is solved

by CF-induction, which is an IE-based procedure that enables us to find

every hypothesis. On the other hand, complete procedures like CF-induction

have to deal with a huge search space, and thus, are usually achieved by

consisting of many non-deterministic procedures.

The thesis next shows an alternative approach for finding hypotheses,

which is based on the inverse relation of subsumption, instead of entailment.

The proposed approach is used to simplify the IE-based procedures by reduc-

ing their non-determinisms without losing completeness in hypothesis finding.

Together with this result, we logically reconstruct the current procedure of

CF-induction into a more simplified one, while it ensures the completeness.

Through the thesis, we will see underlying nature and insights to overcome

limitations in the current IE-based hypothesis finding procedures.



Chapter 1

Introduction

1.1 Background

We are used to hypothesize in various aspects of daily life. When infant

children are crying, their mothers would give some milk to the infants. That

is because mothers consciously or not hypothesize that infants want some

milk when they cry. Hypothesizing also plays an important role in business.

When quality-engineers face some claim to a product from the market, they

would examine whether or not the other products in the same lot have the

same defect. That is because they hypothesize that if some product includes

a defect, the others in the same lot can also include the same defect.

According to a dictionary, the word “hypothesis” means a proposition

made as a basis for reasoning, without the assumption of its truth. In other

words, generated hypotheses are not necessarily always in the right. Indeed,

crying children may want to change diapers and products with some defect

may be occurred singly. That is why the logic in hypothesizing is viewed as

ampliative inference: abduction and induction, which are epistemologically

distinguished with deductive inference.

Research topics on inference-based hypothesis finding have been actively

studied in the community of inductive logic programming (ILP). Historically,

ILP has been first defined as the intersection of machine learning and logic

programming to deal with induction in first-order logic [43, 48, 36]. Com-

pared with the other machine learning techniques, ILP works on both tasks
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of classification and theory completion in complex-structured data.

Oceans of data are now being generated in great volumes and in diverse

formats. In life sciences, biochemical data is also rapidly produced from

emerging high throughput techniques, whereas the whole life-systems, such

as signal transduction, gene regulation and metabolism, are still incompletely

clarified. For this situation, ILP techniques are recently being applied in life

sciences to find hypotheses that can complete the prior life-systems. The

huge and diverse biochemical data can be lumped with richer knowledge

representation formalisms in first-order logic. Thus, unlike the other machine

learning techniques, ILP has applicability to discovering causal relations and

missing facts that are lacked in the biochemical knowledge.

In this section, we first review abduction and induction by explaining

their tasks, similarities and differences as well as introducing several kinds of

inductive tasks. Next, we review inductive logic programming by describing

the task and advantages as well as its history in brief. Lastly, we consider

an inherent possibility to apply ILP techniques in life sciences by reviewing

several past application examples. 　

1.1.1 Abduction and Induction

Both abduction and induction are ampliative inference to seek a hypothe-

sis that accounts for given observations or examples. Generated hypotheses

provide us more information by adding them to the prior background knowl-

edge. On the other hand, it may be falsified when new knowledge is obtained.

According to the philosopher C. S. Peirce [53, 24], whereas induction infers

similarities or regularities confirmed in the observations, abduction infers

causalities that are different from what we directly observe. For instance,

from the positions of planets in the space, inferring that the planets move

in ellipses with the sun is an inductive task. Because this task is related to

finding a similarity hidden in the orbits of planets. In contrast, from the ob-

servation that an apple drops on the ground, inferring the existence of gravity

is an abductive task. That is because though the concept of gravity explains

the observation, we cannot explicitly sense the existence of gravity. We note
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that the word “abduction” is used to mention the property taking subjects

away illegally in general. Indeed, we often see this word in articles on the

North Korea abductions of Japanese. Similarly, abduction as the inference is

also used to bring us unexpected inspirations with respect to observations.

As the discovery of universal gravitation, discerning hypotheses often have

loaded to paradigm shifts in science. Not only in science, but also in business

or everyday life, we use induction and abduction especially for generating

theories. Let us give a toy example (1): Suppose that when we walk around

a university in autumn, we observe that a tree on the east side begins to turn

color faster than others. From the observation, we may infer the abductive

hypothesis that the sunlight causes the autumn color in the tree. That is

because the sunlight tends to get into trees on the east side more brightly than

others on the west. By generalizing the abductive hypothesis, we may obtain

the inductive hypothesis: if an arbitrary tree is much sun-exposed, then it

turns color faster than others. This inductive hypothesis can be verified by

checking whether or not it is applicable to another tree. If the verification

results in rejection of the current hypothesis, we need to refine it and verify

once again the modified one. Otherwise, we can keep the current hypothesis

as it is. In this way, we generate a concrete theory using abduction and

induction in the cycle of hypothesis formation and verification.

From an epistemological point of view, abduction and induction are clearly

two different processes. On the one hand, induction refers to inductive gen-

eralization: It is used to find general laws that account for given observations

possibly with the background theory. On the other hand, abduction is used

to infer an explanation for some specific observed situations or properties.

However, in a logical standpoint, they are not necessarily distinguished with

each other, because induction can often induce explanations for the obser-

vations. Recall the example [22] where we know Tweety is a bird and we

suddenly observe that he is able to fly. Then, we may infer that every bird

can fly. This hypothesis is an inductive generalization, and simultaneously,

can be regarded as an explanation for the observation.

Lachiche [33] pointed out this identification in abduction and induction,

and especially called the “explanation-based” induction as explanatory in-
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duction. Given a background theory B and observations E, the task of

explanatory induction is to find a hypothesis H such that

B ∧ H |= E, (1.1)

B ∧ H is consistent, (1.2)

where B∧H |= E denotes the entailment relation1 that if B and H are true,

then E is also true in brief.

Formulas (1.1) and (1.2) can be adopted in the logical formalization of

abduction. That is because hypotheses generated by abduction are explana-

tions of observations that satisfy two formulas. Hence, explanatory induc-

tion provides an integrated framework of induction with abduction. In other

word, explanatory induction can find both inductive and abductive hypothe-

ses. The above example (1), described in Figure 1.1, is such a case that

abduction and induction are necessary to generate the target hypothesis.

B: locate(X, east) → sunlight(X)

E: locate(tree(a), east) → autumn color(tree(a))

(abduction) sunlight(tree(a), east) → autumn color(tree(a))

(induction) sunlight(tree(X), east) → autumn color(tree(X))

Figure 1.1: Integration of Abduction with Induction

Along with explanatory induction, several different formalizations of in-

duction has been proposed in the literature [22, 21, 33, 27, 66] such as

Descriptive induction, Circumscriptive induction and Brave induction. In

explanatory induction, it is often difficult to infer regularities confirmed in

observations [22]. For instance, suppose that we have two plastic bottles such

that the one is hot and the other is cold, and we suddenly notice that the

former has a red cap whereas the latter has a white cap. Then, we may infer

that plastic bottles with a red (resp. white) cap are hot (resp. cold). This

is an inductive hypothesis that shows a general relation between cap color

1Please see Chapter 2 for the precise definition.
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and temperature in plastic bottles. However, explanatory induction cannot

generate this hypothesis. Instead, it infers an alternative hypothesis that

hot (resp. cold) bottles have a red (resp. hot) cap. We can represent this

example with the logical formalization as follows:

B : hot(b1) ∧ cold(b2).

E : cap(b1, red) ∧ cap(b2, white).

H1 : (cap(X, red) → hot(X)) ∧ (cap(X,white) → cold(X)).

H2 : (hot(X) → cap(X, red)) ∧ (cold(X) → cap(X,white)).

Though H1 is a considerable hypothesis generated by induction, it cannot

explain E with respect to B. Accordingly, H1 cannot be obtained in the

context of explanatory induction. Descriptive induction [22, 21, 33] has been

proposed to come up with this limitation in explanatory induction. A hypoth-

esis H in descriptive induction is usually defined with so-called completion

technique, and satisfies the following condition:

Comp(B ∧ E) |= H. (1.3)

where Comp(B ∧ E) denotes the predicate completion relative to all predi-

cates in B∧E [8]. In the above example, Comp(B∧E) is obtained by adding

the following theories to B ∧ E:

(hot(X) → X = b1) ∧ (cold(X) → X = b2).

(cap(X, red) → X = b1) ∧ (cap(X,white) → X = b2).

Roughly speaking, these formulas complete the extensions of each predicate

hot, cold and cap using individuals that appear in B∧E. Since Comp(B∧E)

derives H1 and H2, both are hypotheses of descriptive induction, whereas only

H1 can be derived by explanatory induction.

If we should accept the task of induction as completion of individuals that

Lachiche [33] pointed out, descriptive induction based on Clark’s predicate

completion is an alternative but different kind of inductive inference from

explanatory induction. Compared with descriptive induction, explanatory

induction finds classifications rather than regularities or similarities hidden
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in observations. In fact, the hypothesis H2 obtained by explanatory induction

classifies each plastic bottle into two classes (that is, the one with a red cap

and another with a white cap) according to its temperature. Note that every

hypothesis obtained by explanatory induction is not necessarily solved by

descriptive induction as follows:

B : plus(X, 0, X).

E : plus(X, s(0), s(X)).

H : plus(X,Y, Z) → plus(X, s(Y ), s(Z)).

The predicate plus(X,Y, Z) means that the sum of X and Y is equal to

Z. s(X) denotes the successor function of X that satisfies s0(X) = X and

sn(X) = s(sn−1(X)). Since H logically explains E with respect to B, H is

a hypothesis in explanatory induction. On the other hand, this hypothesis

cannot be obtained by descriptive induction. Indeed, the completion theory

Comp(B ∧ E) does not derive H, which is obtained by adding the following

theory to B ∧ E:

plus(X,Y, Z) → (Y = 0 ∧ Z = X) ∨ (Y = s(0) ∧ Z = s(X)).

In the case of Y = 0 and Z = X, plus(X, s(Y ), s(Z)) holds since this becomes

equivalent to E = plus(X, s(0), s(X)). However, in the other case of Y =

s(0) and Z = s(X), plus(X, s(Y ), s(Z)) does not hold since Comp(B ∧ E)

never state whether or not plus(X, s2(0), s2(X)) is true. We may notice

that H is a missing definition of addition. In other word, H completes the

prior (incomplete) background theory. In this sense, explanatory induction

is suitable for inductive tasks such as theory completion [27].

There is an integrated framework of explanatory induction with descrip-

tive induction, called circumscriptive induction [27]. This overcomes induc-

tive leap that explanatory induction can pose. Let the background theory B

and the observation E as follows:

B : bird(Tweety) ∧ bird(Oliver).

E : flies(Tweety).

6



Explanatory induction then infers the hypothesis bird(X) → flies(X). This

hypothesis logically explains not only the observation flies(Tweety), but

also flies(Oliver) that is regarded as an inductive leaf. Because we cannot

state that Oliver also flies like Tweety by the prior knowledge. In contrast,

circumscriptive induction infers an alternative hypothesis H based on the

notion of circumscription [39] as follows:

bird(X) ∧ X 6= Oliver → flies(X).

Since H logically explains E with B and also is derived from Comp(B ∧E),

H is a hypothesis in both explanatory and descriptive induction.

There is an extented framework of explanatory induction, called brave

induction [66]. Brave induction is based on the notion of minimal models.

Explanatory induction requires the condition that every model of B ∧ H is

a model of E, since B ∧ H |= E holds2. On the other hand, brave induction

requires the condition that at least one model of B ∧ H is a model of E.

Hence, every hypothesis in explanatory induction is a hypothesis in brave

induction. Figure 1.2 represents the sets of hypotheses in each framework of

induction using Venn diagrams.

Descriptive 
induction

Explanatory 
induction

Circumscriptive 
induction

Brave 
induction

A first-order language

Figure 1.2: Hypotheses in Each Framework of Induction

2Please see Formula 1.1 in Page 4.
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Induction played a central role at the beginning of machine learning field,

and it has been evolved into powerful systems for solving classification prob-

lems and recently for theorem completion in a relative young branch of ma-

chine learning: ILP. We next briefly describes the inter-related histories of

machine learning and ILP.

1.1.2 Inductive Logic Programming

Within Machine Learning, the research field of ILP is characterized as one

of the paradigms, called inductive learning. Unlike the other paradigms

such as the analytic paradigms, the connectionist paradigm and the genetic

paradigm, its aim is to induce a general concept description from a sequence

of instances of the concept and known counterexamples of the concept [6].

In the historical perspective3, the inductive learning has been developed

interacting with development of deduction as its counterpart. It seems likely

to be natural to go back two underlying theorems given by Gödel [18] around

early 1930’s. Gödel demonstrated that a small collection of sound rules of

inference was complete for deriving all consequeces, and after a year that

he proved this completeness result, in 1931, he proved the more famous

incompleteness theorem that Peano’s axiomisation of arithmetic, and any

first-order theory containing it, is either-contradictory or incomplete for de-

riving certain arithmetic statements. These theorems by far influences both

research fields of deduction and induction. The second incompleteness the-

orem involved many computer scientists like Turing [77] in noticing that in-

telligent machines require the capability of learning from examples. In turn,

the first complete theorem much later resulted as the fruitful discovery of

resolution principle given by Robinson [64], where a single rule of inference,

called resolution, is both sound and complete for proving statements within

this calculus. Based on his discovery, a simple question might arise through

visionary researchers: “If all the consequences can be derived from logical ax-

ioms by deduction, then where do the axioms come from?”. Indeed, around

the most same time as Robinson’s discovery, Banerji [4] tried to introduce

3Much of this subsection is adopted from [34, 43, 80]
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the predicate logic formalization in inductive learning.

From view point of correctness in inductive learning, it is worth nothing

that Gold [20] introduced the concept, called Identification in the limit. An

inductive learning algorithm reads some finite number of examples, and de-

rives a correct description from which all the positive and none of the negative

examples can be derived. However, for concepts with infinite instances, the

inductive task faces with the Problem of Induction by D. Hume [23]. That

is, positive examples that are not yet presented can be outside the induced

concept description, though some instances of the prior concept description

will appear as counterexamples later [80]. Against this problem, Gold, based

on a Popperian idea (roughly speaking that if theories are incorrect, then

eventually they will be falsified) suggested that if an inductive learning al-

gorithm can examine some finite number of examples, refute an incorrect

part of the prior concept description and modify it, then the algorithm will

eventually find a correct concept description. This kind of convergence in

his work has continued in Version Space by Mitchell [42], Model Inference

System by Shapiro [72] and PAC-learning by Valiant [79].

The germ of ILP has been already seen in Plotkin’s work of the early

1970’s. In the thesis [54], he considered the generalization in the clausal for-

malization with the subsumption order, and introduced the inductive mech-

anism, called least general generalization to compute the least generalization

between clauses. Based on this mechanism, he also introduced the concept

Relative subsumption, which enables us to interact with the usage of the

background theory. One essential feature of ILP that distinguishes it with

other inductive learners is the usage of the background theory. Thus, his

thesis laid the foundations for much of the present activity in ILP. On the

other hand, his theoretical result was negative: that is, he showed that there

is in general no finite relative least generalization of two clauses. It seems

that this negative result motivated Shapiro [72] to take an approach to refine

the current hypothesis from specific to general, rather than Plotkin’s general

to specific. Besides, it is important that he first clearly distinguished the

semantics and syntax in the context of refinement of hypotheses.

Despite of his theoretical works with far-sightedness, most successes within
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machine learning field have derived from systems which construct hypothe-

ses within the limits of propositional logic. For instance, MYCIN by Short-

liffe, Buchaman [73] and BMT based on Quinlan’s ID3 algorithm [57] were

efficiently applied as expert systems for specific domains such as medical

diagnosis. In 1980’s, several inductive systems within the predicate logic

formalization have been proposed for the sake of the limitations in propo-

sitional logic. Sammut and Banerji [67] introduced a system called MAR-

VIN which generalizes a single example at a time with reference to a set of

background clauses. In turn, Quinlan [58] described a system, called FOIL,

which performs a heuristic search from specific to general with the notion

of an information criterion related to entropy. Note that, whereas MARVIN

uses the background theory, FOIL does not distinguish the inputs into ex-

amples and the background theory. From this difference, MARVIN would

be characterized as one of the ancestors continuing in the present systems.

Indeed, Muggleton et al. showed that the generalization in MARVIN is a

specific case of inverting reolution processes, and described a system, called

GOLEM, which is based on a relative general generaltization [49]. In 1991, a

year before he described GOLEM, the first international conference on ILP

has held at Viana Do Castelo in Porto.

After the establishment of this conference, ILP has been evolved as the

research area including theory concerning induction (not only explanatory

induction, but also the other inductive frameworks that we showed above)

and abduction, implementation and experimental applications so far. In

summary, compared with the other inductive learning techniques, we list

three merits of ILP as follows:

• Rich representation formalisms: ILP uses the first-order predicate logic.

This feature enables to bring us beyond the restricted formalisms in

propositional logic. As a result, ILP can deal with highly-complex

structured data, which attribute-based algorithms like decision trees

cannot do.

• Usage of the background knowledge: ILP distinguishes the input for-

mulas into examples and the background knowledge if it is necessary.
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In everyday life, we are used to utilize the background knowledge. In

this sense, it would be natural to use the background theory for finding

hypotheses.

• Integrated framework of abduction and induction: In the context of ex-

planatory induction, ILP can perform both abduction and induction.

For this feature, it can potentially find some missing general rules or

facts in the prior background theory. This becomes important espe-

cially in case that the background theory is assumed to be incomplete.

• Readability of the output theory: Unlike other inductive learning tech-

niques, such as Neural networks, Baysian networks and SVM, outputs

of ILP are represented as formulas that we can easily read and verify

them. For readability of the output theory, ILP can involve hypothesis

formation in scientific discovery by directly interacting with users.

We recall the Michalski’s train example [35]. This example would give us

an insight to see what kind of problems ILP sufficiently works on, compared

with other inductive learning algorithms.

Michalski’s train example [35]: We observe two kinds of trains: One goes

west and the other goes east (See Figure 1.3). Every train contains several

cars each of which carries cargos and has its own shape. The task is to

discover a regulatory relation that decides the direction of each train. The

prior knowledge of each train and car is represented in first-order language.

For instance, Train1 and Car1 are as follows:

Train 1 : east(t1). has car(t1, c3). has car(t1, c4). has car(t1, c5).

Car 1 : closed top(c1). length(c1, long). has cargo(c1, circle).

Note that the predicate has car(t, c) means the train t contains the car c,

the predicate closed top(c) means the car c is closed at its top, the predicate

length(c, long) (resp. length(c, short)) means the length of the car c is long

(resp. short) and the predicate has cargo(c,X) means the car c has at least

one X-shaped cargo. The positive examples E+ correspond to the fact that

Train1, 2 and 3 go east. In contrast, we treat as the negative examples the

11



TRAIN1

TRAIN2

TRAIN3

TRAIN4

TRAIN5

TRAIN6

WEST EAST

c1 c2 c3 c4 c5

Figure 1.3: Michalski’s Train Example

fact that Train4, 5 and 6 go west. The background theory B consists of two

kinds of the information: which car each train has and what kind of features

each car has. In the problem setting of ILP, the task is to find a classification

rule that logically explains E+ but does not explain E−, with respect to B.

The following is such a consistent rule H:

H = has car(X,Y ) ∧ closed top(Y ) ∧ length(Y, short) → east(X), (1.4)

where X and Y correspond to a train and car, respectively.

This classification rule cannot be obtained by so-called attribute-based

algorithms [65] like decision trees. Attribute-based algorithms deal with a

collection of objects, each of which consists of a class and attributes that

represent properties of the object. In case that objects have one class and n

attributes, any rules obtained by those algorithms are represented into the

following logical form:

attr1(Obj, val1) ∧ attr2(Obj, val2) ∧ · · · ∧ attrn(Obj, valn) → class(Obj),

where the predicate attri(Obj, vali) (1 ≤ i ≤ n) means that the value of

the i th attribute is vali in the object Obj. In other words, attribute-based

algorithms can seek only such rules that are described in the above form.

However, the above hypothesis (1.4) cannot be represented with this form,

since the predicates closed top and length are not so much attributes of

trains as attributes of cars. Indeed, those predicates refer to features of cars

in terms of their roofs and lengths. That is why the hypothesis (1.4) cannot

be obtained by the attribute-based algorithms.
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This example shows that ILP can find a classification rule between a

target class (i.e. Direction) and properties (i.e. roof and length) of an at-

tribute (i.e. car) in objects (i.e. trains). In this way, ILP focuses on not

only attributes but also those features using rich representation formalisms

in first-order logic. For this feature, ILP has been applied to classification

problems that deal with multiple hierarchic structures.

Along with classification, ILP is used for theory completion tasks.

Graph completion problem: Let us give such a toy example.

d

cb

a

①

②

③

④

Consider the left graph con-

sisting of four nodes a, b, c

and d, and two arcs a → c

and b → d. The left graph

describes the background the-

ory. Suppose that we newly

observe there is a path from

a to d. This cannot be ex-

plained by the background

theory. This means the prior graph is incomplete in the sense that the graph

has some missing arc. For this incomplete graph, ILP can find possible arcs

like c → d (1), a → b (2), c → b (3) or a → d (4) in the context of explana-

tory induction. It is not straightforward that the other machine learning

techniques such as decision trees, Neural networks and SVM perform this

kind of learning task, called theory completion.

As we described above, ILP is sufficient for the classification and theory

completion problems that deal with complex structured data. Based on this

feature, recently it has been growing interest to apply ILP techniques to

practical problems in life sciences. Its common motivation comes from the

perspective that ILP can find some unknown causal relations or missing facts

that are lacked in biochemical knowledge database. We next describe such

applicability in life sciences by introducing several practical problems where

ILP techniques were actually applied and successfully working.
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1.1.3 Applicability in Life Sciences

We first introduce an application [45] to the protein secondary structure pre-

diction. It is known that each protein has some three-dimensional structure,

called folding. Every folding is dominated by the sequence of so-called sec-

ondary structures each of which corresponds to a regulatory cubic structure

emerged in the polypeptide chain. Figure 1.4 describes two foldings of pro-

H:1[19-37] H:2[41-64] H:3[71-84] H:4[93-106] H:5[111-113]

2mhr - Four-helical up-and-down bundle

H:1[8-17] H:2[26-33]

H:3[40-50]

H:4[61-64]
H:5[66-70]

1omd -EF - Hand

E:1[57-59]

H:6[79-88] E:2[96-98]
H:7[99-106]

Figure 1.4: Protein Folding Prediction as Classification Problem

teins: “2mhr four helical up and down” and “1omd EF hand”. Whereas

there are around 300 known foldings, half of all known proteins are member

of the 20 most populated foldings [45].

The inductive task involved in the protein secondary structure prediction

is to discover some characteristics on secondary structures of proteins that

dominate their foldings. We may notice that this problem setting has a

similarity with the Michalski’s train example. Indeed, if cars, trains and

their directions in the example should be identified with secondary structures,

proteins and their foldings, respectively, the task of the Michalski’s example

is the same as the protein secondary structure prediction.

Thus, Progol [44], one of the state-of-the-art ILP systems, has been ap-

plied to those most populated 20 foldings and resulted in around 70% accu-

racy at the cross-validated prediction, which is higher on average, compared
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with other machine learning techniques [45, 50]. For example, in the case

of “Four helical up and down bundle” in Figure 1.4, Progol generated the

following considerable hypothesis:

The protein P has this fold if it contains a long helix H1 at a position

between 1 and 3, and H1 is followed by a second helix H2.

In this problem, ILP was used as a classification tool in inductive learning.

As we explained before, ILP can be also used in a theory completion tool in

the context of explanatory induction.

B. Zupan et al. have developed so-called GenePath system to automati-

cally construct the genetic networks from mutant data [93, 94]. Their work

can be viewed as another application of ILP using the function of theory

completion. A gene regulatory network is usually described by a collection

of interactions between genes, which is involved in physiological behavior,

called phenotype, in a target life system. For understanding the influence of

a target gene on phenotype, geneticists make a mutant obtained by usually

knocking out the gene, and verify how phenotype emerges in the mutant.

For example, let A and B be two genes that are involved in some target phe-

notype, and ∆A, ∆B and ∆AB be three mutants obtained by knocking out

Gene A, B and both of A and B, respectively. In case that the phenotype

more strongly emerges in ∆A, it is assumed that Gene A has an inhibitory

effect on the phenotype. In contrast, if the emergence becomes weaker in

∆B, Gene B is assumed to have an activating effect. There are three pos-

sibilities for graphically representing these two interactions. In the middle

graph of Figure 1.5, both paths from A and B are parallel with each other.

On the other hand, the left (resp. right) graph is described in such a way

that Gene A (resp. B) is upstream from Gene B (resp. A). These possible

cases are uniquely determined by checking how the phenotype emerges in the

mutant ∆AB. If it more strongly emerges like ∆B, we can predict that Gene

A should influence the phenotype in upstream process from Gene B. This

case corresponds to the left graph in Figure 1.5. In contrast, if there is no

change in the emergence, it is assumed that the counter influences of Gene

A and B cancel out each other. This case corresponds to the middle graph.
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Figure 1.5: Possible Gene Regulatory Networks

Using these internal rules that are simple but actually used by experts,

ZenePath automatically constructs an gene regulatory network from mutant

data. In the literature [93, 94], Zupan et al. focused on the developmental

cycle from independent cells to a multicellular form emerged in the social

amoeba Dictyostelium. Under starvation, the amoebae stop growing and

aggregate into a multicellular fruiting body. In contrast, they keep the orig-

inal single cells in nutrient-rich environment. They showed that ZenePath

succeeded in generating a considerable regulatory network involved in this

physiological transition from mutant data in Dictypstelium (See Figure 1.6

[93]).

Development of Dictyostelium 
(M. Grimson, R. Blanton, Texas Tech University)

Figure 1.6: Mutant Data and Generated Gene Network

The task of ZenePath is to find possible gene networks that explain the

phenotype emerged in mutants with respect to several internal rules used

in experts. Thus, we may view this as theory completion on biochemical
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networks in the context of explanatory induction. As a similar application

that aims at completing biochemical networks, there is the Robot Scientist

project by the team of R. King [32]. In this project, they have developed

a physical implement which can automatically detect unknown gene func-

tions in yeast using ILP techniques and also experimentally evaluate those

detected functions. In the verification step, if the hypothesis contradicts

with the experiment result, the robot rejects it and additionally generates

another hypothesis. In the literature [32], they showed that the robot could

automatically refine the metabolic network on the amino acid synthesis.

Tamaddoni-Nezhad et al. have applied to estimate inhibitory effects in

metabolic pathways [76]. This work deeply involves drug discovery. In gen-

eral, chemical compounds used as drugs effectively work by inhibiting some

target enzyme reactions. It is thus necessary for drug discovery to experimen-

tally examine if a target chemical compound (drug candidate) has specific

inhibitory effects to be expected. Those inhibitory effects are confirmed using

laboratory rats. First, their urine is sampled before and after administration

of the chemical compound, and next the concentrations of several observable

metabolites in each urine (before and after the administration) are measured

by NMR. Experts then detect which enzyme reactions are possibly inhibited

from the measured concentration changes based on their own knowledge.

Tamaddoni-Nezhad et al. constructed a logical model that describes this

internal knowledge used in experts. The model includes causal relations be-

tween enzyme inhibitions and concentration changes of metabolites. Thus,

this model enables us to consider which enzyme inhibitions can cause the

observed concentration changes. Hence, the estimation of possible inhibitory

effects can be achieved with the logical model in the context of explanatory

induction. In the literature [76], they showed several inhibitory effects of

particular toxins were in fact sufficiently found using Progol.

Recently, a variety of biochemical data is rapidly being produced in great

volumes and in diverse formats. For this situation, a new research field, called

systems biology, is emerging in life sciences. Molecular biology tends to adopt

the stance as reductionism. In contrast, systems biology tends to integrate life

systems, such as genomics, molecular signaling and metabolism, which have
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been individually studied so far (See Figure 1.7). Significant development in

Metabolism
system

Gene 
regulatory

system

Signal 
transduction

system 

Cross- 
Interacting

system

Discovering missing relations with
an integrating representation formalization

Figure 1.7: Knowledge Discovery in Systems Biology

molecular biology is gradually clarifying the mechanism of each life-system.

However, there are still unknown relations or missing facts in each system

as well as interactions between systems. It is thus important for systems

biology to discover those hidden knowledge lacked in the prior data.

The previous applications show that explanatory ILP techniques are effec-

tive to discover classification rules and missing causalities (genes interactions

or inhibitory effects) from incomplete biochemical knowledge. Moreover, rich

representation formalisms of ILP is sufficient to integrate life-systems that

are individually represented in diverse formats so far. We thus believe that

explanatory ILP techniques have an inherent capability to play an important

role for knowledge discovery in systems biology.

1.2 Motivation

As we explained in the above, several state-of-the-art ILP systems have been

applied to practical problems in life sciences. The applicability would be in-

creasing along with growing interests to systems biology. However, there are

two fundamental problems in the previously proposed ILP systems. Modern

ILP systems can be divided into two types: The one restricts the search
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space due to computational efficiency. The other ensures the completeness

in hypothesis finding, though it has to deal with a huge search space.

The first problem is involved in the former incomplete systems. Every

incomplete system has an inherent possibility that there is another hidden

hypothesis such that is more beneficial than the actual output. In this sense,

those systems make it difficult to guarantee the validity of their solutions. In

life sciences, we need to experimentally evaluate the generated hypothesis.

If ILP systems do not ensure the validity of their outputs, they cannot be

positively accepted by cagy experts who have to pay the costs, which are often

quite expensive. Incompleteness of hypothesis finding can make it restrained

to apply ILP systems in life sciences. Thus, it becomes necessary to overcome

the problem caused in incomplete ILP systems.

This problem never occurs in the latter complete systems. On the other

hand, those systems have to deal with a huge search space for preserving com-

pleteness in hypothesis finding. Such complete systems are used to consist

of non-deterministic procedures. Each non-deterministic procedure makes

many choice points where users have to select relevant one by hand. This

fact makes it difficult to apply them to practical problems that deal with a

large amount of data. The second problem lies in the non-determinisms of

the complete systems.

In this thesis, we first provide a practical example in systems biology that

the previously proposed incomplete systems cannot solve. That is because

this example needs an advanced inference technique that simultaneously in-

tegrates abduction and induction. The expected solutions are in the form of

abductive and inductive hypotheses in the context of explanatory induction.

For this task, we also show CF-induction, which is a complete explanatory

ILP method, efficiently works together with several interactions to users.

Most of the modern explanatory ILP methods are based on the prin-

ciple of Inverse Entailment (IE). This principle uses the following formula

equivalent to Formula (1.1) in the two conditions of explanatory induction:

B ∧ ¬E |= ¬H, (1.5)

where B, E and H denote a background theory, observations and a hypoth-
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esis, respectively. Formula (1.5) means that for any hypothesis, its negation

can be derived from the background theory and the negation of observations

with entailment. Every IE-based method is used to compute hypotheses in

two steps: by first constructing an intermediate theory F such that

B ∧ ¬E |= · · · |= F |= · · · |= ¬H (1.6)

and next by generalizing its negation ¬F into the hypothesis H with the

inverse relation of entailment H |= ¬F .

Non-deterministic procedures in complete ILP systems mainly arise in

those two tasks: construction of an intermediate theory and generalization of

its negation. Both tasks involve in the problem how to realize the entailment

relation. Given a background theory B and observations E, there are many

possible intermediate theories to be constructed, each of which is derived

from B ∧ ¬E with the entailment relation. Moreover, for some constructed

theory F , there are also many possible hypotheses to be generated, each of

which is derived from ¬F with the inverse relation of entailment.

This thesis thus considers the issue on how those two tasks can be log-

ically simplified, while completeness in hypothesis finding is preserved. We

first focus on the sequence of intermediate theories that constructs a deriva-

tion from B∧¬E to ¬H in Formula 1.6. We then show the negations of those

intermediate theories can be represented with inverse subsumption. This log-

ical reduction enables us to use the subsumption relation in generalization,

instead of entailment, without losing the completeness. Based on this result,

we next logically reconstruct the current procedure of CF-induction into a

more simplified form. For its theoretical advantage preserving the complete-

ness, CF-induction potentially has plenty of practical applications in systems

biology like our motivating example. On the other hand, it required users

interactions each of which has to be selected one from many choice points

by hand. This fact has held the practical applications of CF-induction back.

By logically simplifying the current procedure, the non-determisims in CF-

induction can be reduced, and thus it would become possible to automatically

compute sufficient hypotheses that users wish to obtain.
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1.3 Contribution

The contribution mainly consists of the following three works:

• The first contribution is to show new applicability of ILP techniques in

life sciences [88, 86, 13]. We provide a new practical example in systems

biology that cannot be solved by the previously proposed incomplete

systems. This example shows one limitation of those incomplete sys-

tems as well as the necessity of somehow ensuring the validity of the

generated hypothesis. The task in this example is achieved by an ad-

vanced inference integrating abduction and induction. We also show

how this task can be performed using CF-induction.

• The second contribution is to prove that the complete generalization

in the IE-based methods can be achieved by inverse relation of sub-

sumption [90]. Previously, it has been known that the generalization

based on the entailment relation can ensure completeness in hypothe-

sis finding. However, this procedure needs to consist of many so-called

generalization operators such as inverse resolution. Each generalization

operator has many ways to be applied and any combination of them

is also applied as another generalization operator. This fact makes the

generalization procedure highly non-determinisitc. For this problem,

we show inverse subsumption, instead of entailment, is sufficient to

ensure the completeness in generalization.

• The third contribution is to logically reconstruct the procedure of CF-

induction into a more simplified form [91, 92]. Like other IE-based

methods, CF-induction consists of two procedures: construction of in-

termediate theories and generalization of its negation. In the previous

CF-induction, each procedure required several users interactions where

some relevant one should be selected from many choice points. In con-

trast, we first show a deterministic procedure to construct intermediate

theories, while our proposal does not lose any completeness in hypoth-

esis We next propose two possible approaches for generalization task.
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The first approach is based on the logical relation between the nega-

tion of an intermediate formula and a hypothesis. This logical relation

can be realized with inverse subsumption using the result is the second

contribution. Alternatively, the second approach is based on the logical

relation between an intermediate formula and the negation of a hypoth-

esis. Compared with the first approach, the second approach actively

uses deductive inference. We thus show that in both approach, the

non-determinism in generalization can be dramatically reduced. We

also consider efficient implementation in CF-induction [89].

In summary, the thesis shows new applicability of inference-based hypothesis-

finding techniques in life sciences as well as essential limitations in the previ-

ously proposed ILP methods. The thesis also provides us fundamental prop-

erties in hypothesis finding that can be commonly applied in the IE-based

explanatory ILP methods, and also propose sound and complete procedures

obtained by logically simplifying CF-induction. We believe that the contents

shown in the thesis would give us underlying nature and insights to clarify

the logic and computation in hypothesis finding.

1.4 Overview

The rest of this thesis is organized as follows. Chapter 2 reviews the notions

and terminologies in this thesis, which include the syntax and semantics in

first-order logic, clausal forms and consequence finding as well as the dual-

ization problem. Chapter 3 reviews the principle of inverse entailment and

introduces each previously proposed hypothesis-finding method based on in-

verse entailment including CF-induction. Chapter 4 provides a new practical

application in systems biology. Its task is to find both abductive and induc-

tive hypothesis that can complete the prior background theory. We show

how this advanced inference can be realized using CF-induction. The con-

tent in Chapter 4 corresponds to the first contribution in the previous section.

Chapter 5 shows that the generalization relation in hypothesis finding based

on inverse entailment can be reduced to inverse subsumption. The content in

Chapter 5 corresponds to the second contribution in the previous section. In

22



Chapter 6, we focus on the current procedure of CF-induction and logically

reconstruct each non-deterministic procedure into a more simplified one. We

also discuss about efficient implementation of CF-induction with considera-

tion of issues concerning the non-monotone dualization problem. Chapter 7

concludes and describes future works.
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Chapter 2

Preliminaries

This chapter reviews the notion and terminology that are used throughout

the thesis. Section 2.1 describes the syntax and semantics in the first-order

logic as well as its prenex normal and clausal forms (Skolem standard forms).

We next review the resolution principle in Section 2.2. In this section, we

also introduce several important theorems such as Herbrand’s theorem and

Subsumption theorem. Much of Section 2.1 and 2.2 is adopted from [7, 52, 59].

Section 2.3 describes issues on the dualization problem to translate a given

conjunctive normal form formula into a logically equivalent disjunctive (resp.

conjunctive) normal form formula. Note that dualization plays an important

role in hypothesis finding based on the principle of inverse entailment.

2.1 First-Order Logic

Through this thesis, we represent the logical formulas using the classical

first-order predicate logic. Here, we formally define this representation for-

malization. Then, we start with the syntax of first-order logical formulas,

which is formalized with an alphabet of the first-order logic language L de-

fined below.

Definition 2.1. An alphabet of the first-order logic consists of the following

symbols:

• A set of constant symbols: {“a”, “b”, “c”, . . . }.
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• A set of variable symbols: {“x”, “x1”, “y”, . . . }.

• A set of function symbols: {“f”, “f1”, “g”, . . . }.

• A set of predicate symbols: {“p”, “p1”, “q”, . . . }.

• The logical symbols: “∀”, “∃”, “¬”, “ ∧ ”, “ ∨ ” and “ → ”.

• The punctuation symbols: “(”, “)” and “, ”.

The two logical symbols “∀” and “∃” are called the quantifiers, respec-

tively. The other logical symbols are called the connectives. Every function

and predicate symbol has a certain number of arguments, called its arity. In

particular, function and predicate symbols of arity zero are called constant

and proposition symbols, respectively.

Definition 2.2. Well-formed expressions are constructed as follows:

1. A term is either a variable x, a constant c or a function f(t1, . . . , tn) of

arity n ≥ 1 where t1, . . . , tn are terms.

2. A atom is a predicate p(t1, . . . , tn) of arity n ≥ 0 where t1, . . . , tn are

terms. In the case of n = 0, p() will be simply be written p.

3. A formula is either an atom, a universal (∀x)φ, an existential (∃x)φ,

a negation (¬φ), a conjunction (φ ∧ ψ), a disjunction (φ ∨ ψ), an im-

plication (φ → ψ), where x is a variable and φ and ψ are formulas.

Especially, the equivalence formula (φ → ψ) ∧ (ψ → φ) is simply writ-

ten φ ↔ ψ.

An expression is called ground iff no variables appear in the expression.

Let φ be a formula. Then, two formulas (∀x)φ and (∃x)φ are said to be

universally and existentially quantified in x, respectively. φ is said to be

the scope of ∀x and ∃x in (∀x)φ and (∃x)φ, respectively. An occurrence of

a variable x in a formula is bound if the occurrence immediately follows a

quantifier or it lies within the scope of some quantifier that is immediately

followed by x. An occurrence of a variable which is not bound, is called free.

For example, the first occurrence of x in ((∃x)Q(x) ∨ P (x, f(a)) is bound,
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whereas the second occurrence of x is free. A formula is closed if it does

not contain any free occurrences of variables. The first-order language given

by an alphabet is the set of all the well-formed expressions which can be

constructed by the alphabet. In the following, we will not explicitly specify

the alphabet used in each example. Instead, we assume that the alphabet

includes all the symbols we use in the example. In addition, we assume that

every formula is closed, i.e. it has no free variables.

The meaning of each expression in a first-order language like terms, func-

tions and predicates is given by considering what it refers to or whether or

not it is true. Hence, the meanings of expressions depend on what the domain

of discourse we assume and how we interpret expressions over the domain.

The following is the formal definition of an interpretation of the expressions

in a given first-order language.

Definition 2.3. Let L and D be a first-order language and a nonempty

domain of discourse. An interpretation I wrt L and D consists the following

three assignments to each constant, function and predicate occurring in F :

1. To each constant c, we assign an element cI in D.

2. To each function f of arity n ≤ 1, we assign a function f I : Dn → D,

where Dn = {(x1, . . . , xn) | x1 ∈ D, . . . , xn ∈ D}.

3. To each predicate p of arity n ≤ 0, we assign a relation pI ⊆ Dn.

(Note that in case that n = 0, D0 denotes a set that includes only one

element.)

Given an interpretation in a first-order language L over a domain D,

it is further necessary to associate each variable to some element in D for

determining the value of every expression in L. We define this as follows:

Definition 2.4. Let L and D be a first-order language and a nonempty

domain. A variable assignment h wrt L and D is a mapping from the set of

variables in L to the domain D.

Let h and I be a variable assignment and an interpretation wrt a given

first-order language L and domain D.
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The value of a term t in I under h is determined by the function [t]I,h from

the terms of L to D, defined as follows:

• [c]I,h = cI , for a constant c;

• [x]I,h = h(x), for a variable x;

• [f(t1, . . . , tn)]I,h = f I([t1]
I,h, . . . , [tn]I,h), for a function f of arity n ≥ 1.

The truth of a formula F in I under h is determined by the relation I, h |= F

over the formulas in L, defined as follows:

• I, h |= p(t1, . . . , tn) iff ([t1]
I,h, . . . , [tn]I,h) ∈ pI , for a predicate p;

• I, h |= (F → G) iff I, h 6|= F or I, h |= G;

• I, h |= (F ∨ G) iff I, h |= F or I, h |= G;

• I, h |= (F ∧ G) iff I, h |= F and I, h |= G;

• I, h |= (¬F ) iff I, h 6|= F ;

• I, h |= (∃x)F iff I, hx/d |= F for some d ∈ D, where hx/d is the variable

assignment such that if x = y then hx/d(y) = d, otherwise hx/d(y) =

h(y).

• I, h |= (∀x)F iff I, hx/d |= F for every d ∈ D.

F be a formula in the language. The relation I, h |= F means F is true in

the interpretation I under the variable assignment h. An interpretation M

is a model of a formula F iff M,h |= F for every variable assignment h. F is

satisfiable (or consistent) iff there is a model of F . If F is not satisfiable, F

is called a contradiction (or inconsistent). F is tautology (or valid) iff every

interpretation is a model of F .

Let Σ be a set of formulas in the language. An interpretation M is a

model of Σ iff M is a model of every formula in Σ. Σ (logically) entails a

formula F , denoted Σ |= F , iff every model of Σ is a model of F . We call F

a logical consequence of Σ. If F is not a logical consequence of Σ, then we
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write Σ 6|= F . In case that Σ = {G} for some formula G, we simply write

G |= F . Σ (logically) entails a set of formulas Γ, denoted Σ |= Γ, iff every

model of Σ is a model of every formula in Γ. If not Σ |= Γ, we write Σ 6|= Γ.

Two formulas F and G are said to be (logically) equivalent, denoted F ≡ G,

iff both F |= G and G |= F . Similarly, two sets of formulas Σ and Γ are said

to be logically equivalent, denoted Σ ≡ Γ, iff both Σ |= Γ and Γ |= Σ.

Let L be the set of all formulas in the language. Then, the notion of logical

entailment can be viewed as a binary relation |= ⊆ 2L × 2L. It is known that

the entailment relation |= satisfies the following features: (reflexivity) Σ1 |=
Σ1, (transitivity) if Σ1 |= Σ2 and Σ2 |= Σ3 then Σ1 |= Σ3, (monotonicity)

if Σ1 |= G then Σ1 ∪ {F} |= G; (cut) if Σ1 |= F and Σ1 ∪ {F} |= G then

Σ1 |= G; (deduction) Σ1 ∪ {F} |= G iff Σ1 |= F → G; and (contraposition)

Σ1 ∪ {F} |= G iff Σ1 ∪ {¬G} |= ¬F , for each formulas F and G and each

set of formulas Σ1, Σ2 and Σ3. Especially, we denote by 2 the empty set of

formulas. Since there is no models of 2, it holds that a set Σ of formulas is

inconsistent iff Σ |= 2 holds. Accordingly, it holds that for every two sets Σ1

and Σ2, Σ1 ∪ Σ2 is inconsistent iff Σ1 ∪ Σ2 |= 2. Using this property as well

as the contraposition, we often denote by Σ1 |= ¬Σ2 that Σ1 is inconsistent

with Σ2. Hence, the consistency condition of two sets Σ1 and Σ2 can be

represented by Σ1 6|= ¬Σ2.

The entailment relation is an important concept in logic-based artificial

intelligence. Once we represent the knowledge in a target system with a first-

order language, the entailment relation enables us to obtain new statements

that the prior knowledge does not refer to. On the other hand, given a set

of formulas Σ, we may not be able to find out in finite time whether or not

Σ |= F holds for some formula F , since the number of possible interpretations

is usually infinite. We will review some related issues on this consequence

finding problem in Section 2.3. As its introduction, we define several normal

forms like clausal forms in next section.
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2.2 Normal Forms and Herbrand’s Theorem

In the previous section, we reviewed the syntax and semantics in first-order

logic. Given a first-order language L, every formula in L has several alter-

native representation formalizations. For instance, the formula ¬((∃x)f(x))

is logically equivalent to the formula (∀x)f(x). In this section, we introduce

several standard forms for representing the formulas in the language L.

Definition 2.5 (Prenex normal forms). A formula F is said to be in prenex

normal form iff the formula F is the form of

(Q1x1) · · · (Qnxn)(M).

where every Qixi (1 ≤ i ≤ n), is either (∀xi) or (∃xi), and M is a formula

containing no quantifiers. (Q1x1) · · · (Qnxn) is called the prenex and M is

called the matrix of the formula F .

It is well known that for every formula F , there exists a formula F ′ in

prenex normal form such that F is logically equivalent to F ′ and an equiv-

alent formula F ′ can be obtained by translating F with several equivalent

translating operations [52, 7].

We next define so-called Skolem standard forms, which was introduced

by Davis and Putnam [10]. Every formula F in the language is translated

into its prenex normal form (Q1x1) · · · (Qnxn)(M) without lose of general-

ity. The matrix M , since it does not contain quntifiers, can be transformed

into a conjunctive normal form. After this transformation, we eliminate

the existential quantifiers in the prenex by using Skolem functions. We of-

ten say this as skolemizing the formula F , which follows the below opera-

tions. Suppose Qr (1 ≤ r ≤ n) is an existential quantifier in the prenex

(Q1x1) · · · (Qnxn). If no universal quantifier appears before Qr, we choose a

new constant c different from other constants occurring in M , replace all xr

appearing in M by c, and delete (Qrxr) from the prefix. If Qs1 , Qs2 . . . , Qsm

(1 ≤ s1 < s2 < · · · < sm < r) are all the universal quantifiers appearing be-

fore Qr, we choose a new function f of arity m different from other functions,

replace all xr in M by f(xs1 , xs2 , · · · , xsm), and delete (Qrxr) from the pre-

fix. After the above process is applied to all the existential quantifiers in the
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prenex, the last formula we obtain is a Skolem standard form of the formula

F . The constants and functions used to replace the existential variables are

called Skolem functions.

Every formula can be put in the Skolem standard form, but not every

formula has a standard form which is equivalent to the original formula.

For example, using the above translating procedure, the formula (∃x)F (x)

is translated to the Skolem standard form F (c) for a new constant c. The

original formula implies that there is an element in the extension of the

predicate F . In contrast, the translated standard form formula implies that

an element associated with the term c is in the extension of the prediacate

F . If the latter is true, then the former is true. However, its inverse does not

necessarily hold. Hence, the translation into Skolem standard forms can lose

the generality. On the other hand, it can affect the inconsistency property

in the original formula. Let F be a formula and FS a Skolem standard form

of F . Then it is known that F is inconsistent iff FS is inconsistent.

This feature is a strong evidence to use Skolem standard forms in auto-

mated theorem proving. The task in theorem proving is to decide whether

or not Σ |= F for a given set of formulas Σ and a target formula F . If

true, Σ ∪ {¬F} should be inconsistent by the contrapositive property of the

entailment relation. Hence, it is sufficient for the original task to check the

inconsistency of a Skolem standard form of Σ ∪ {¬F}.
For two Skolem standard form formulas, the difference between them

occurs only in the part of matrixes. Their matrixes are formalized in con-

junctive normal forms which are alternatively defined using the notion of

clauses. A literal is an atom or the negation of an atom. A positive lit-

eral is an atom, a negative literal is an atom. A clause is a finite disjunc-

tion of literals which is often identified with the set of its literals. A clause

{A1, . . . , An,¬B1, . . . ,¬Bm}, where each Ai, Bj is an atom, is also written as

B1 ∧ · · · ∧ Bm ⊃ A1 ∨ · · · ∨ An. A definite clause is a clause which contains

only one positive literal. A positive (negative) clause is a clause whose dis-

juncts are all positive (negative) literals. A Horn clause is a definite clause

or negative clause. A unit clause is a clause with exactly one literal. The

empty clause, denoted ⊥, is the clause which contains no literals.
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A clausal theory is a finite set of clauses. Note that a clausal theory S can

include tautological clauses. Then, τS denotes the set of non-tautological

clauses in S. A clausal theory is full if it contains at least one non-Horn

clause. A conjunctive normal form (CNF) formula is a conjunction of clauses,

and a disjunctive normal form (DNF) is a disjunction of conjunctions of

literals. A clausal theory S is often identified with the conjunction of its

clauses. In this thesis, every variable in a clausal theory S is considered

governed by the universal quantifier. By this convension, a Skolem standard

form can be simply represented by a clausal theory.

For the sake of simplicity and preserving inconsistency of original formu-

las, clausal forms have been commonly used for knowledge representation in

automated reasoning with first-order logic.

Let S be a clausal theory. Then, how can we check whether or not S

is inconsistent? Based on the primary definition of the entailment relation,

it is necessary to check all the interpretations with respect to every possi-

ble domains, which cannot be achieved in real. For this problem, Herbrand

introduced a specific model, called a Herbrand model, and proved an impor-

tant feature that inconsistency of clausal theories can be checked within the

notion of Herbrand models. As a preliminary, we define several key notions

in the below. Let S be a clausal theory. The Herbrand universe, denoted

HS, is the set of all ground terms in S. Note that if no ground term exists

in S, US consists of a single constant c, say HS = {c}. The Herbrand base,

denoted BS, is the set of all ground atoms in S.

Let AS be the alphabet consisting of the constants, variables, functions,

and predicates symbols in S. Then, we denote the first-order language given

by the alphabet AS by LS. A Herbrand interpretation IH of S is an inter-

pretation wrt the language LS and the domain US such that cIH = c for

each constant c in LS, f IH = f for each function f in LS, and pIH ⊆ Un
S

for each predicate p in LS. Let S be a clausal theory and IH a Herbrand

interpretation of S. IH is a Herbrand model iff IH satisfies S. It is known

that for a clausal theory S, S has a model iff S has a Herband model. This

property enables us to focus on only the Herbrand models for checking the

inconsistency of S.
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Let S be a clausal theory. A ground instance of a clause C in S is a clause

obtained by replacing variables in C by members of the Herbrand universe

US of S. If S has a model, by the property of Herbrand models, S has also a

Herbrand model. In other other, S is true in some Herbrand interpretation

IH of S for every variable assignment h. Note that each variable assignment

h maps the set of variables in S into members in the Herbrand universe

US. Then, this mapping can be regarded as constructing ground instances

of clauses in S. Hence, if S has a model, every finite set of ground instances

of clauses in S should be also true in some Herbrand interpretation IH . By

taking the contrapositive of this statement, if there is a finite set S ′ of ground

instances of clauses in S such that S ′ is false in every Herbrand interpretation

IH (that is, S ′ is inconsistent), then S does not have any model (that is, S

is inconsistent). Interestingly, this inverse also holds, which Herbrand has

firstly proved.

Theorem 2.1 (Herbrand’s theorem). Let S be a clausal theory. S is incon-

sistent iff there is a finite set of ground instances of clauses in S.

2.3 Consequence Finding

In the previous section, we introduced clausal forms that are commonly used

in Inductive Logic Programming as well as Herbrand’s theorem. One im-

portance issue that this theorem brings is the fact that the consistency of a

target clausal theory can be systematically decided by checking the consis-

tency of each possible finite set S ′ of ground instances from S. The consis-

tency of each S ′ can be determined in the finite number of checking. This

propositional approach based on Herbrand’s theory is one possible way to

realistically achieve the task of automated theorem proving. Given a clausal

theory S, the essential problem in automated deductive reasoning lies in how

we can find the logical consequences of S. In case that S is inconsistent, this

problem is reduced to find the refutation, that is, the empty clause. For the

consequence finding problem, it is difficult to use the propositional approach

since logical consequences are not necessarily ground. Instead, we can use

so-called resolution principle, which was introduced by Robinson. In this
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section, we first define key notions such as substitutions and subsumption,

next describe the resolution principle in brief, and lastly introduce the Sub-

sumption theorem which shows the completeness of the resolution principle

for consequence finding.

Let C and D be two clauses. C subsumes D, denoted C º D, if there

is a substitution θ such that Cθ ⊆ D. C properly subsumes D if C º D

but D 6º C. For a clausal theory S, µS denotes the set of clauses in S not

properly subsumed by any clause in S. Let S1 and S2 be two clausal theories.

S1 subsumes S2, denoted S1 º S2 iff for any clause D ∈ S2, there exists a

clause C ∈ S1 such that C º D. In particular, S1 strongly subsumes S2,

denoted S1 º\ S2 iff S1 º S2 and for any clause C ∈ S1, there exists a clause

D ∈ S2 such that C º D. the relation º\ is known as Plotkin’s order [56]

Let C1 and C2 be two clauses (called parent clauses) with no variables in

common. Let L1 and L2 be two literals in C1 and C2, respectively. If L1 and

¬L2 have a most general unifier σ, then the clause

(C1σ − {L1σ}) ∪ (C2σ − {L2σ})

is called a (binary) resolvent of C1 and C2, denote Res(C1, C2). The literals

L1 and L2 are called the literals resolved upon. Let S be a clausal theory

and C be a clause. A derivation of C from S is a finite sequence of clauses

R1, . . . , Rk = C such that each Ri is either in S, or is a resolvent of two clauses

in R1, . . . , Ri−1. S is minimal wrt derivation iff for each clause C ∈ S, there

is no D such that a derivation from S − {C} can be constructed to D and

D º C. S is maximal wrt derivation iff for each consequence C of S, there

exists a clause D in S such that D º C.

We then recall the following result, called the Subsumption theorem.

Theorem 2.2 ([37, 52]). Let S be a clausal theory and C be a clause. Then

S |= C iff C is a tautology or there exists a derivation of a clause D from S

that subsumes C.

For a clausal theory S, a consequence of S is a clause entailed by S

as we defined in the previous section. We denote by Th(S) the set of all
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consequences of S. The Subsumption theorem states the completeness of the

resolution principle for finding any non-tautological consequences in µTh(S).

By the Subsumption theorem, the resolution principle is sufficient to com-

pute the non-tautological consequences µTh(S) for a target clausal theory

S. SLD resolution [38] is a well known deduction technique as the key pro-

cedure in Prolog. Though SLD resolution can be used to theorem proving,

we cannot use it for consequence finding. Besides, though SLD resolution

preserves the soundness and completeness for finding refutations, its usage

is limited in Horn representation formalization. Inoue [25] proposed to use

a restricted but powerful consequence finding technique to overcome this

problem. The essential idea lies in so-called characteristic clauses, which are

“interesting” consequences that users wish to obtain. Characteristic clauses

are declaratively defined with a language bias, called a production field. Us-

ing a relevant production field, we can efficiently restrict the search space for

hypothesis finding. We first formally define the key notions as follows:

A production field P is defined as a pair, 〈L,Cond〉, where L is a set

of literals closed under instantiation, and Cond is a certain condition to be

satisfied, e.g., the maximum length of clauses, the maximum depth of terms,

etc. Note that if L is closed under instantiation. A production field P is

stable if for any two clauses C and D such that C subsumes D, D belongs to

P only if C belongs to P . For instance, the production field P = 〈{p(a)}〉 is

not stable, since there is a clause p(X) such that p(X) does not belong to P ,

but the ground clause p(a) that is subsumed by p(X) belong to P . Note that

there is recent a work to make any unstable production fields stable [62].

Let R be the set of all predicate symbols appeared in the language. For

R ⊆ R, we denote by R+ (R−) the positive (negative) occurences of predi-

cates from R in the language.

A clause C belongs to P = 〈L,Cond〉 if every literal in C belongs to L

and C satisfies Cond. For a set S of clauses, the set of consequences of S

belonging to P is denoted by ThP(S). Then, the characteristic clauses of S

wrt P are defined as:

Carc(S,P) = µThP(S)

Note that Carc(S,P) can, in general, include tautological clauses [25].When
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Cond is not specified, P is simply denoted as 〈L〉. If both L and Cond are not

specified, P , denoted as 〈L〉, allows all the formulas in the first-order language

L. Note that for the production field P = 〈L〉, Carc(S,P) = µTh(S).

Example 2.1. Let a clausal theory S and a (stable) production field P be

as follows:

S = {s(X0), p(X1) ∨ ¬q(X1) ∨ ¬s(Y1), p(X2) ∨ q(X2) ∨ r(X2)},

P = 〈{±p, ±q, ±r}, max length ≤ 3〉.

Note that for a predicate symbol p of arity k, ±p means the complementary

literals p(X1, . . . , Xk) and ¬p(X1, . . . , Xk) and the condition max length ≤ k

for some natural number k means the number of literals in every characteristic

clauses is less than or equal to k. Using the resolution principle, we have three

additional consequences derived from S :

C1 = p(X3) ∨ ¬q(X3), C2 = p(X4) ∨ r(X4) ∨ ¬s(Y1), C3 = p(X5) ∨ r(X5).

Whereas the number of literals in every clause in S and those three clauses

is less than or equal to 3, only C1, C3 and the 3rd clause in S belong to P
as the other contains the predicate s that is not allowed to be included. In

addition, the following tautological clauses also belong to P:

C4 = p(X6) ∨ ¬p(X6), C5 = q(X7) ∨ ¬q(X7), C6 = r(X8) ∨ ¬r(X8).

Then, ThP(S) consists of those 6 clauses. On the other hand, both the

3rd clause in S and C2 are properly subsumed by C3. As a result, the

characteristic clauses of S wrt P are only C1, C3, C4, C5 and C6.

When a new clause F is added to a clausal theory, some consequences are

newly derived with this additional information. The set of such clauses that

belong to the production field are called new characteristic clauses . Formally,

the new characteristic clauses of F wrt S and P are defined as:

NewCarc(S, F,P) = Carc(S ∪ {F},P) − Carc(S,P).
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Example 2.2. Recall Example 2.1. Let a new clause F be ¬p(Z1). Then,

ThP (S ∪ {F}) consists of ThP(S) and the following three consequences de-

rived from S together with F :

C7 = ¬q(Z1) ∨ ¬s(Y1), C8 = q(Z1) ∨ r(Z1), C9 = ¬q(Z2), C10 = r(Z3).

Since C9 properly subsumes both C7 and C8, it holds that Carc(S∪{F},P) =

µ[{C9, C10} ∪ ThP(S)]. Hence, NewCarc(S, F,P) consists of C9 and C10.

For computation of the (new-)characteristic clauses, Inoue [25] proposed

a sound and complete resolution procedure, called SOL resolution. SOL

resolution constructs derivations from F with respect to S based on three

inference rules: Skip, Extension and Reduction. Note that SLD resolution

consists of Extension and Reduction operations. Hence, SOL resolution can

be regarded as an extension of SLD resolution constructed by adding Skip

operation to SLD resolution.

Let S be a clausal theory and F a clause. We call a derivation obtained

by SOL resolution as an SOL-deduction from S + F and P .

Theorem 2.3 (The soundness and completeness of SOL-deductions [29]).

The soundness and completeness of SOL-deductions are formally described

as follows:

1. Soundness: if a clause D is derived by an SOL-deduction from S + F

and P , then D belongs to ThP(S ∪ {F}).

2. Completeness: if a clause E does not belong to ThP(S) but belongs

to ThP(S ∪ {F}), then there is an SOL-deduction of a clause D from

S + F and P such that D subsumes E.

In terms of efficient implementation on SOL resolution, there is an avail-

able system, called SOLAR [29, 51]. SOLAR (SOL for Advanced Reasoning)

uses a connection tableau format embedding the three operations to effi-

ciently compute new characteristic clauses.

Example 2.3. We recall Example 2.2. SOLAR constructs a SOL-deduction

of C10 = r(Z3) from S + F and P with the following tableau in Figure 2.1:
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! 

¬p(X)

! 

p(X)

! 

¬q(X)

! 

¬s(X)

! 

s(X)

(Extension)

! 

p(X)

! 

q(X)

! 

r(X)

(Extension)
(Extension)

(skip)* *

*

*

(Reduction)

Figure 2.1: Tableau in SOLAR

2.4 Dualization

In this section, we review issues on the dualization problem. The dualization

problem is a well-known problem in NP-completeness [16]. It needs huge com-

putational costs, whereas hypothesis finding techniques such as CF-induction

often need it. Thus, it is essential to use efficient algorithms for real-world ap-

plications of those hypothesis-finding techniques that use dualization. After

describing basic notion and terminologies, we introduce an efficient algorithm

in a specific dualization problem, called monotone dualization.

The dualization problem [15, 16, 68] is to compute a CNF formula from

the dual ψd of a given CNF formula ψ. Let ψ be a CNF formula. The

dual ψd is the DNF formula obtained by replacing every conjunction symbol

∧ (∨) with the disjunction symbol ∨ (∧) in ψ. Though there are many

CNF formulas equivalent to ψd in general, we are used to find a prime and

irredundant CNF formula. A CNF formula S is prime if for every C ∈ S,

there is no literal l ∈ C such that (S−{C})∪{C−{l}} ≡ S. A CNF formula

S is irredundant if there is no clause C ∈ S such that S − {C} ≡ S.

Example 2.4. Let ψ1 and ψ2 be as following CNF formulas:

ψ1 = (a ∨ b) ∧ (c ∨ ¬b) ∧ (a ∨ c),

ψ2 = (a ∨ b) ∧ (a ∨ ¬b).

ψ1 is prime, since for every literal l in ψ1, the clause obtained by dropping l is

no longer logically equivalent to ψ1. On the other hand, ψ1 is redundant, since
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the third clause in ψ1 is the resolvent of the other two clauses. In contrast, ψ2

is irredundant, since for ever clause C in ψ2, ψ2 − {C} is no longer logically

equivalent to ψ2. On the other hand, ψ2 is non-prime, since two literals b

and ¬b can be dropped from ψ2 without losing the logical equivalence.

Let ψ be a CNF formula. ψ is monotone iff ψ does not include any nega-

tions. We call dualization of monotone CNF formulas as monotone dualiza-

tion. An arbitrary monotone CNF formula ψ satisfies two nice properties:

The first is that ψ has its unique prime CNF. The second is that if ψ is

prime, then ψ is irredundant. These two properties imply that the mono-

tone dualization problem is to finding the unique prime CNF formula. In

contrast, a non-monotone CNF formulas does not necessarily have its unique

prime-irreducndant CNF, shown as the following example:

Example 2.5. Let three CNF formula ψ1, ψ2 and ψ as follows:

ψ1 = (a ∨ b) ∧ (¬b ∨ c) ∧ (¬c ∨ ¬a),

ψ2 = (a ∨ c) ∧ (¬b ∨ ¬a) ∧ (¬c ∨ b),

ψ = ψ1 ∧ ψ2.

Both ψ1 and ψ2 are prime and irredundant CNF formulas logically equivalent

to ψ. Thus, the prime-irredundant CNF of ψ is not indeed unique.

It is well known that the monotone dualization is equivalent to the min-

imal hitting sets enumeration [17], which is solvable in quasi-polynominal

time [19]. We then here introduce an efficient algorithm [78, 68] for this

enumeration problem. To describe the algorithm, we first give the definition

of a minimal hitting set of a given family of sets.

Definition 2.6 ((Minimal) Hitting set). Let Π be a finite set and F be a

subset family of Π. A hitting set HS of F is a set such that for every S ∈ F ,

S ∩HS 6= ∅. A set MHS is a minimal hitting set of F if MHS satisfies the

following two conditions:

1. MHS is a hitting set of F ;
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2. For every subset MHS ′ ⊆ MHS, if MHS ′ is a hitting set of F , then

MHS ′ = MHS.

As a property in minimal hitting sets, the following theorem holds:

Theorem 2.4. [78] Let F be a family of sets. A set E is a minimal hitting

set of F iff for every element e ∈ E, there exists a set F in F such that

E ∩ F = {e}.

Example 2.6. Let a monotone CNF formula ψ be (a∨b)∧(a∨c) and a subset

family Fψ {{a, b}, {a, c}}. Note that each set in Fψ can be identified with a

conjunction of ψ. We first show the correspondence between the dualization

of ψ and the miniminal hitting set enumeration of Fψ. The dual ψd is the

DNF (a∧ b)∨ (a∧ c). The prime implicants of ψd are two clauses a and b∨ c.

Then, the output of the dualization of ψ is the prime CNF φ = a ∧ (b ∨ c).

In contrast, the minimal hitting sets of Fψ contains two sets {a} and {b, c}.
We then notice that each of which can be identified with a conjunction of φ.

This Fψ follows Theorem 2.4. When we consider the minimal hitting

set E1 = {a} of Fψ, there is in fact a set F1 = {a, b} ∈ Fψ such that

E1 ∩ F1 = {a}. When we consider another minimal hitting set E2 = {b, c},
for each element b and c, there are two sets F1 = {a, b} and F2 = {a, c} in

Fψ such that E2 ∩ F1 = {b} and E2 ∩ F2 = {c}, respectively.

An efficient algorithm that we introduce here is based on the principle of

reverse search [2] for enumeration problems. In reverse search, we define a

relevant relation, called a parent-child relationship over the solution space (i.e.

the minimal hitting sets of a given subset family). Note that this relationship

has to satisfy the condition that for every solution, there is no ancestor on the

relationship, such that is equal to the original solution. Such a relationship

that satisfies this condition can lead a rooted-tree, called a enumeration tree,

on the solution space. In general, the size of an enumeration tree is too big to

store it in memory for searching. Instead, we use a relevant algorithm that

enables us to enumerate only the children of any node in the tree. Using

this algorithm, we can search all the solutions with the depth-first strategy,
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while we do not need to store the whole enumeration tree in memory. The

parent-child relationship presented in [78] is defined as follows.

Definition 2.7 (Parent-child relationship [78]). Let Π be a finite set, Fn =

{F1, . . . , Fn} a subset family of Π that contains n elements and Ei (1 ≤ i ≤ n)

a minimal hitting set of Fi. Then a pair (i+1, Ei+1) is a child of a pair (i, Ei)

if Ei+1 satisfies the following condition:

• If Ei is a minimal hitting set of Fi+1, then Ei+1 = Ei.

• Else, Ei+1 = Ei ∪{e}, where e is an element in Fi+1 such that Ei ∪{e}
is a minimal hitting set of Fi+1.

For a child pair (i + 1, Ei+1), its parent (i, Ei) is never equal to the child,

since the left number i+1 of the child is different from its parent’s one (that

is i). Analogically, this relationship satisfies that for every child pair, there

is no ancestor such that is equal to the original.

Based on this parent-child relationship, the efficient algorithm for enu-

merating the minimal hitting sets [78, 68] is described as follows:

Global Fn = {F1, · · · , Fn}
compute(i, mhs, S)/*mhs is a minimal hitting set of Fi，
and S is the family of minimal hitting sets of Fn*/
Begin
if i == n then add mhs to S and return;
else if mhs is a minimal hitting set of Fi+1 do

compute(i + 1, mhs, S);
else for every e ∈ Fi+1 s.t. mhs ∪ {e} is a minimal hitting set of Fi+1

do compute(i + 1, mhs ∪ {e}, S);
output S and return;
End

Example 2.7. Let a subset family F3 be {{a, b}, {a, c}, {b, c, d}}. Then,

the minimal hitting sets are computed with the depth-first search on the

enumeration tree in the left below figure. As a result, we can obtain the

set S = {{a, b}, {a, c}, {a, d}, {b, c}} that are the minimal hitting sets of

F3. Next, suppose a family F ′
2 of two sets {c1, e1} and {c1,¬c3}, which
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can be regarded as two sets of conjuncts of the DNF formulas ¬C and ¬E

in Example 5.3, respectively. Then, the minimal hitting sets of F ′
2 are

computed using the enumeration tree in the right below figure, and we can

obtain the output family {{c1}, {e1,¬c3}}.

(0, {})

(1, {a})

(2, {a})

(3, {a, b}) (3, {a, c}) (3, {a, d})

(1, {b})

(2, {b, c})

(2, {b, c})

(0, {})

(1, {c1})

(2, {c1})

(1, {e1})

(2, {e1, ¬c3})

Notice that F3 in Example 2.7 allows negations to be included in inputs.

This enumeration algorithm can be applied in clausal form logic where we

often deal with negations of theories. Consider a ground clausal theory S and

its negation ¬S. By De Morgan’s laws, ¬S is logically equivalent to the DNF

formula obtained by replacing every literal l in the dual Sd with ¬l. Hence,

the dualization of S can be computationally regarded as the translation of

the DNF formula ¬S into some CNF formula in clausal form logic.

There are several CNF formulas that are logically equivalent to ¬S. Here-

after, we introduce three kinds of CNF formulas. Let S be a ground clausal

theory {C1, C2, . . . , Cn} where Ci (1 ≤ i ≤ n) = li,1 ∨ li,2 ∨ · · · ∨ li,mi
. The

complement of S, denoted by S, is defined as follows:

S =

{
¬l1,k1 ∨ ¬l2,k2 ∨ · · · ∨ ¬ln,kn

　　 1 ≤ k1 ≤ m1, 1 ≤ k2 ≤ m2,
. . . , 1 ≤ kn ≤ mn

}
.

Note that S is a clausal theory such that S ≡ ¬S. Accordingly, S can be

regarded as such a CNF formula that is logically equivalent to ¬S. We can

also define alternative equivalent clausal theories. The residue complement of

S, denoted R(S), is the clausal theory obtained by removing any tautological

clauses in the complement S. The minimal complement of S, denoted M(S),

is the clausal theory obtained by removing any clauses in the complement S

each of which is properly subsumed by another clause in S. We may notice
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that the residue and minimal complements can be represented as τS and

µS, respectively. τS and µS are also CNF formulas logically equivalent to

¬S. We often denote τS and µS as the functions R(S) and M(S), called

the residue and minimal complement of S, respectively. R2(S) and M2(S)

denotes R(R(S)) and M(M(S)), respectively.

In terms of computation of the minimal complement, it is interestingly

equal to the enumeration of minimal hitting sets. We show this correspon-

dence in the following. Let S be a CNF formula consisting of ground literals.

In the following, F(S) denotes the family of sets {C1, C2, . . . , Cn} where

Ci (1 ≤ i ≤ n) is the set of literals in each conjunction of the DNF for-

mula ¬S. Similarly, given a DNF formula S, F(S) denotes the family of

sets {C1, C2, . . . , Cn} where Ci (1 ≤ i ≤ n) is the set of literals in each

disjunction of the CNF formula ¬S. Note that given a ground clausal theory

S, F(F(S)) corresponds to S.

The number of minimal hitting sets of the family F(S) is finite. We

then consider the ground clausal theory consisting of all the minimal hitting

sets of F(S), denoted MHS(S). Then MHS(S) is equal to the minimal

complement M(S) as follows:

Theorem 2.5. Let S be a ground clausal theory. Then, M(S) = MHS(S).

(Proof of MHS(S) ⊆ M(S).) Let E be a minimal hitting set of F(S). We

show E ∈ µS since µS = M(S) by the definition of minimal complements.

By Theorem 2.4, for each literal ei ∈ E (1 ≤ i ≤ n), there exists an element

fi ∈ F(S) such that fi ∩E = {ei}. We denote by FE the subset {f1, . . . , fn}
of F(S). Then E is constructed by selecting ei from each element in FE. In

contrast, by the definition of the complement, each clause in S is constructed

by selecting one literal l from every element in F(S). Since E is a minimal

hitting set of F(S), for each element f ′ in F(S) − FE, f ′ ∩ E 6= ∅ holds.

Hence, E can be constructed by selecting one literal from every element fi of

F(S) in such a way that if fi ∈ FE, then a certain literal ei ∈ E is selected,

otherwise, any literal ei ∈ fi∩E is selected. Therefore, E ∈ S holds. Suppose

that E 6∈ µS. Then there is a clause D ∈ S such that D ⊂ E. Since D ∈ S,

D is a hitting set of F(S). However, this contradicts that E is minimal.
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Hence, E ∈ µS holds.

(Proof of M(S) ⊆ MHS(S).) Suppose that there is a clause D ∈ M(S)

such that D 6∈ MHS(S) (*). Since D ∈ µS and µS ⊆ S, D ∈ S holds.

By the definition of S, D satisfies that C ∩ D 6= ∅ for every C ∈ F(S).

Hence, D is a hitting set of F(S). Accordingly, there is a clause D′ in

MHS(S) such that D′ ⊆ D. Since we assume that D 6∈ MHS(S), D 6= D′

holds as D′ ∈ MHS(S). Then, D′ ⊂ D holds. Since D′ ∈ MHS(S) and

MHS(S) ⊆ M(S), D′ ∈ M(S) holds. Hence, there is a clause D′ ∈ M(S)

such that D′ properly subsumes the clause D in M(S). This contradicts the

minimality of M(S). Hence, the primary assumption (*) is false. Therefore

for every clause D ∈ M(S), D ∈ MHS(S) holds. 2

Example 2.8. Let S be the clausal theory {a∨¬b, ¬b∨¬c, ¬b∨¬d}. Then,

F(S), MHS(S), S and M(S) are represented as follows:

F(S) = {{¬a, b}, {b, c}, {b, d}},

MHS(S) = {{¬a, c, d}, {b}},

S = {¬a ∨ b, ¬a ∨ b ∨ d, ¬a ∨ c ∨ b, ¬a ∨ c ∨ d, b, b ∨ d, b ∨ c, b ∨ c ∨ d},

M(S) = {¬a ∨ c ∨ d, b}.

Based on Theorem 2.5, we can use the efficient algorithm for enumerating

the minimal hitting sets in order to compute minimal complements.
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Chapter 3

Inverse Entailment and
CF-induction

In this chapter, we review the previously proposed ILP methods based on the

principle of inverse entailment (IE) [44], including CF-induction [26] which is

sound and complete for finding hypotheses in full-clausal theories. Each

IE-based method has its own properties in terms of search strategy and

computational efficiency. After describing these properties in Section 3.1, we

focus on CF-induction and investigate its inherent possibility for achieving

an advanced inference integrating abduction and induction in Section 3.2.

3.1 Hypothesis Finding in Inverse Entailment

We formally give the definition of a hypothesis H in the problem setting of

explanatory induction as follows:

Definition 3.1 (Hypothesis). Let B and E be clausal theories, representing

a background theory and (positive) examples/observations, respectively. Let

H be a clausal theory. Then H is a hypothesis wrt B and E if H satisfies that

B∧H |= E and B∧H is consistent. To ensure that the inductive task is not

trivial, we assume B 6|= E throughout this thesis. We refer to a hypothesis

instead of a hypothesis wrt B and E if no confusion arises.

Hypothesis finding in Definition 3.1 is logically equivalent to seeking a

consistent hypothesis H such that B ∧ ¬E |= ¬H. Using this alternative
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condition, IE-based procedures [26, 31, 44, 61, 63, 75, 83] compute a hypoth-

esis H in two steps. First, they construct an intermediate theory F such that

F is ground and B ∧ ¬E |= F . Second, they generalize its negation ¬F into

hypotheses using some inverse relation on entailment such that H |= ¬F .

Hereafter, we call F the bridge theory wrt B and E as follows.

Definition 3.2 (Bridge theory). Let B and E be a background theory and

observations, respectively. Let F be a ground clausal theory. Then F is a

bridge theory wrt B and E if B ∧ ¬E |= F . IF no confusion arises, a bridge

theory wrt B and E will simply be called a bridge theory.

Every IE-based procedure constructs a bridge theory and generalizes its

negation into a hypothesis in its own way.

Progol [44, 46], one of the state of the art ILP systems, uses the technique

of Bottom Generalization. Its bridge theory F corresponds to the conjunction

of ground literals each of which is derived from B ∧ ¬E. After constructing

¬F , called the bottom clause, Progol generalizes it with the inverse relation

of subsumption, instead of entailment. Note that recently this generalization

operator has been improved by introducing the notion of clause ordering

[75]. Progol has been successfully applied to many practical problems so

far. Indeed, the two application problems on protein secondary structure

predictions and estimation of inhibitory effects on metabolic pathways, which

we explained in Chapter 1, have been tested using Progol. On the other hand,

it is known that the procedure of Progol is sound, but incomplete for finding

hypotheses [82]. Beside, since it is developed based on Prolog, its knowledge

representation formalisms are limited to Horn clausal theories. The language

bias used in Progol is called mode declaration, which can restrict the literals

and the appearance positions of common variables in the target hypotheses.

One important remark on Progol is that it searches one clause that will

be included in the output hypothesis for each observation. Hence, if the

observations should contain only one clause, the output hypothesis is the

form of some single clause. In other words, Progol cannot derive multiple

clauses as a hypothesis for each observation.

HAIL [61] constructs so-called Kernel Sets to overcome some limitation
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on Bottom generalization. Each clause Ci in a Kernel Set {C1, . . . , Cn} is

given by Bi
1 ∧ · · · ∧ Bi

mi
⊃ Ai, where B ∪ {A1, . . . , An} |= E and B |=

{B1
1 , . . . , B

n
mn

}. After constructing a Kernel Set, HAIL generalizes it using

the inverse relation of subsumption like Progol. Note that a Kernel Set is

regarded as the negation of a certain bridge theory F . In other words, they

directly construct ¬F by separately computing head and body literals of each

clause in ¬F . FC-HAIL [63] and XHAIL [60] are extensions of HAIL to use

richer knowledge representation formalisms that allow full clausal theories

and Nagation as Failure (NAF), respectively. Like Progol, these HAIL series

are also sound, but incomplete for finding hypotheses.

We remark there is a recent work to extend Kernel Sets with an iter-

ative procedure [31] in order to generate a multiple clauses hypothesis in

response to a single seed example, which was one limitation of Progol. In

this work, Kimber et al. [31] proposed so-called Connected Theory general-

ization, which can be viewed as an extension of Kernel Set generalization of

HAIL. A Connected Theory T = T1 ∪ · · · ∪ Tn is a Horn clausal theory such

that (1) B ∧ T+
1 |= E+, (2) B ∧ T+

i+1 |= T−
i (1 ≤ i < n), (3) B |= T− and (4)

B ∧ T 6|= 2. Note that for a Horn clausal theory T , T+ (resp. T−) denotes

the set of Horn clauses each of which contains only the head literal (resp.

body literals) of a Horn clause in T . After iteratively constructing a Con-

nected theory, they generalize it with the inverse of subsumption. Hence, a

Connected theory, like HAIL, is regarded as the negation of a certain bridge.

They develop so-called Imparo based on Connected Theory generalization.

The residue procedure [83] has been firstly proposed to find hypotheses in

full clausal theories. This procedure constructs a bridge theory F consisting

of ground instances from B ∧ ¬E. It then computes the residue comple-

ment R(F ), and generalizes it with the inverse of subsumption. In contrast,

CF-induction [26], which is sound and complete for finding hypotheses in

full clausal theories, constructs a bridge theory F consisting of ground in-

stances from characteristic clauses of B ∧ ¬E. As we explained in Chapter

2, each characteristic clause is a subsume-minimal consequence of B ∧ ¬E

that satisfies a given language bias. In this sense, CF-induction actively ap-

proach ¬H from B ∧ ¬E as far as possible by means of the consequence
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finding technique (i.e. SOL resolution). After constructing a bridge the-

ory F , CF-induction translates ¬F into a CNF formula and generalizes it

with inverse entailment. Unlike the other IE-based methods, generalization

in CF-induction is based on the inverse relation of entailment. This feature

becomes the key aspect to ensure the completeness of CF-induction. On the

other hand, CF-induction needs several computationally expensive proce-

dures such as consequence finding, dualization, and generalization based on

inverse entailment. Figure 3.1 describes the characteristics for each IE-based

ILP method: In the next section, we investigate more detail of CF-induction.

Subsumption

Subsumption

Subsumption
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Subsumption

Subsumption
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Figure 3.1: Characteristics in IE-based Methods

3.2 CF-induction

Computation of CF-induction is based on the principle of inverse entailment.

As we described before, recently, IE methods have been developed for full

clausal theories to enable the solution of more complex problems in richer
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knowledge representation formalisms. One such method is CF-induction

[26], which has two important benefits: unlike some related systems, such

as FC-HAIL [63], CF-induction is complete for finding full clausal hypothe-

ses; and unlike other related systems, such as the Residue Procedure [83],

CF-induction can exploit language bias to focus the procedure on some rel-

evant part of the search space specified by the user. In the previous version,

we have assumed the production field P = 〈L,max length〉 where L is a

set of literals reflecting an inductive bias whose literals are the negations of

those literals we wish to allow in hypothesis clauses. When no inductive

bias is considered, P is just set to 〈L〉, which allows all the formulas in the

first-order language L.

Definition 3.3. [Hypothesis wrt B, E and P ] Let B, E and P be a back-

ground theory, observations and a production field, respectively. Let H be a

clausal theory. H is a hypothesis wrt B, E and P iff H is a hypothesis wrt

B and E, and satisfies the condition that for every literal l appearing in H,

its negation ¬l is in L. If no confusion arises, we simply call a hypothesis

wrt B, E and P as a hypothesis.

Then, for every hypothesis H wrt B, E and P, the following holds:

B ∧ Esk |= Carc(B ∧ Esk,P) |= ¬H, (3.1)

B |= Carc(B,P) 6|= ¬H, (3.2)

where Esk is the ground clausal theory obtained by skolemizing1 E. The

two formulas above follow from the principle of IE and the definition of

characteristic clauses. To explain them, we recall Formula (1.5) and the

consistency condition2 of B and H as follows:

B ∧ ¬E |= ¬H,

B 6|= ¬H.

Since Esk |= ¬E, it holds that B∧Esk |= B∧¬E. Since B∧¬E |= ¬H, it also

holds that B∧Esk |= ¬H. Then, by Herbrand’s theorem, for this hypothesis

1See P. 29 for more detail.
2See P. 28 for representing the consistency condition of two sets of formulas.
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H, there is a ground clausal theory Hg such that Hg consists of ground

instances from H and B ∧ Esk |= ¬Hg. Since any literal in ¬H is included

in L of P = 〈L〉, ¬Hg belongs to P . Then, by the definition of characteristic

clauses, Carc(B ∧ Esk,P) |= ¬Hg holds. Since H |= Hg, ¬Hg |= ¬H holds.

Hence, Formula (3.1) holds. In turn, since B |= Carc(B,P) holds, it must

hold Carc(B,P) 6|= ¬H to satisfy B 6|= ¬H. Hence, Formula (3.2) also holds.

Formula (3.1) implies that we can use characteristic clauses to construct

bridge theories for IE. Formula (3.2) is used to ensure the consistency of the

hypothesis and background theory, which can be achieved by including at

least one clause from NewCarc(B, E,P) in a bridge theory. In summary,

CF-induction uses the following bridge theories:

Definition 3.4 (Bridge theory wrt B, E and P). Let B, E and P be a

background theory, observations and a production field. Let CC be a ground

clausal theory. CC is a bridge theory wrt B, E and P iff CC satisfies the

following conditions:

1. Each clause Ci ∈ CC is an instance of a clause in Carc(B ∧ Esk,P);

2. At least one Ci ∈ CC is an instance of a clause in NewCarc(B, Esk,P).

If no confusion arises, we alternatively call a bridge theory wrt B, E and P
as a bridge theory of CF-induction.

Theorem 3.1. [26] Let B and E be clausal theories, and P a production

field. Then, for any hypothesis H wrt B, E and P , there exists a bridge

formula CC wrt B, E and P such that H |= ¬CC.

This theorem shows that any hypothesis can be computed by constructing

and generalizing the negation ¬CC of a set of characteristic clauses CC.

After selecting a bridge formula CC, CF-induction computes a clausal theory

F obtained by translating ¬CC to CNF. Finally, H is obtained by applying

a series of so called generalizers to F under the constraint that B ∧ H is

consistent. In the current version of CF-induction, there are many such

generalizers as follows:
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• Reverse skolemization [9]: It is used to convert Skolem constants to ex-

istentially quantified variables. For instance, when we apply this gen-

eralizer to the clausal theory F = {{p(sk1), q(X, sk1)}, {r(f(sk2))}},
we can obtain the hypothesis {{p(Y ), q(X)}, {r(f(Z))}}. Note that

this operator is necessary in case that bridge theories contain Skolem

constants. Such a case arises if observations E have variables. Because

those variables are replaced with Skolem constants to compute Esk.

• Anti-instantiation: It is used to replace ground subterms with variables.

For instance, when we apply this generalizer to the clausal theory F =

{{p(a, b), q(b, f(f(c)))}}, a hypothesis {{p(a,X), q(X, f(Y ))}} can be

obtained by replacing a, b and c with X, Y and Z, respectively. We

can consider other applications to obtain alternative hypotheses like

{{p(X,Y ), q(Y, f(f(Z)))}} and {{p(X, b), q(b, Y )}}. In this example,

we have 26 choice points to possibly apply as there are 6 subterms in

F . Thus, along with increasing the total number of subterms in F ,

the possible choice points exponentially increase. In this sense, this

generalizer is non-deterministic.

• Dropping: It is used to remove any literals from F . For instance, when

we apply dropping to the clausal theory F = {a∨b, c∨d}, we can obtain

a hypothesis {a, c ∨ d}. In general, there are 2n − 1 ways to possibly

apply dropping for n literals included in F . Then, this generalizer is

also non-deterministic.

• Anti-weakening: It is used to add some clauses. Let F be a clausal

theory and C be an arbitrary clause. Then, it holds in general that

F ∪ {C} |= F . Hence, anti-weakening can be soundly applied to F

as a generalizer. In case that there is no restriction to added clauses,

the number of possible choice points should be infinite. Hence, this

generalizer is highly non-deterministic.

• Inverse resolution [47]: It applies the inverse of the resolution principle.

For instance, when we apply this generalizer to the clausal theory F =

{{p(X)}}, we can obtain a hypothesis {{p(X),¬q(X)}, {p(Y ), q(Y )}}.
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Note that the resolvent of two clauses in the hypothesis corresponds to

the clause in F . We may consider a hypothesis {{p(X), r(X)}, {¬r(Y )}}
as another application way. Like q(X) and r(X), there are many (pos-

sibly infinite) literals resolved upon. Hence, this generalizer is also

highly non-deterministic.

• Plotkin’s least general generalization (LGG) [55]: This uses the lattice

of clauses over the subsumption order. By the property of lattices,

for every two clauses C1 and C2, there is the least general general-

ization of C1 and C2. Plotkin [55] proposed an algorithm to com-

pute this least generalization. CF-induction allows this algorithm to

be used as a generalizer. For instance, when we apply this gener-

alier to F = {{p(a, b), q(a, c)}, {p(f(c), b), q(f(c), c)}}, we obtain their

least generalization {{p(X,Y ), q(X,Z)}}. We may notice that this hy-

pothesis can be alternatively obtained by several times applications of

anti-instantiations.

On the one hand, 5 generalizers: reverse skolemization, dropping, anti-

instantiation, anti-weakening and LGG are based on the inverse relation of

subsumption. In other words, given a clausal theory F , if a theory G is ob-

tained by applying those 5 generalizers to F , it holds that G º F . On the

other hand, inverse resolution is based on the inverse relation of entailment

beyond subsumption. As explained in the previous section, generalization

in the other IE-based methods expect for CF-induction is based on the sub-

sumption relation. This fact results in incompleteness of hypothesis finding in

those methods, whereas CF-induction needs to treat inverse resolution that is

highly non-determinisitc. Using those generalizers, CF-induction computes

hypotheses in the following procedure:
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Input: A background theory B, observations E
and a production field P .

Output: A hypothesis H wrt B, E and P .

Step 1. Compute Carc(B ∧ Esk,P).

Step 2. Construct a bridge formula CC wrt B, E and P .

Step 3. Convert ¬CC into a CNF formula F .

Step 4. H is obtained by applying generalizers to F

under the constraint that B ∧ H is consistent.

Several remarks are necessary as follows:

Step 1. CF-induction first computes the complement Esk and then uses SOL

resolution to obtain Carc(B ∧ Esk,P).

Step 2. We select one by hand from the possible bridge theories. In general,

as the number of clauses in Carc(B ∧Esk) increases, the choice points

can exponentially increase. In this sense, this procedure is highly non-

deterministic.

Step 3. Though the current version does not fix the translation procedure,

the (residue or minimal) complement would be available. Thus, in the

case of minimal complement, we intend to use the efficient algorithm

for the minimal hitting set enumeration described in Section 2.4.

Step 4. If F includes Skolem constants, we apply reverse skolemization to

replace all those Skolem constants with variables. We may need to

apply a combination of generalizers to obtain target hypotheses. Be-

sides, generalizers do not ensure the consistency of their outputs and

the background theory. Then, it becomes necessity to perform the

consistency checking in their applications.

Theorem 3.2. [26] Let B, E and P be a background theory, observa-

tions and a production field. Then, the soundness and completeness of CF-

induction are described as follows:
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1. Soundness: If a clausal theory H is constructed by the above procedure

with B, E and P , then H is a hypothesis wrt B, E and P .

2. Completeness: For every hypothesis H wrt B, E and P , H is con-

structed by the above procedure with B, E and P .

In the following, we give three examples to explain how hypotheses can be

derived by CF-induction. The first example deals with the graph completion

task in propositional logic.

Example 3.1. [Graph completion by CF-induction] Let a background theory

B and observations E be as follows:

B = {e1 ∧ c1 ⊃ g, c1 ⊃ c2, c2 ⊃ e2, c2 ∧ e2 ⊃ c3},

E = {g}.

Suppose a clausal theory H1 = {{c1}, {e1}}. Then, since H1 logically explain

E with B and B ∧ H1 is consistent, H1 is a hypothesis wrt B and E.

Next, suppose another clausal theory H2 = {{c1}, {e1, ¬c3}}. Though

H2 is more specialized than H1, it is also a hypothesis wrt B and E since

B ∧ H2 |= E and B ∧ H2 is consistent. The following figures describe the

logical relations in the background theory, observations and hypotheses using

arrows: In the figures, the observation g is surrounded by a solid circuit and

c1

e2
g c2

e1

c3

and

and

c1

e2
g c2

e1

c3

and

and

each hypothesis is represented using dotted circuits and lines. H1 provides

two explanations e1 and c1 that account for the reason why g occurs (See the

left figure). On the other hand, H2 contains not only one explanation c1 but

also a missing causal relation between c3 and e1 (See the right figure). In this
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sense, H2 completes unknown causal relation in the prior background theory.

For deriving H1 and H2 by CF-induction, we set the following production

field:

P = 〈{¬c1, ¬e1, c3}〉.

For every literal in H1 and H2, the set {¬c1, ¬e1, c3} of P contains its

negation. Then, both H1 and H2 are hypotheses wrt B, E and P . Thus,

they should be derived by CF-induction. CF-induction first computes the

characteristic clauses of B∧Esk by SOL resolution. Since E is ground, Esk is

equal to E = {{¬g}}. NewCarc(B, Esk,P) and Carc(B,P) are as follows:

NewCarc(B, Esk,P) = {{¬c1, ¬e1}},

Carc(B,P) = {{¬c1, c3}}.

Note that both sets do not include any tautological clauses since P does

not include complementary literals. SOL resolution constructs tableaus for

deriving two clauses {¬c1, ¬e1} and {¬c1, c3}, as shown in the following

right and left figures, respectively: By the definition, there are two possible

¬c1

¬g

*

¬g ¬e1
skipped skipped

¬c1

*

¬e2
skipped

skipped

c2

e2¬c2

c3

*

¬c2

reduction

bridge theories CC1 and CC2 wrt B, E and P as follows:

CC1 = {{¬c1, ¬e1}},

CC2 = {{¬c1, ¬e1}, {¬c1, c3}}.

We next compute two CNF formulas F1 and F2 obtained by translating

¬CC1 and ¬CC2. We represent F1 and F2 as the minimal complements

M(CC1) and M(CC2), respectively. The minimal complements can be ef-

ficiently computed by the algorithm for minimal hitting set enumeration,
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explained in Section 2.4: The algorithm constructs two enumeration trees

for computing M(CC1) and M(CC2), as shown in the following right and

left figures, respectively. As a result, we obtain M(CC1) = {{c1}, {e1}}

(0, { })

(1, { c1 }) (1, { e1 })

(0, { })

(1, { c1 }) (1, { e1 })

(2, { c1 }) (2, { e1 , ¬c3 })

and M(CC2) = {{c1}, {e1, ¬c3}} that correspond to the target hypotheses

H1 and H2, respectively. Note that we do not use generalizers, and thus do

not need to check the consistency of hypotheses with the background theory.

Whereas H1 can be obtained by the other IE-based methods in Figure 3.1,

H2 is derived by only residue procedure and CF-induction. As explained in

Section 3.1, for one example, Progol searches a single clause as a hypothesis.

Since H2 contains multiple clauses, Progol cannot generate it. In turn, since

the body literal c3 in H2 cannot derived only by B, HAIL cannot generate H2.

The body literal c3 becomes true if both c2 and e2 should be true, together

with B. However, c2 and e2 are not derived only by B. Hence, Imparo cannot

generates H2. On the other hand, the residue procedure can do in such a way

that we select the bridge theory F consisting of all the clauses in B ∧ Esk,

compute its residue complement R(F ) and generalize it based on the inverse

relation of subsumption.

We next give an example that deals with the theory completion task on

integer number. Unlike the previous example, this example is requires several

generalizers to obtain target hypotheses including a non-propositional case.

Example 3.2 (Theory completion by CF-induction). Let a background the-
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ory B, an example E be as follows:

B = natural(0) ∨ even(0),

E = natural(s(0)).

The successor function s(X) denotes the next number of X, that is, X + 1.

Formally, it is defined as sn+1(X) = s(sn(X)) for 0 ≤ n, and s0(X) = X.

In this example, we do not have any general rules on integer number, but

know only the fact that 0 is a natural or even number. Given the new fact

that s(0) (i.e. 1) is a natural number, we may infer some rules to explain

this. Here, we show how CF-induction generates such missing rules. Assume

a production field P as follows:

P = 〈{natural(X),¬natural(X), even(X),¬even(X)}〉.

Then, NewCarc(B, Esk,P) and Carc(B,P) are as follows:

NewCarc(B, Esk,P) = {¬natural(s(0))},

Carc(B,P) = {{natural(0), even(0)}} ∪ Taut,

where Taut denotes two tautological clauses {natural(X),¬natural(X)} and

{even(X),¬even(X)}, which are constructed from P . We may notice that

NewCarc(B, Esk,P) and Carc(B,P) correspond to Esk and B, expect for

tautological clauses. That is because there is no resolvent from B and Esk.

Let CC be a clausal theory (natural(0) ∨ even(0)) ∧ ¬natural(s(0)).

Since each clause in CC is a clause in Carc(B ∧ Esk,P) and the unit clause

¬natural(s(0)) in CC is a clause in NewCarc(B, Esk,P), CC is a bridge

formula wrt B, E and P . The minimal complement of CC is as follows:

M(CC) = (natural(0) ⊃ natural(s(0))) ∧ (even(0) ⊃ natural(s(0))).

Since B∧M(CC) is consistent, M(CC) is a hypothesis wrt B, E and P . As-

sume that an inverse resolution generaliser is applied to M(CC) in such a way

that the clause C1 = natural(0) ⊃ natural(s(0)) in M(CC) is replaced with

the clause D1 = natural(0) ⊃ even(0), which is treated as a parent clause of

57



C1. This means C1 is the resolvent of D1 and C2 = even(0) ⊃ natural(s(0))

in M(CC). Then the following clausal theory H1 is constructed:

H1 = (natural(0) ⊃ even(0)) ∧ (even(0) ⊃ natural(s(0))).

Since B ∧ H1 is consistent, H1 is a hypothesis wrt B, E and P .

The following left (resp. right) figures represent the logical relation be-

tween D1 (resp. D2), C1 and C2. Both D1 and D2 are obtained by applying

inverse resolution to C1 and C2. We may notice that the difference arises in

which clause is assumed to the resolvent.

D1 = natural(0) ⊃ even(0) 

C1 = natural(0) ⊃ natural(s(0)) 

C2 = even(0) ⊃ natural(s(0)) 

(Resolvent)

D2 = even(0) ⊃ natural(0)

C1 = natural(0) ⊃ natural(s(0)) 

C2 = even(0) ⊃ natural(s(0)) 

(Resolvent)

Next, assume that another inverse resolution generaliser is applied to

M(CC) in such a way that the clause C2 in M(CC) is replaced with the

clause D2 = even(0) ⊃ natural(0). Then the following clausal theory H2 is

constructed.

H2 = (natural(0) ⊃ natural(s(0))) ∧ (even(0) ⊃ natural(0))

Since B∧H2 is consistent, H2 is also a hypothesis wrt B, E and P . In addition

to the above generaliser, if we apply an anti-instantiation generaliser to H2

in such a way that the ground term 0 occurring in H2 is replaced with the

variable X, then the following theory is obtained:

H3 = (natural(X) ⊃ natural(s(X))) ∧ (even(X) ⊃ natural(X)).

Since B ∧ H3 is consistent, H3 is also a hypothesis wrt B, E and P .
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Every hypothesis H1, H2, and H3 cannot be derived by the other IE-based

methods in Figure 3.1. That is because those hypotheses are obtained by ap-

plying inverse resolution generalizers, which involve the entailment relation

beyond subsumption. As explained before, every IE-based methods except

for CF-induction uses the inverse relation of subsumption, instead of entail-

ment, in generalization. This example thus shows that the reduction from

entailment to subsumtion may cause the incompleteness in generalization.

Both examples above involve completion problems to find some missing

fact or causal relations in the prior background theory. On the one hand,

every hypothesis in the first example is a ground explanation, which can

be obtained without gereralizers. On the other hand, the last hypothesis

in the second example can be regarded as a general rule, rather that an

explanation, lacked in the background example. Hence we may view the first

and second example are achieved by abduction and induction, respectively. In

next example, we show that CF-induction can achieve an advanced inference

integrating both abduction and induction.

Example 3.3. [Integrating abduction and induction by CF-induction]

Assume the following background theory B, observations E, and target

hypothesis H wrt B and E:

B = {arc(a, b), arc(X,Y ) ∧ path(Y, Z) ⊃ path(X,Z)}.

E = {path(a, c)}.

H = {arc(b, c), arc(X,Y ) ⊃ path(X,Y )}.

One arc from b to c and one general rule on pathways are missing in B. The

task is to find the hypothesis H that completes these missing fact and rule.

To complete H, both abduction and induction must involve, but most current

ILP systems cannot compute it. This advanced inference has a possibility to

be effectively applied to systems biology [88], later.

Let a production field P be 〈{arc(X,Y ),¬arc(X,Y ),¬path(X,Y )}〉. Us-

ing SOL-resolution, the following new characteristic clause C1 of Esk wrt B
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and P and characteristic clause C2 of B wrt P are obtained:

C1 = {¬path(b, c)} ∈ NewCarc(B, Esk,P).

C2 = {arc(X,Y ) ∨ ¬arc(X,Y )} ∈ Carc(B,P).

The following figure is a tableau of SOL resolution for deriving C1:

¬path(a, c)

¬arc(X, Y) ¬path(Y, Z) path(X, Z)

arc(a, b)

{ X/a, Z/c }

{Z/c}

{X/a }

(Extension)

*{X/a, Y/b }

(Extension)

*

(skip)

Note that C2 is a tautological clause constructed from P . We then select

the following bridge theory CC wrt B and P consisting C1 and a ground

instance of C2:

CC = {¬path(b, c), arc(b, c) ∨ ¬arc(b, c)}.

The minimal complement of CC is as follows:

M(CC) = {path(b, c) ∨ ¬arc(b, c), path(b, c) ∨ arc(b, c)}.

The target hypothesis H is then derived from M(CC) in such a way that the

literal path(b, c) in the clause path(b, c) ∨ arc(b, c) is removed by applying a

dropping generalizer and then two constants b and c in the clause path(b, c)∨
¬arc(b, c) are replaced with two variables X and Y , respectively, by applying

an anti-instantiation generalizer.

Like Example 3.1 and 3.2, the hypothesis H cannot be obtained by the

other IE-based methods in Figure 3.1. B includes one pathway definition that

needs non-Horn representation formalisms. Then, it is not straightforward

to use Progol, HAIL and Imparo in this example. Though FC-HAIL and
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residue procedure can be applied, both cannot generate H. In the case of

FC-HAIL, it should be at least necessary to derive the body literals arc(b, c)

and arc(b, c) in M(CC) from B. However, they cannot be derived only from

B. Accordingly, FC-HAIL cannot generate H. In turn, the residue procedure

does not allow bridge theories to include any tautological clauses. Thus, the

residue procedure cannot also generate H.

As we have described so far, CF-induction is the unique IE-based method

that preserves the soundness and completeness for finding hypotheses with

respect to a given language bias (i.e. production field) in full clausal theory.

Like Example 3.3, this theoretical advantage enables us to obtain complex

hypotheses by integrating abduction and induction. In next chapter, we in-

troduce a practical problem in life science that really requires such advanced

inference. Lastly, we remark two important issues on implementation and

production fields in CF-induction, using the rest of this chapter.

Implementation: The previous version of CF-induction, which we have

reviewed here, has been implemented by JAVA. In this implementation, we

use SOLAR and the efficient algorithm for minimal hitting set enumeration,

shown in Section 2.3 and 2.4, in order to compute the characteristic clauses

and translate the negation of a bridge theory into CNF, respectively. Then,

Step 1 and Step 3 are automatically performed. On the other hand, in Step

2, users need to select which instances should be included in a bridge theory

by hand. Along with construction of bridge theories, Step 3 also need to

make users select which generalizers should be used as well as how to ap-

ply the selected generalizers. Currently, three generalizers: dropping, anti-

instantiation and LGG are embedded in the implementation. Thus, the cur-

rent system is still far from automatically finding relevant hypotheses. The

essential problem lies in that both procedures: construction of bridge theories

and generalization into hypotheses are highly non-deterministic. In Chapter

5 and 6, we will deal with this problem to reduce the non-determinism.

Production field: The current version of CF-induction does not allow

the production fields to include any conditions like the maximum length
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of clauses. That is because a production field cannot directly define the

syntax of hypotheses. Instead, it provides a condition to be satisfied in the

negations of hypotheses. However, it is difficult to translate the negation of

a hypothesis back into the original hypothesis.

Example 3.4. Consider a production field P = 〈L,max length ≤ 2〉 in-

cluding the condition of the maximum length. Let a clausal theory H, rep-

resenting a target hypothesis, be {{a,¬b}, {a, b, c}, {c}}. Assume a clausal

theory S = {{¬a, ¬c}, {b, ¬c}} that represents ¬H in clausal form and

belongs to P . Since S ≡ ¬H, ¬S is logically equivalent to H. Hence, it

would be possible to obtain the original hypothesis from ¬S with equivalent

translating operations. We have already investigated several such translating

ways in Section 2.4: the residue and minimal complements, shown as follows:

S = {{a, ¬b}, {a, c}, {c, ¬b}, {c}},

R(S) = S, M(S) = {{a, ¬b}, {c}}.

We notice that every equivalent theories S, R(S) and M(S) is not equal to

the original hypothesis H.

As Example 3.4 shows, there are several ways to translate the negation of

a hypothesis into clausal theories that are logically equivalent to the original

hypothesis. However, these translated theories cannot be syntactically equal

to the original form. Thus, even if the syntax of the negations could be

efficiently restricted by a production field with conditions like the maximum

length, it was not straightforward that this restriction to negations can also

affect to the syntax of hypotheses itself. We intend to investigate the issue

how we sufficiently define the syntax of hypotheses using production fields,

again in Chapter 6.
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Chapter 4

Theory Completion using
CF-induction: Case Study

In this chapter, we provide a new practical application of inference-based

hypothesis finding techniques. Its main task involves theory completion in

biological networks. Unlike the previous applications, it requires both abuc-

tive and inductive inference to find missing facts and general causal rela-

tions in incomplete knowledge on life systems, which can be achieved by

CF-induction as we explained in Chapter 3. We first give the problem set-

ting so as to use ILP techniques and then show initial experimental results

using CF-induction. Finally, we overview the related work and conclude.

4.1 Introduction

The newly emerging field of Systems Biology has been developed toward pre-

cise understanding of the whole mechanism of living cells and organisms.

Metabolism is one of the essential biological systems oriented in this field.

It is organized in a complex network of interconnected reactions, called a

metabolic pathway [11], and its whole behavior results from individual prop-

erties of reactions and global properties of the network organization. An im-

portant key for understanding this whole metabolic system lies in regulatory

mechanism on activities of enzymes catalyzing chemical reactions involved

in metabolism. Metabolic Flux Analysis (MFA) [74, 70] is a methodology for

quantitatively analyzing those enzymatic activities. The flux of a reaction,
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defined by the rate of the reaction, can be regarded as an effective value for

indicating the activity of a certain enzyme catalyzing the reaction. There are

two kinds of approaches for computing a flux distribution over the reactions.

The first approach uses kinetics of chemical reactions, and models the time-

series changes of fluxes [40]. These dynamic behaviors can be represented as

coupled non-linear differential equations. The second approach introduces a

steady-state approximation to the first approach and reconstructs a prior set

of equations into the linear formalization by considering the stoichiometry

of the chemical reactions [81]. In general, the equations in both approaches

cannot be analytically solved. Because, there are a large number of intra-

cellular metabolites involved in the chemical reactions. The fluxes of these

reactions cannot be experimentally observed. Thus, the non-linear equa-

tions are under-determined. This problem is usually managed in such a way

that the equations are numerically simulated in silico with several kinds of

approximating constraints. Indeed, elementary mode analysis [71] and ex-

treme pathways analysis [69] have been previously proposed in the second

approach, and introduce some relevant optimization functions with respect

to the cellular growth maximization or the energy consumption minimiza-

tion. However, these assumptions can often cause the dissociation with real

situation. Moreover, even if these approximation methods can be utilized, a

large-scale metabolic pathway cannot be solved only with these methods due

to huge computational costs.

Our long-term goal is to identify master reactions whose fluxes are rela-

tively high in a metabolic pathway [12]. It is a crucial feature of flux distribu-

tions that reactions with fluxes spanning several orders of magnitude coexist

under the same conditions [1]. Whereas most metabolic reactions have low

fluxes, the overall behavior of metabolism is dominated by several reactions

with very high fluxes. Therefore, we can divide activities of enzyme reac-

tions into two kinds of states, that is, an activated state and a non-activated

state. If we could know which chemical reactions are in an activated or a

non-activated state, it would be helpful to solve the equations using the pre-

viously proposed MFA techniques. Because we can reconstruct a prior set of

equations into more simplified ones as the non-activated reactions with low
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fluxes can be ignored.

In this work, we focus on a logic-based approach that enables us to esti-

mate possible reaction states in a metabolic pathway. Our approach intro-

duces the logical viewpoint with respect to causal relations between states

of the enzymatic activity influencing a reaction and concentration changes

of metabolites involved in the reaction. Based on these causal relations, we

quantitatively estimate possible states of enzyme reactions, which logically

explain the concentration changes of measurable metabolites obtained from

experiments. Computation for this estimation is based on Inductive Logic

Programming (ILP) [36]. ILP studies inductive learning with relational rep-

resentation in first-order predicate logic. As we explained before, the main

task of ILP is to find hypotheses that logically explain a set of observations

with respect to a background theory. In this ILP setting, we can obtain

possible states of enzyme reactions as a hypothesis that logically explains

the concentration changes of the measurable metabolites with a background

theory. Though there are several ILP systems, we focus on CF-induction.

CF-induction has a unique feature that can integrate inductive and ab-

ductive inferences, preserving its soundness and completeness for finding hy-

potheses in full clausal logic. While both inductive and abductive inferences

are used to find hypotheses that account for given observations, their use in

applications is quite different. Abduction is applied for finding specific expla-

nations (causes) of observations obtained by using the current background

theory. On the other hand, induction is applied for finding general rules that

hold universally in the domain, but are missing in the background theory. In

our problem, an explanation obtained by abduction corresponds to an esti-

mation of enzyme reaction states. If a background theory is complete with

respect to the regulatory mechanism of enzymatic activities, then possible

reaction states could be computed only using abduction. However, since

background theories are incomplete in general, it is necessary to find such

missing rules that represent some unknown control mechanisms using induc-

tion. Therefore, it could be a crucial advantage if we could analyze metabolic

pathways using both abductive and inductive inferences in CF-induction. We

show how CF-induction can work for both estimating possible reaction states
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and completing missing causal relations using several examples.

The rest of this chapter is organized as follows. Section 2 first explains

notions of metabolic pathways and a basic approach for MFA in brief, and

next introduces the logical model representing the causal relations between

enzymatic activities and concentration changes of metabolites. Section 3

shows experimental results obtained by applications of CF-induction for es-

timation of possible reaction states from given observations. The examples

include the metabolic network of Pyruvate as well as simple topology of a

metabolic pathway. Section 4 discusses related work. Section 5 concludes.

4.2 Logical Modeling of Metabolic Flux Dy-

namics

4.2.1 Metabolic Pathways

Whereas cells have different morphologies and structures and the fact that

their roles in the different organisms are varied, their basic functionality

is the same. One of those basic activities of cells is to insure their own

survival. Its whole activity can be summarized in the two points. First,

cells need to find the necessary energy for its activity. This energy is mainly

obtained by degradation of mineral or organic molecules. Second, cells need

to manufacture simple molecules necessary to their surviving. The former is

called catabolism and the latter is called anabolism. These two great activities

are regrouped under the name of metabolism, and result from a great number

of mechanisms and biochemical reactions. Most of these reactions, unfolding

in a cell, are catalyzed by special molecules, called enzymes. Such a large

amount of data on metabolism is represented as a network [11], called a

metabolic pathway, and has been stored and maintained in a large-scale

database, such as KEGG [30].

Recently, the study of metabolic pathways is becoming increasingly im-

portant to exploit an integrated, systemic approach for simulating or opti-

mizing cellular properties or phenotypes. One of these significant properties

is a metabolic flux defined as the rate of a biochemical reaction, which can
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be very often utilized to improve production of metabolites in industry [74].

Figure 4.11 describes non-linear phenomena in the growth of the yeast S.

cerevisiae, which has been extensively studied. The microorganism senses

the availability of favorite sugars like glucose, and under nutrient-rich envi-

ronment, it rapidly grows and yields products like ethanol by consuming its

favorite sugars (glucose). This state is called, permentation. On the other

hand, if the nutrient has been finished consuming, it gradually grows using

its product (ethanol), instead glucose. This state is called, oxidation. It is

known that these phenomena arise in dynamic transitions of master reactions

in metabolism of the yeast, shown in Figure 4.2. Master reactions denote en-

zyme reactions with high flues in the metabolic pathway. In this sense, the

study on analyzing flux distributions has significant impacts on simulation

and optimization of (metabolic) bio-based products such as ethanol.
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actions

One basic but powerful approach to understand the steady state fluxes is

metabolite flux balancing, which is based on the stoichiometric model of the

biochemical reactions. Figure 4.3 represents simple topology of a metabolic

pathway in a cell, which consists of five metabolites A, B, C, D and E and six

reactions, each of which connects two certain metabolites. Each flux is placed

on the corresponding reaction in Figure 4.3. Although the concentrations of

A, C, D and E are experimentally measurable, the concentration of B cannot

1This figure is provided by Prof. G. Goma of INRA CNRS in France.
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E

Figure 4.3: System of Mass Balance

be measured. Hence, B is the intracellular metabolite. Based on the enzyme

kinetics, the dynamic behavior of the flux of an enzyme reaction can be

represented as the following differential equation:

dCX

dt
= vin − vout − µCX , (4.1)

where CX is the concentration of a metabolite X, vin (resp. vout) is the

sum of fluxes of reactions for producing (resp. consuming) X, and µCX

represents the growth rate of biomass in a cell. If all the metabolites are

in the steady state, the left term of Equation (4.1) must be zero since there

are no time-series changes of the concentrations, and also, it can be assumed

that the dilution of components due to biomass growth (corresponding to the

last term of Equation (4.1)) is neglected [70]. This fact means that for each

metabolite X, the fluxes consuming X are balanced with the ones producing

X in the steady state. Metabolic flux balancing is based on this simple

notion. For example, its balancing in Figure 4.3 can be represented as the

following linear equations:

v1 = rA, rD + v5 = v2, rE + v4 = v5,

v2 + v3+ = v3− + v1, rC + v3− = v3+ + v4. (4.2)

Then we can analyze the flux distribution based on Equation (4.2) with the

measurable fluxes rA, rC, rD and rE. In general, these equations cannot be

deterministically solved as the number of unknown values such as v1, . . . , v5

corresponding to the fluxes of intracellular enzyme reactions becomes larger

than the number of known values corresponding to measurable fluxes. The
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previously proposed methods such as elementary mode analysis and extreme

pathway analysis use optimization functions in order to solve the equations.

Those introduced functions are usually constructed by assuming the cellular

growth maximization or the energy consumption minimization. However,

these assumptions can often cause the dissociation with real situation. In

other words, we cannot necessarily determine if the organism indeed grows

based on the above assumptions to be expected. Additionally, in the case of

a large-scale of metabolic pathway, it is not straightforward to solve the flux

distribution with approximation methods due to huge computational cost.

In this work, we propose a new approach that enables us to release those

unsure assumptions and reduce the complexity of a given metabolic pathway.

One essential feature of enzymatic activities is that all the activities are

not necessarily on the same level. There exist enzymes whose activities are

about 100 or 1000 times higher than other enzymes. This fact allows us

to assume whether each enzyme reaction is in a relatively activated state or

not. Then, if we could estimate which enzyme reactions are in an activated

or a non-activated state, we could simplify the prior metabolic pathway by

ignoring those reactions in the non-activated state, which are estimated to

have low fluxes. The smaller the target pathway is, the smaller the number

of unknown values in the equations obtained from the pathway is. It may

imply that the possibility of solving the equations based on the metabolic

flux balancing without the previously proposed approximation methods. In

our approach, we introduce a logical model that represents causal relations

between enzyme reaction states and concentration changes of metabolites.

Based on the logical model, we can logically find possible states that can

explain the observations which are experimentally observed. In the following,

we focus on those causal relations in enzyme reactions.

4.2.2 Regulation of Enzymatic Activities

The cellular metabolic system has a sophisticated mechanism for dynamically

controlling the activities of enzymes to meet the needs of a cell. This regu-

latory mechanism can be represented as causal relations between enzymatic
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activities and concentration changing of metabolites. Here we consider two

simple metabolic pathways: First one consists of two reactions with three

metabolites, and second one consists of one reaction with two metabolites.

Note that in the following figures, we describe activated and non-activated

reactions as (back) circles and slashes over arrows corresponding to reac-

tions, respectively. And also, a upward (resp. downward) arrow represents

the increase (resp. decrease) in a metabolite concentration.

Figure 4.4 corresponds to the metabolic pathway consisting of three metabo-

lites X, Y and Z, and two reactions. Figure 4.4 shows that if the concen-

Y X Z

Figure 4.4: First Biological Inference in Metabolic Pathways

tration of Y tends to be increasing at some time, provided that the state

of enzyme reaction Y → X (resp. X → Z) is in an activated (resp. non-

activated) state, then the concentration of X will also change to be increasing.

This causal relation is rational biological inference based on Equation (4.1).

Assume that the increase in concentration of X is observed, which is denoted

by a dotted arrow in the figures. Then, it will be possible to logically esti-

mate the states of the concentration change of Y and two reactions so that

the estimated states cause this concentration change of X. One possible case

is that the concentration of Y increases, the reaction Y → X is activated

and the reaction X → Z is not activated. This is because X produced from

Y cannot be consumed and generate Z.

Next, we consider Figure 4.5 which represents a metabolic pathway con-

sisting of two metabolites X and Y , and one reaction. Figure 4.5 shows that

Y X

Figure 4.5: Second Biological Inference in Metabolic Pathways

even if the reaction Y → X is activated, the concentration of X must de-

crease as far as the concentration of Y decreases. Accordingly, if we observe
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the concentration of X decreases, we can logically estimate the concentration

of Y decreases and the reaction Y → X is activated as one possible case.

As we see in the above, consideration of these causal relations enables us

to estimate possible reaction states that explain the concentration changes

of measurable metabolites. Two causal relations shown in Figures 4.4 and

4.5 are not sufficient for explaining all the possible cases. In other words,

there exist cases that we cannot estimate possible reaction states using these

causal relations only. Although it would be possible to construct other causal

relations a priori, however it must be crucially difficult to enumerate all the

causal relations corresponding to the whole regulatory mechanism on enzy-

matic activities. This problem brings the necessity to complete the current

causal relations for estimation in some cases. Hence, we need to simultane-

ously realize these two tasks, that is, estimation of possible reaction states

and completion of missing causal relations.

We represent our problem in the ILP setting. The metabolic pathway

topology in Figure 4.3 can be represented as the following clausal theory T

consisting of facts:

T = {reac(a, b), reac(b, d), reac(d, e), reac(e, c), reac(b, c), reac(c, b)},

where the literal reac(X,Y ) means that there is a reaction between the sub-

strate X and the product Y . Along with the logical representation of topol-

ogy, we formalize the causal relations in Figures 4.4 and 4.5 as the following

two clauses (4.3) and (4.4), respectively:

reac(Y,X) ∧ reac(X,Z) ∧ con(Y, up)

∧ act(Y,X) ∧ ¬act(X,Z) ⊃ con(X, up), (4.3)

reac(Y,X) ∧ con(Y, down)

∧ act(Y,X) ⊃ con(X, down), (4.4)

where the literal con(X, up) (resp. con(X, down)) means that the concentra-

tion of the metabolite X increases (resp. decreases), and the literal act(X,Y )

means that the reaction X → Y is activated. Note that both (4.3) and (4.4)

are non-Horn clauses.
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In the ILP setting of our problem, the background theory B consists

of the above logical formulas. Along with B, observations E is given as

concentration changes of measurable metabolites obtained from experimental

results. Using these two inputs B and E, we need to compute hypotheses

that not only estimate possible reaction states, but also complete missing

causal relations in B. In this chapter, we use CF-induction for these two

tasks estimation and completion, which is the unique ILP technique that can

realize both abductive and inference inference, simultaneously.

4.3 Experiments

In this section, we show what kinds of hypotheses the current implementation

of CF-induction can find using two examples. The simple pathway in the first

example corresponds to Figure 4.3, and the metabolic pathway of Pyruvate

is used in the second example.

4.3.1 Simple Pathway

Define a background theory B as follows:

B = T ∪ {con(a, up), (4.3), (4.4),

{¬con(X, up),¬con(X, down)}}, (4.5)

where the rule (4.5) means that concentrations of any metabolites cannot be

up and down at the same time. Note here that con(a, up) can be regarded

as an input signal to the metabolic system. So is put into B. In the fol-

lowing figures, concentration changes that are assumed to be observed and

then included in E are represented as dotted bold arrows. Thus, we let the

observations E denoting the measurable concentration changes as follows:

E = {con(d, up), con(c, down), con(e, down)}.

As a hypothesis with respect to B and E, the following clausal theory is

considerable:

H1 = {con(e, down) ← ¬act(d, e) ∧ act(e, c),

act(a, b), act(e, c), act(b, d),¬act(b, c),¬act(d, e)}.
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Figure 4.6: First Hypothesis H1

A B

C

D

E

Figure 4.7: Second Hypothesis H2

Figure 4.6 shows the reaction states in H1. According to H1, whereas the

reactions A → B, B → D and E → C are activated, the reactions B → C

and D → E are not activated. This estimation of reaction states is realized

using abduction. On the other hand, we cannot explain the reason why the

concentration of E decreases only with abductive hypotheses. For explaining

this concentration decreasing of E, H1 includes a new rule worth considering

as a reasonable answer, that is, “the concentration of E decreases if the

reaction D → E is not activated and the reaction E → C is activated”.

As another hypothesis, the following clausal theory can be also considered:

H2 = {con(X, down) ← ¬act(Y,X) ∧ con(Y, up),

act(a, b), act(b, d),¬act(b, c),¬act(d, e)}.

Figure 4.7 shows the states of reactions in H2. Compared with H1, the rule

for explaining the concentration change of E is more general, and also H2

does not say whether the reaction E − C is activated or not. Hence, the

hypothesis H2 logically estimates several reaction states and completes one

missing rule on biological inference in metabolic pathways.

These two hypotheses can be indeed computed using the implementation

of CF-induction. Let a production field P be as follows:

P = 〈{con(X,Y ),¬con(X,Y ),¬act(X,Y ), act(X,Y )}〉.

Note that, due to computational efficiency, we set the maximum length

of characteristic clauses and the maximum search-depth for computing the

characteristic clauses as 6 and 4, respectively. Then, CF-induction displays
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NewCarc(B, Esk,P) and Carc(B ∧ Esk,P) consisting of 30 and 4 clauses,

respectively, as follows.

NewCarc:
(1)[-con(c,down),-con(b,up),-act(b,d),act(d,e),-con(e,down)]}
...
(9)[-con(e,down),-act(e,c),-act(a,b),act(b,c),-act(b,d),act(d,e)]
...
(30)[-con(c,down),-con(d,up),-con(e,down)]

Carc:
(1)[-con(_0,up),-con(_0,down)]
(2)[con(a,up)]
(3)[con(_0,_1),-con(_0,_1)]
(4)[-act(_0,_1),act(_0,_1)]

We construct a bridge formula CC1 in such a way that both two instances of

the 4th clause in Carc(B∧Esk,P) and the 9th clause in NewCarc(B, Esk,P)

are manually selected. The display of CF-induction is as follows:

CC:[[-con(e,down),-act(e,c),-act(a,b),act(b,c),-act(b,d),act(d,e)],
[-act(d,e),act(d,e)],
[-act(e,c),act(e,c)]]

The system automatically computes the minimal complement M(CC1)

of CC1 as follows.

-CC:[[con(e,down),act(d, e),-act(e, c)],
[act(e,c),act(d,e)],
[act(a,b),act(d,e),-act(e,c)],
[-act(b,c),act(d,e),-act(e,c)],
[act(b,d),act(d,e),-act(e,c)],
[-act(d,e),act(e,c)],
[-act(d,e),-act(e,c)]]

Next, we apply an dropping generalizer to M(CC1) in such a way that

relevant 9 literals from 18 literals in M(CC1) are dropped. Then, the clausal

theory corresponding to H1 is constructed. After automatically checking the

consistency of H1 with B, the system successfully outputs H1.

Hypothesis:[[con(e,down),act(d,e),-act(e,c)],
[act(e,c)],
[act(a,b)],
[-act(b,c)],
[act(b,d)],
[-act(d,e)]]
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Test (depth = 6, max length = 6)
example con(c, down) con(d, up) con(e, down)

NH 21 22 22
NP 8 2 7

Ratio [%] 38 9 32
Time [msec] 6915 11360 10751

Table 4.1: Performance of abductive explanations in CF-induction

Next, we set the maximum length of characteristic clauses and the maxi-

mum search-depth for computing the characteristic clauses as 6 and 6. Then,

NewCarc(B, Esk,P) (resp. Carc(B ∧ Esk,P)) increases to 137 (resp. 84)

clauses. We construct another bridge formula CC2 in such a way that one

clause in NewCarc(B, Esk,P), two clauses and two instances of a clause in

Carc(B ∧ Esk,P) are selected. After computing the minimal complement

M(CC2) of CC2 , we apply both a dropping and an anti-instantiation gener-

alizers to M(CC2) in such a way that relevant 15 literals are dropped from

27 literals in M(CC2) and 4 constants are replaced by variables. Then, the

clausal theory corresponding to H2 is constructed.

Both H1 and H2 need inductive inference to be constructed. It becomes

necessary to apply inductive inference for completing missing general rules.

Another role of inductive inference is to find such hypotheses that have high

predictive accuracy to unknown observations, which are generated by apply-

ing generalizers like anti-instantiation. Indeed, if abductive inference is only

used, the predicate accuracy tend to become low, as we describe in the below.

Table 4.1 shows the predicate accuracy of abductive hypotheses each of

which is a set of ground unit clauses, such as {act(a, b), ¬act(b, c)}, ob-

tained by CF-induction. Since the negation of every abductive hypothesis is

the form of ground clause, every subsumption-minimal abductive hypothe-

sis can be derived by CF-induction in such a way that a bridge theory CC

only contains one ground instance of a clause in NewCarc(B, Esk,P), and

outputs the minimal complement M(CC) without applying any generalizers

[26]. We then evaluated the predictive accuracy of those minimal abductive

hypotheses using a leave-one-out strategy [5].
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First, we select one clause C in observations E as a test example. Second,

for each new characteristic clause D in NewCarc(B, E − {C},P), we check

whether or not the minimal abductive hypothesis M({D}) derives the test

example C with respect to B, that is, B ∧ M({D}) |= {C}. In case of

the simply pathway problem, we assume E is ground, and thus every new

characteristic clause in NewCarc(B, E − {C},P) is also ground.

NH and NP in Table 4.1 denote the number of minimal abductive hy-

potheses with respect to B, E − {C} and P and the number of those hy-

potheses that can also explain the test example C. This experimental result

shows that CF-induction can generate abductive hypotheses such that accu-

rately predict each (unseen) test example. However, we may notice that the

ratio of NP to NH is not so high. It means that though several abductive

hypotheses succeeded with the prediction of a unseen test example, most of

them could not do. This fact shows the necessity of not only abductive but

also inductive inference to improve the predictive accuracy of hypotheses.

4.3.2 Metabolic Pathway of Pyruvate

Next, we consider the metabolic pathway of Pyruvate (see Figure 4.8). The

logical representation of topology in Figure 4.8 is as follows:

T ′ = {terminal(ethanol), reac(pyruvate, acetylcoa),

reac(pyruvate, acetaldehyde), reac(glucose, glucosep),

reac(glucosep, pyruvate), reac(acetaldehyde, acetate),

reac(acetate, acetylcoa), reac(acetaldehyde, ethanol)},

where the predicate terminal(X) means that there is no reaction where X

is consumed. If the metabolite X is terminated and there is activated reac-

tion that produces X, then the concentration of X must increase. However,

this consequence cannot be derived only using the previous causal rule (4.3)

which concerns with the concentration increase of a metabolite. Thus, we

construct the following new causal rules obtained by incorporating the con-
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Acetate

AcetaldehydePyruvate

Glucose-P

Ethanol

Glucose

Acetylcoa

Figure 4.8: Metabolic Pathway of Pyruvate

cept of “terminal” with the rule (4.3):

reac(X,Z) ∧ ¬act(X,Z) ⊃ blocked(X), (4.6)

terminal(X) ⊃ blocked(X), (4.7)

reac(Y,X) ∧ act(Y,X) ∧ blocked(X) ⊃ con(X, up), (4.8)

where the predicate blocked(X) means that the metabolite X cannot be

consumed, and the predicate terminal(X) means that the metabolite X is

terminated. Define a background theory B as follows:

B = T ′ ∪ {(4.6), (4.7), (4.8), con(glucose, up)}.

Next, we input the following observations E:

E = {con(ethanol, up), con(pyruvate, up)}.

Then, the following clausal theories H3 and H4 are considerable as hypotheses

with respect to B and E.

H3 = {act(glucosep, pyruvate),

¬act(pyruvate, acetylcoa), act(acetaldehyde, ethanol)}.

H4 = {act(X,Y ) ∧ con(X, up) ⊃ con(Y, up),

act(glucosep, pyruvate), act(acetaldehyde, ethanol),

act(pyruvate, acetaldehyde), act(glucose, glucosep)}.

Figure 4.9 and 4.10 show the states of reactions in H3 and H4, respectively.

Compared with H3, H4 includes a new general rule concerning the mecha-

nism of how concentrations of metabolites increase. Both H3 and H4 can be
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Figure 4.9: Third Hypothesis H3

Acetate
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Glucose-P
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Acetylcoa

Figure 4.10: Forth Hypothesis H4

generated using CF-induction. Let a production field P be as follows:

P = 〈{con(X,Y ),¬con(X,Y ),¬act(X,Y ), act(X,Y )}〉.

We set the maximum length of characteristic clauses and the maximum

search-depth as 6 and 4, respectively. Then, CF-induction displays the fol-

lowing NewCarc(B, Esk,P) and Carc(B ∧Esk,P), which consist of 6 and 3

clauses, respectively.

NewCarc:
(1)[-act(acetaldehyde,ethanol),-con(pyruvate,up)]
(2)[-con(ethanol,up),-act(glucosep,pyruvate),

act(pyruvate,acetylcoa)]
(3)[-con(ethanol,up),-act(glucosep,pyruvate),

act(pyruvate,acetaldehyde)]
(4)[-act(acetaldehyde,ethanol),-act(glucosep,pyruvate),

act(pyruvate,acetylcoa)]
(5)[-act(acetaldehyde,ethanol),-act(glucosep,pyruvate),

act(pyruvate,acetaldehyde)]
(6)[-con(ethanol,up),-con(pyruvate,up)]

Carc:
(1)[con(glucose,up)]
(2)[-act(_0,_1),act(_0,_1)]
(3)[con(_0,_1),-con(_0,_1)]

We first manually construct the bridge theory CC3 which contains only the

4th clause in NewCarc(B, Esk,P). The system automatically computes

the minimal complement of CC3, which corresponds to H3. Note that no

generalizer is necessary to generate H3. We next construct the bridge for-

mula CC4 for finding H4 which contains the two 1st and 5th clauses in

NewCarc(B, Esk,P) and the 1st clause, four instances of the 2nd clause
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and one instance of the 3rd clause in Carc(B ∧ E,P). Note that CC4 to-

tally contains 8 clauses. After computing the minimal complement of CC4,

CF-induction outputs H4 using both a dropping and an anti-instantiation

generalizers.

4.4 Related Work

Tamaddoni-Nezhad et al. studied estimation of inhibitory effects on metabolic

pathways using ILP [76]. Inhibition of enzyme functions plays an impor-

tant role on dynamically controlling enzymatic activities on metabolism.

They have also introduced the logical modeling of metabolic pathways and

firstly showed the possibility of application of ILP to qualitatively analyzing

metabolic pathways with their logical model on inhibitory effects to con-

centration changes of metabolites. Here, we refer to three points as the

difference, compared with their work.

The first point is the difference of main goal that we try to solve using

ILP techniques. Our long-term goal is more precise modeling of the flux

distribution corresponding to dynamics on enzymatic activities. Previously

proposed techniques in MFA that quantitatively analyzes the flux distribu-

tion can have several limitations involved in embedded approximation con-

ditions as well as computational costs in the case of large-scale of metabolic

pathways. Using ILP techniques, we can logically estimate possible reaction

states in metabolic pathways, which enable us to reconstruct the prior path-

way into more simplified one by removing enzyme reactions with low fluxes.

In other words, we intend to reduce the complexity of metabolic pathways.

In contrast, they have focused on the inhibitory effects of particular toxins

affected to objects to be examined, which are used as drugs.

The second point is the difference of ILP techniques applied to problems.

They have used Progol5.0 [46] that is one of the successful ILP systems and

can also compute both inductive and abductive hypotheses. Compared with

Progol5.0, CF-induction preserves the soundness and completeness for find-

ing hypotheses and can use not only Horn but also non-Horn clauses in the

knowledge representation formalisms. In [76], they have evaluated the pre-
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dictive accuracy of both abductive and inductive hypotheses obtained by

Progol5.0 in the metabolic pathway consisting of 76 enzyme reactions and

31 metabolites. The data set of this metabolic pathway is available on their

website. Then, it will be interesting that we evaluate the hypotheses obtained

by CF-induction using the data set. Note that in an initial experiment with

this data set, CF-induction computes 66 (subsumption-minimal) abductive

hypotheses including the unique output of Progol5.0 when we set the maxi-

mum search-depth as 5 and put the maximum length of a production field as

15. The following example is concerning with an inductive hypothesis intro-

duced in [76]. We show how CF-induction can compute the same inductive

hypothesis as the one obtained by Progol5.0 using the next example.

Example 4.1. Define a background theory B and an observation E as fol-

lows:

B = {reac(X,Y, Z) ∧ inh(X,Y, Z) ⊃ con(X, up),

reac(s, e, p), class(e, c)},

E = con(s, up).

The predicate reac(X,Y, Z) includes the new term Y which denotes an en-

zyme catalyzing the reaction X → Z. The predicate inh(X,Y, Z) means the

reaction between a substrate X and a product Z, catalyzed by an enzyme Y ,

is inhibited. Note that those reactions that are inhibited might be regarded

as non-activated reactions. However, the activated state does not necessar-

ily always correspond to the non-inhibited state. Because there are other

factors expects for inhibition, which make enzyme reactions inactivated. We

thus need to distinguish the “inhibited” state with the “non-activated” state.

Along with the predicate inh(X,Y, Z), the predicate class(X,Y ) is newly in-

troduced. It means that an enzyme X belongs to an enzyme class Y . In [76],

the following inductive hypothesis H is introduced:

H = inh(s,X, p) ← class(X, c).

This hypothesis can be derived by CF-induction. Suppose the following

production field P :

P = 〈{inh(X,Y, Z),¬inh(X,Y, Z), class(X,Y )}〉.
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B: con(X, up) ← reac(X,Y, Z) ∧ inh(X,Y, Z), reac(s, e, p), class(e, c)

E: con(s, up)

(abduction) inh(s, e, p)

(induction) inh(s,X, p) ← class(X, c)

Figure 4.11: Integrating Abduction and Induction for Finding Hypotheses

NewCarc(B, Esk,P) and Carc(B ∧ Esk,P) are computed as follows:

NewCarc(B, Esk,P) = {¬inh(s, e, p),¬con(s, up)},

Carc(B ∧ Esk,P) = {class(e, c),¬inh(s, e, p)}.

Let a bridge formula CC be the clausal theory {¬inh(s, e, p), class(e, c)}.
Then, the minimal complement of CC is as follows:

M(CC) = inh(s, e, p) ← class(e, c).

If we apply an anti-instantiation generalizer to M(CC) in such a way that

the ground term e appearing in F is replaced with the variable X, then the

hypothesis H can be generated.

The process of computing the above inductive hypothesis can be sketched

in Figure 4.11. An inductive hypothesis is constructed based on a certain

abductive explanation. Hence, it is necessary to generate abductive hypothe-

ses in advance for constructing inductive hypotheses. Indeed, Progol5.0 first

computes an abductive hypothesis, and second find inductive hypotheses us-

ing the abductive explanation. In other words, Progol5.0 performs abduction

and induction processes, step by step. On the other hand, CF-induction can

realize them with one process. This difference of those mechanisms for inte-

grating abduction and induction is the last and crucial point. In our problem

setting, we need to not only estimate possible reaction states but also com-

plete missing general rules in the prior background. CF-induction can realize

these two tasks simultaneously using both abduction and induction.

There are several works that have studied on applications of ILP tech-

niques to biology [32, 94], as we described in Chapter 1. King et al. showed
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that hypothesis finding techniques can help to reduce the experimental costs

for predicting the functions of genes in their project, called robot sceientist

[32]. Besides, Zupan et al. have developed a system based on abduction,

which enables us to find new relations from experimental genetic data for

completing the prior genetic networks [94].

4.5 Summary

We have studied a logic-based method for estimating possible states of en-

zyme reactions. Since this method can help us to understand which enzyme

reactions are activated, it can be potentially used in MFA, in that it is impor-

tant for optimization or improvement of production and to identify master

reactions that have high fluxes. In this work, we have showed how CF-

induction can realize not only estimation of possible reaction states, but also

completion of the current causal relations.

On the other hand, it is still far from our long-term goal that we construct

a new technique integrating our logic-based analysis with previously proposed

MFA methods. As an important remark, we point out the issue on com-

pleteness and non-determinism in hypothesis fining techniques. Systems like

Progol can deterministically generate a hypothesis. However, since it does

not ensure completeness in hypothesis finding, some important hypotheses

might fail to be generated. In contrast, CF-induction ensures the complete-

ness, and thus can achieve such an advanced inference that simultaneously

integrates abduction and induction. However, since CF-induction consists

of several highly non-deterministic procedures, it is not straightforward to

apply to practical problems that have to deal with a huge number of data.

In next chapter, we treat this issue and investigate how the non-determinism

in generalization of IE-based ILP methods can be logically reduced.
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Chapter 5

From Inverse Entailment to
Inverse Subsumption

As we explained in Chapter 3, modern explanatory ILP methods like Pro-

gol, Residue procedure, CF-induction, HAIL and Imparo use the principle of

Inverse Entailment (IE). It is based on the fact that the negation of a hypoth-

esis is derived from a prior background theory and the negation of examples.

IE-based methods commonly compute a hypothesis in two steps: by first con-

structing an intermediate theory and next by generalizing its negation into

the hypothesis with the inverse relation of entailment. In this chapter, we

focus on the sequence of intermediate theories that constructs a derivation

from the background theory and the negation of examples to the negation of

the hypothesis. We then show the negations of those derived theories in a

sequence are represented with inverse subsumption. Using our result, inverse

entailment can be reduced into inverse subsumption, while it preserves the

completeness for finding hypotheses.

5.1 Introduction

Given a background theory B and observations E, the task of explanatory

induction is to find a hypothesis H such that B ∧ H |= E and B ∧ H

is consistent [26]. By the principle of Inverse Entailment (IE) [44], this

is logically equivalent to finding a consistent hypothesis H such that B ∧
¬E |= ¬H. This equivalence means that the inductive hypothesis H can be
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computed by deducing its negation ¬H from B and ¬E. We represent this

derivation process as follows:

B ∧ ¬E |= F1 |= · · · |= Fi |= · · · |= Fn |= ¬H (5.1)

where each Fi (1 ≤ i ≤ n) denotes a clausal theory. IE-based methods

[26, 31, 44, 61, 63, 75, 83] compute a hypothesis H in two ways: by first

constructing an intermediate theory Fi in Formula (5.1) and next generalizing

its negation ¬Fi into the hypothesis H with the inverse relation of entailment.

The logical relation between ¬Fi and H is obtained from the contrapositive

of Formula (5.1) as follows:

¬(B ∧ ¬E) =| ¬F1 =| · · · =| ¬Fi =| · · · =| ¬Fn =| H (5.2)

where =| denotes the inverse relation of entailment. Hereafter, we call it the

generalization relation. In brief, IE-based methods first use the entailment

relation to construct Fi with Formula (5.1), and then switch to the general-

ization relation to generate the hypothesis H with Formula (5.2) (See Figure

5.1).

@@ -B ∧ ¬E |= F1 |= · · · |= Fi (Generalization relation)
¬Fi =| · · · =| ¬Fn =| H

Figure 5.1: Hypothesis Finding Based on Inverse Entailment

The inverse relation of entailment ensures the completeness in finding hy-

potheses from an intermediate theory by Formula (5.2). However, the gener-

alization procedures with this relation need a variety of different generalizers,

such as dropping and inverse resolution [47]. As shown in Chapter 3, there

are several such operators and each one can be applied in many different

ways, which lead to a large number of choice points. For this reason, systems

like Progol [44, 75] and HAIL [61, 63] use subsumption due to computational

efficiency, though their generalization procedures may become incomplete.

On the other hand, systems like CF-induction [26] use entailment to find any

hypothesis, though they need to handle a huge search space.

In this chapter, we show inverse subsumption is an alternative generaliza-

tion relation to ensure the completeness for finding hypotheses (See Figure

5.2).

84



@@ -B ∧ ¬E |= F1 |= · · · |= Fi (Generalization relation)
¬Fi ¹ · · · ¹ ¬Fn ¹ H

Figure 5.2: Hypothesis Finding Based on Inverse Subsumption

Our result is used to reduce the non-deteriminism in generalization without

losing the completeness. The key idea lies in that for two ground clausal

theories S and T such that S |= T , ¬S and ¬T translated into CNF are

represented with inverse subsumption. This feature is applied to the logical

relation Fi |= ¬H where Fi is an intermediate theory and H is a hypothesis in

Formula (5.1). We then obtain its alternative relation ¬Fi ¹ H represented

by inverse subsumption. Since Fi is a CNF formula, there are several ways

to represent ¬Fi in CNF.

This chapter focuses on two CNF formulas translated ¬Fi into CNF,

that is, residue and minimal complements1, respectively. We show inverse

subsumption with residue and minimal complements ensure completeness

of generalization in Section 5.2 and 5.3, respectively. In Section 5.4, we

conclude.

5.2 Inverse Subsumption with Residue Com-

plements

Our approach is based on the fact that for two ground clausal theories S and

T such that S |= T , the logical relation between ¬S and ¬T translated in

CNF is represented by inverse subsumption. We intend to apply this feature

to Formula (5.1), later. Since ¬S and ¬T are DNF formulas, there are several

ways to represent ¬S and ¬T in CNF. In this section, we use the residue

complement and consider the logical relation between R(S) and R(T ), which

is represented primarily by the following theorem:

Theorem 5.1 ([83]). Let S and T be two clausal theories such that T is

ground and both S and T do not include tautological clauses. If S |= T ,

there is a finite subset U of ground instances from S such that R(T ) º R(U).

By Theorem 5.1, the following, which deals with the ground case, holds:

1See P. 42.
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Proposition 5.1 ([90]). Let S and T be two ground clausal theories such

that S and T do not include tautological clauses. If S |= T , then R(T ) º
R(S).

We first recall the following lemma to prove Proposition 5.1.

Lemma 5.1 ([83]). For ground clausal theories S and T that do not include

tautological clauses, T ⊂ S implies R(T ) º R(S).

Using Lemma 5.1 as well as Theorem 5.1, Proposition 5.1 is proved:

Proof. By Theorem 5.1, there is a ground theory U such that U ⊆ S such that

R(T ) º R(U). By Lemma 5.1, R(U) º R(S) holds. Hence, R(T ) º R(S)

holds. 2

We apply this proposition to the logical relation F |= ¬H where F is a

bridge theory2 and H is a ground hypothesis. We represent ¬H using the

residue complement R(H). Suppose that F does not include any tautological

clauses. Then, by Propositon 5.1, R2(H) º R(F ) holds. In other words,

R2(H), which is logically equivalent to H, can be obtained from R(F ) using

inverse subsumption. This property is described as the following theorem:

Theorem 5.2 ([90]). Let F be a bridge theory such that F do not include

tautological clauses, and H a hypothesis such that F |= ¬H. Then, there is

a hypothesis H∗ such that H∗ ≡ H and H∗ º R(F ).

Proof. By Herbrand theorem, there is a ground clausal theory Hg such that

H º Hg and F |= ¬Hg. Since ¬Hg ≡ R(Hg) holds, R2(Hg) º R(F ) holds

by Proposition 5.1. Assume the clausal theory H∗ = H ∪ R2(Hg). Since

H º Hg and Hg ≡ R2(Hg), H |= R2(Hg) holds. Accordingly, H |= H∗ holds.

Hence, H∗ ≡ H holds. Since R2(Hg) º R(F ) and H∗ ⊇ R2(Hg), H∗ º R(F )

holds. 2

However, every target hypothesis is not necessarily obtained from the residue

complement by inverse subsumption, as described in the below examples.

2We refer to P.46 for the formal definition of bridge theories.
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Example 5.1. Let B, E and H be a background theory, observations and

a target hypothesis as follows:

B = {p(a)}. E = {p(f(f(a))}.

H = {{p(a) ⊃ p(f(a)), p(f(a)) ⊃ p(f(f(a)))}}.

Let F be the clausal theory {p(a),¬p(f(f(a)))}. Since F = B ∪ ¬E, F

is a bridge theory wrt B and E such that F |= ¬H. R(F ) is {p(a) ⊃
p(f(f(a)))}. Then we notice that R(F ) is not subsumed by H. Indeed,

R(F ) is the resolvent of two clauses in H. Then, we may need to apply an

inverse resolution operator to R(F ) for obtaining the target hypothesis H.

Example 5.2. We recall Example 3.3 in Chapter 3 as follows:

B = {arc(a, b), arc(X,Y ) ∧ path(Y, Z) ⊃ path(X,Z)}.

E = {path(a, c)}.

H = {arc(b, c), arc(X,Y ) ⊃ path(X,Y )}.

Let F be the clausal theory as follows:

F = {arc(a, b), arc(a, b) ∧ path(b, c) ⊃ path(a, c), ¬path(a, c)}.

Since F is the set of ground instances from B∧¬E, F is a bridge theory wrt

B and E. Assume the following ground hypothesis Hg consisting of ground

instances of H:

Hg = {arc(b, c), arc(X,Y ) ⊃ path(X,Y )}.

Since F ∧Hg is inconsistent, F satisfies the condition of Theorem 5.2. Hence,

there is a hypothesis H∗ such that H∗ ≡ H and H∗ º R(F ). F and R(F )

are as follows:

F = {{¬arc(a, b), arc(a, b), path(a, c)},

{¬arc(a, b), path(b, c), path(a, c)},

{¬arc(a, b), ¬path(a, c), path(a, c)}}.

R(F ) = {{¬arc(a, b), path(b, c), path(a, c)}}
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We then consider the following clausal theory as H∗:

H∗ = H ∪ {path(b, c)}.

H∗ is equivalent to H, since the added clause C = {path(b, c)} can be derived

from H. We may notice that C subsumes the clause in R(F ). Then, H∗ º
R(F ) holds. Hence, there is in fact a hypothesis H∗ such that H∗ ≡ H

and H∗ º R(F ). However, the target hypothesis H itself does not subsume

R(F ). Instead, we may notice that the clause C is a resolvent of two clauses

in H. Then, it is necessary to use an inverse resolution operator for obtaining

the target hypothesis H.

This problem is caused by the fact that R2(H) = H cannot necessarily

hold for a ground clausal theory H. The key idea in Theorem 5.2 lies in

the logical relation R2(H) º R(F ). Hence, if R2(H) = H should not hold,

H cannot be obtained from R(F ) using inverse subsumption. We thus need

some CNF formula F (H) for representing the negation of a hypothesis H

such that F (F (H)) = H.

5.3 Inverse Subsumption with Minimal Com-

plements

We here investigate an alternative generalization using minimal complements.

We first show a key property that minimal complements satisfy.

5.3.1 Fixed-Point Theorem on Minimal Complements

Theorem 5.3 ([89]). Let S be a ground clausal theory. Then M2(S) = µS

holds.

Proof. By Theorem 2.5, M2(S) = MHS2(S) holds. By Lemma 5.2, it holds

that MHS2(S) = µS. Hence, M2(S) = µS holds. 2

The above proof uses the below lemma as well as Theorem 2.4 and Theo-

rem 2.5, which concerned a property on minimal hitting sets and a relation

between minimal hitting sets and minimal complements, respectively.

88



Lemma 5.2 ([89]). Let S be a ground clausal theory. Then MHS2(S) = µS

holds.

(Proof of µS ⊆ MHS2(S).)

We show every clause in µS is a minimal hitting set of F(MHS(S)). By

the definition of MHS(S), for every clause D ∈ MHS(S), D satisfies that

D ∩ C 6= ∅ for every set C ∈ F(S). In other words, for every set C ∈
F(S), C satisfies that D ∩ C 6= ∅ for every clause D ∈ MHS(S). Then

every set C ∈ F(S) is a hitting set of MHS(S). Let C ′ be the set of

negations of literals in C. Since C ∈ F(S), C ′ ∈ F(F(S)) holds. Since C is

a hitting set of MHS(S), C ′ is a hitting set of F(MHS(S)). Accordingly,

every set C ∈ F(F(S)) is a hitting set of F(MHS(S)). Since the family

F(F(S)) corresponds to S, it holds that every clause C ∈ S is a hitting

set of F(MHS(S)). Since µS ⊆ S, every clause C ∈ µS is a hitting set of

F(MHS(S)).

Suppose that there is a clause C ∈ µS such that C is not a minimal

hitting set of F(MHS(S)). Then

(*) there is a literal l ∈ C such that C −{l} is a hitting set of F(MHS(S)).

For every clause Ci ∈ µS, if Ci 6= C then there is a literal li ∈ Ci such that

li 6∈ C. We then consider those literals E = {l1, l2, . . . , ln}, where each li

is a literal of Ci ∈ µS − {C} such that li is not included in C. Note that

E∩C = ∅ holds. On the other hand, for any literal l ∈ C, the intersection of

E ∪{l} and each clause in µS is not empty. Hence, E ∪{l} is a hitting set of

µS. Accordingly, E ∪ {l} is also a hitting set of S. Then there is a minimal

hitting set E ′ ∈ F(MHS(S)) such that E ′ ⊆ E ∪ {l}. Since E ′ ⊆ E ∪ {l}
and E ∩ C = ∅, it holds that E ′ ∩ (C − {l}) = ∅. However, this contradicts

that C − {l} is a hitting set of F(MHS(S)) since E ′ ∈ F(MHS(S)). Then

the assumption (*) is false. Hence, every clause C in µS is a minimal hitting

set of F(MHS(S)). In other words, for every C ∈ µS, C ∈ MHS2(S) holds.

(Proof of MHS2(S) ⊆ µS.)

Let D be a clause in MHS2(S). Suppose that there is a clause C ∈ µS such
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that C ⊂ D. Since µS ⊆ MHS2(S), C ∈ MHS2(S) holds. This contradicts

with the minimality of MHS2(S). Hence, for every clause C ∈ µS, C 6⊂ D.

In other words, for ever clause C ∈ µS, C = D or C 6⊆ D. Suppose that

(*) for any clause C ∈ µS, C 6= D holds.

Then, C 6⊆ D holds. Accordingly, for every clause Ci ∈ µS, there is a literal

li ∈ Ci such that li 6∈ D. We consider the finite set E = {l1, l2, . . . , ln} where

each literal li corresponds to such the above literal that is not included in D.

Note that E∩D = ∅. On the other hand, the intersection of E and each clause

in µS is not empty. Hence, E is a hitting set of µS. Accordingly, E is a hitting

set of S. Then, there is a minimal hitting set E ′ of S such that E ′ ⊆ E.

Since MHS(S) is the set of minimal hitting sets of F(S), F(MHS(S))

corresponds to the set of minimal hitting sets of F(F(S)). Since F(F(S)) =

S, F(MHS(S)) is the set of minimal hitting sets of S. Hence, we have

E ′ ∈ F(MHS(S)). Since E ′ ⊆ E and E ∩ D = ∅, E ′ ∩ D = ∅ holds. Note

here that since D ∈ MHS2(S), D is a minimal hitting set of F(MHS(S)).

However this contradicts that there is the set E ′ ∈ F(MHS(S)) such that

E ′ ∩ D = ∅. Then the assumption (*) is false. Hence, there is a clause

C ∈ µS such that C = D. Therefore, D ∈ µS holds. 2

Theorem 5.3 can be regarded as a fixed-point theorem on the function M

computing the minimal complement. Unlike residue complements, M2(S)

corresponds with S in case that S is subsume-minimal. Thus, minimal

complements may not cause the problem in residue complements that they

cannot necessarily obtain a target hypothesis using inverse subsumption, as

described in Section 5.3.

Example 5.3. Let S be the clausal theory {a∨b, b∨c, ¬c}. Then, S, R(S),

R2(S), M(S) and M2(S) are as follows. In fact, M2(S) = S holds, whereas
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R2(S) does not. Note that M(S) contains a tautological clause.

S = {¬a ∨ ¬b ∨ c, ¬a ∨ ¬c ∨ c, ¬b ∨ c, ¬b ∨ ¬c ∨ c}.

R(S) = {¬a ∨ ¬b ∨ c, ¬b ∨ c}. R2(S) = {a ∨ b, ¬c ∨ a, b, ¬c ∨ b, ¬c}.

M(S) = {¬a ∨ ¬c ∨ c, ¬b ∨ c}. M2(S) = {a ∨ b, b ∨ c, ¬c}.

On the other hand, minimal complements do not necessarily satisfy the

logical relation that M(T ) º M(S) for ground clausal theories S and T such

that S |= T . We recall Example 5.1. Whereas F |= M(H) holds, M2(H),

which is equal to H by Theorem 5.3, does not subsume M(F ). This is

because minimal complements can include tautological clauses that residue

complements never have. Indeed, Proposition 5.1, which shows the logical

relation between R(T ) and R(S), does not allow tautological clauses to be

included in S and T . In next subsection, we extend Proposition 5.1 so as to

deal with tautological clauses.

5.3.2 Inverting Deductive Operations with Tautologies

Theorem 5.4 ([90]). Let S and T be ground clausal theories such that

S |= T and for every tautological clause D ∈ T , there is a clause C ∈ S such

that C º D. Then, τM(T ) º τM(S). holds.

We use the following deductive operators for proving this theorem:

Definition 5.1 (Deductive operators [83]). Let S and T be clausal theories.

Then T is directly-derivable from S if T is obtained from S by one of the

following three operators:

1. (resolution) T = S∪{C}, where C is a resolvent of two clauses D1, D2 ∈
S.

2. (subsumption) T = S ∪ {C}, where C is subsumed by some clause

D ∈ S.

3. (weakening) T = S − {D} for some clause D ∈ S.
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We write S `r T , S `s T , S `w T to denote that T is directly derivable from S

by resolution, subsumption, weakening, respectively. `∗
X is the reflexive and

transitive closure of `X , where X is one of the symbols r, s, w. Alternatively,

S `∗
X T if T follows from S by application of zero or more `X .

We now show that entailment between theories can be established by

applying these operators in a particular order.

Theorem 5.5 ([92]). Let S be a clausal theory and T be a clausal theory

without any tautological clauses. If S |= T , then there are two clausal

theories U , V such that

S `∗
r U `∗

s V `∗
w T.

Proof. Let T = {C1, . . . , Cn}. Then S |= Ci for each clause Ci in T . By the

Subsumption Theorem there is a derivation Ri
1, . . . , R

i
mi

from S of a clause

Ri
mi

that subsumes Ci. Hence, it is sufficient to let U = S ∪ {Ri
j : 1 ≤ i ≤

n, 1 ≤ j ≤ mi} and V = U ∪ T . 2

Using Theorem 5.5, we obtain the following lemma that allows tautological

clauses to be included in S and T :

Lemma 5.3 ([90]). Let S and T be ground clausal theories such that S |= T

and for every tautological clause D ∈ T , there is a clause C ∈ S such that

C º D. Then there are two ground clausal theories U and V such that

S `∗
r U `∗

s V `∗
w T.

Proof. We denote two sets of tautological clauses of S and T as TautS and

TautT , respectively. For every clause D ∈ TautT , there is a clause

C ∈ TautS such that C º D. Then there is a ground clausal theory Vt such

that TautS `∗
s Vt `∗

w TautT . By Lemma 5.5, there are ground clausal

theories U and V such that S − TautS `∗
r U `∗

s V `∗
w T − TautT . Therefore,

it holds that

S `∗
r U ∪ TautS `∗

s V ∪ Vt `∗
w T. 2
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Example 5.4. We recall the two bridge theories and the two target (ground)

hypotheses in Example 5.1 and 5.5, respectively. Figure 5.3 corresponds to

Example 5.1. In Figure 5.3, the minimal complement M(H) of the target

hypothesis H is derived from the bridge theory F with a tautological clause

(See the dotted surrounding parts) using the subsumption and weakening

operators. Figure 5.4 corresponds to Example 5.5. In Figure 5.4, the minimal

complement M(H) of the target hypothesis H is derived from the bridge

theory F with a tautological clause using the three deductive operators.

F1 with Taut
p(a)

¬p(f 2(a))

¬p(f(a)) ∨ p(f(a))

`3
s

V
p(a)
p(a) ∨ p(f(a))
¬p(f 2(a)) ∨ p(a)
¬p(f 2(a))
¬p(f 2(a)) ∨ ¬p(f(a))
¬p(f(a)) ∨ p(f(a))

`2
w

p(a) ∨ p(f(a))
¬p(f 2(a)) ∨ p(a)
¬p(f 2(a)) ∨ ¬p(f(a))
¬p(f(a)) ∨ p(f(a))

M(H1)

Figure 5.3: Deductive Operations in Example 5.1

Based on Lemma 5.3, Theorem 5.4 can be proved by showing τM(T ) º
τM(S) in each case that S `X T holds where X is one of the symbols r, s, w.

Lemma 5.4 ([90]). Let S and T be two ground clausal theories such that

S `r T . Then, τM(T ) º τM(S) holds.

Proof. Since S `r T , we write T as S ∪ {C} where C is a resolvent of two

clauses C1 and C2 in S. Since C1 and C2 are ground, the resolvent C is

represented as (C1 − {l}) ∪ (C2 − {¬l} for some literal l in C1. Let C ′, C ′
1

and C ′
2 be three sets such that C ′ (resp. C ′

1 and C ′
2) consists of the negations

of literals in C (resp. C1 and C2). Note that C ′
1 and C ′

2 are included in

F(S) since C1, C2 ∈ S. Let D be a clause in τMHS(S). D is a hitting

set of F(S). Then D ∩ C ′
1 6= ∅ and D ∩ C ′

2 6= ∅ hold. Suppose that D is

not a hitting set of F(S ∪ {C}) (*). Then D ∩ C ′ = ∅ should hold. Since

C ′ = (C ′
1 −{¬l})∪ (C ′

2 −{l}), D∩C ′ = ((C ′
1 −{¬l})∩D)∪ ((C ′

2 −{l})∩D)

holds. Since D ∩ C ′ = ∅, it should hold that (C ′
1 − {¬l}) ∩ D = ∅ and
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F2 with Taut

arc(a, b)
arc(a, b) ∧ arc(b, c)

⊃ path(a, c)

¬path(a, c)
¬arc(b, c) ∨ arc(b, c)

`2
r

U

arc(a, b)
arc(a, b) ∧ arc(b, c)

⊃ path(a, c)

¬path(a, c)
arc(b, c) ⊃ path(a, c)
¬arc(b, c)
¬arc(b, c) ∨ arc(b, c)

`1
s

arc(a, b)
arc(a, b) ∧ arc(b, c)

⊃ path(a, c)

¬path(a, c)
arc(b, c) ⊃ path(a, c)
¬arc(b, c)
¬arc(b, c) ∨ ¬path(b, c)
¬arc(b, c) ∨ arc(b, c)

V

arc(a, b)
arc(a, b) ∧ arc(b, c)

⊃ path(a, c)

¬path(a, c)
arc(b, c) ⊃ path(a, c)
¬arc(b, c)
¬arc(b, c) ∨ ¬path(b, c)
¬arc(b, c) ∨ arc(b, c)

V

`5
w ¬arc(b, c) ∨ ¬path(b, c)
¬arc(b, c) ∨ arc(b, c)

M(H2)

Figure 5.4: Deductive Operations in Example 5.5

(C ′
2 − {l}) ∩ D = ∅. Since D ∩ C ′

1 6= ∅ and D ∩ C ′
2 6= ∅, it holds that

D ∩ {¬l} 6= ∅ and D ∩ {l} 6= ∅. Then, D has complementary literals ¬l and

l. It contradicts that D is not a tautological clause since D ∈ τMHS(S).

Thus, the assumption (*) is false. Hence D is a hitting set of F(S ∪ {C}).
Accordingly, there is a clause E ∈ MHS(S∪{C}) such that E º D. Since D

is not tautology, E is also not tautology, that is, E ∈ τMHS(S∪{C}) holds.

By Theorem 2.5, it holds that τMHS(S) = τM(S) and τMHS(S ∪{C}) =

τM(S ∪ {C}). Therefore, for each clause D ∈ τM(S), there is a clause

E ∈ τM(S ∪ {C}) such that E º D. 2

Lemma 5.5 ([90]). Let S and T be two ground clausal theories such that

S `s T . Then, τM(T ) º τM(S) holds.

Proof. Since S `s T , we write T as S ∪ {C} where C is a clause such that
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D º C for some clause D ∈ S. Since D and C are ground, D ⊆ C holds.

Let C ′ and D′ be two sets such that C ′ (resp. D′) consists of the negations of

literals in C (resp. D). Note that D′ is included in F(S) since D ∈ S. Let E

be a clause in τMHS(S). E is a hitting set of F(S). Then E∩D′ 6= ∅ holds.

Since D ⊆ C, D′ ⊆ C ′ holds. Since D′ ⊆ C ′ and E ∩ D′ 6= ∅, E ∩ C ′ 6= ∅
holds. Hence E is a hitting set of F(S ∪ {C}). Then there is a clause E ′ ∈
MHS(S∪{C}) such that E ′ º E. Since E ∈ τMHS(S), E is not tautology.

Accordingly, E ′ is also not tautology, that is, E ′ ∈ τMHS(S ∪ {C}) holds.

By Theorem 2.5, it holds that τMHS(S) = τM(S) and τMHS(S ∪{C}) =

τM(S ∪ {C}). Therefore, for each clause E ∈ τMHS(S), there is a clause

E ′ ∈ τMHS(S ∪ {C}) such that E ′ º E. 2

Lemma 5.6 ([90]). Let S and T be two ground clausal theories such that

S `w T . Then, τM(T ) º τM(S) holds.

Proof. Since S `w T , we write T as S −{C} where C is a clause in S. Let E

be a clause in τMHS(S). E is a minimal hitting set of F(S). Since T ⊂ S,

F(T ) ⊂ F(S) holds. Then E is a hitting set of F(T ) since F(T ) ⊂ F(S).

Hence there is a clause E ′ ∈ MHS(T ) such that E ′ º E. Since E is not

tautology, E ′ is also not tautology, that is, E ′ ∈ τMHS(T ) holds. By

Theorem 2.5, it holds that τMHS(S) = τM(S) and τMHS(T ) = τM(S)

holds. Therefore, for each clause E ∈ τM(S), there is a clause E ′ ∈ τM(T )

such that E ′ º E. 2

Using Lemma 5.3, 5.4, 5.5 and 5.6, Theorem 5.4 is proved as follows:

(Proof of Theorem 5.4.) By Lemma 5.3, there are two ground clausal theories

U and V such that

S `∗
r U `∗

s V `∗
w T.

By Lemma 5.4, τM(U) º τM(S) holds. By Lemma 5.5, τM(V ) º τM(U)

holds. By Lemma 5.6, τM(T ) º τM(V ) holds. Hence, the following formula

holds:

τM(T ) º τM(V ) º τM(U) º τM(S). 2

Theorem 5.4 enables us to construct an alternative generalization proce-

dure using minimal complements.
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5.3.3 Deriving Hypotheses with Induction Fields

To describe the hypotheses that can be found by this, we first introduce the

following language bias, called an induction field:

Definition 5.2 (Induction field). An induction field, denoted by IH, is de-

fined as 〈L〉 where L is a finite set of literals to be appeared in ground

hypotheses. A ground hypothesis Hg belongs to IH = 〈L〉 if every literal in

Hg is included in L.

We next define the target hypotheses using the notion of an induction

field IH, together with a bridge theory F as follows:

Definition 5.3 (Hypothesis wrt IH and F ). Let H be a hypothesis. H is

a hypothesis wrt IH and F if there is a ground hypothesis Hg such that Hg

consists of instances from H, F |= ¬Hg and Hg belongs to IH.

Now, the generalization procedure based on inverse subsumption with

minimal complements is as follows:

Definition 5.4. Let B, E and IH = 〈L〉 be a background theory, observa-

tions and an induction field, respectively. Let F be a bridge theory wrt B

and E. A clausal theory H is derived by inverse subsumption with minimal

complements from F wrt IH if H is constructed as follows.

Step 1. Taut(IH) := {¬A ∨ A | A ∈ L and ¬A ∈ L};
Step 2. Compute τM(F ∪ Taut(IH));
Step 3. Construct a clausal theory H satisfying the condition:

H º τM(F ∪ Taut(IH)). (3)

Inverse subsumption with minimal complements ensures the complete-

ness for finding hypotheses wrt IH and F , by way of (3).

Main Theorem ([90]). Let B, E and IH be a background theory, obser-

vations and an induction field, respectively. Let F be a bridge theory wrt

B and E. For every hypothesis H wrt IH and F , H is derived by inverse

subsumption with minimal complements from F wrt IH.
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Proof. It is sufficient to prove the following lemma. 2

Lemma 5.7 ([90]). Let B, E and IH be a background theory, observations

and an induction field, respectively. Let F be a bridge theory wrt B and E.

For every hypothesis H wrt IH and F , H satisfies the following condition:

H º τM(F ∪ Taut(IH)).

Proof. Since H is a hypothesis wrt IH and F , there is a ground hypothesis

Hg such that H º Hg, F |= ¬Hg and Hg belongs to IH. Since ¬Hg ≡ M(Hg),

F |= M(Hg) holds. Accordingly, F ∪ Taut(IH) |= M(Hg) holds. Since

Hg belongs to IH, every literal in Hg is included in IH. Then, for every

tautological clause D ∈ M(Hg), there is a clause C ∈ Taut(IH) such that

C º D. By Theorem 5.4, τM2(Hg) º τM(F ∪ Taut(IH)) holds. Since

µHg = M2(Hg) by Theorem 3, τµHg º τM(F ∪ Taut(IH)) holds. Since

Hg ⊇ τµHg, Hg º τµHg holds. Hence, H º τM(F ∪ Taut(IH)) holds. 2

Example 5.5. We show how a target hypothesis is derived by inverse sub-

sumption with minimal complements using Example 3.3 on pathway comple-

tion:

B = {arc(a, b), arc(X,Y ) ∧ path(Y, Z) ⊃ path(X,Z)}. E = {path(a, c)}.

IH = 〈{arc(b, c), ¬arc(b, c), path(b, c), ¬path(b, c)}〉.

H = {arc(b, c), arc(X,Y ) ⊃ path(X,Y )}.

One arc from b to c and one rule on pathways are missing in B. The task, as

we explained in Chapter 3, is to find the hypothesis H that completes these

missing fact and rule. To complete H, both abduction and induction must in-

volve, but most current ILP systems cannot compute it. Let F be the clausal

theory {arc(a, b), arc(a, b)∧path(b, c) ⊃ path(a, c), ¬path(a, c)}. Since F is

the set of ground instances from B ∧¬E, F is a bridge theory wrt B and E.

Since there is a ground hypothesis Hg = {arc(b, c), arc(b, c) ⊃ path(b, c)}
such that Hg consists of instances from H, F |= ¬Hg and Hg belongs to

IH, H is a hypothesis wrt IH and F . Then, H could be derived by in-

verse subsumption with minimal complements. We first compute Taut(IH).
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Then, Taut(IH) is the set {¬arc(b, c) ∨ arc(b, c), ¬path(b, c) ∨ path(b, c)}.
After adding Taut(IH) to F , we compute τM(F ∪Taut(IH)) represented as

follows.

{ ¬arc(a, b) ∨ path(b, c) ∨ arc(b, c) ∨ path(a, c),
¬arc(a, b) ∨ ¬arc(b, c) ∨ path(b, c) ∨ path(a, c) }.

We then notice that H subsumes τM(F ∪ Taut(IH)) (See the dotted

surrounding parts). Therefore, H can be derived by inverse subsumption with

minimal complements. In contrast, Since R(F ) is {¬arc(a, b) ∨ path(b, c) ∨
path(a, c)}, H does not subsume the residue R(F ). Hence, H cannot be

obtained from the residue complement, whereas the minimal complement

can do with inverse subsumption.

5.4 Discussion

In this section, we compare inverse subsumption with minimal complements

with the previous approach based on inverse entailment. We recall Example

5.5. In this example, we assumed the following bridge theory:

F = {arc(a, b), arc(a, b) ∧ path(b, c) ⊃ path(a, c), ¬path(a, c)}.

The residue and minimal complement τM(F ) is as follows:

τM(F ) = ¬arc(a, b) ∨ path(b, c) ∨ path(a, c).

We may notice that τM(F ) is the resolvent of two clauses C1 and C2 in

τM(F ∪ Taut(IH)):

C1 = ¬arc(a, b) ∨ path(b, c) ∨ path(a, c) ∨ arc(b, c).

C2 = ¬arc(a, b) ∨ path(b, c) ∨ path(a, c) ∨ ¬arc(b, c).

This fact means that adding a tautological clause to the bridge theory F

plays a role on an operation of inverse resolution. To deeply view the cor-

respondence between adding tautologies and inverting resolution, we recall
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Example 3.2 as follows:

B = {natural(0) ∨ even(0)}.

E = {natural(s(0))}.

H = {natural(0) ⊃ natural(s(0)), even(0) ⊃ natural(0)}.

We assume the following induction field IH that H belongs to:

IH = 〈{natural(0), ¬natural(0), natural(s(0)), ¬even(0), natural(s(0))}〉.

We assume the same bridge theory F = {natural(0)∨even(0), ¬natural(s(0))}
in Example 3.2. The residue and minimal complement τM(F ) is as follows:

τM(F ) = {¬natural(0) ∨ natural(s(0)), ¬even(0) ∨ natural(s(0))}.

As we explained in Section 3, the hypothesis H can be derived from τM(F )

using an inverse resolution operator in such a way that the clause C1 =

¬even(0) ∨ natural(s(0)) in τM(F ) is replaced by a parent clause C2 =

¬even(0) ∨ natural(0) such that C1 is the resolvent of two clauses C2 and

another clause C3 = ¬natural(0) ∨ natural(s(0)) in τM(F ). See Figure 5.5
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Figure 5.5: Example of Inverse Resolution

which sketches the logical relation between three clauses C1, C2 and C3. 　 In

the case of inverse subsumption with minimal complements, we first compute

τM(F ∪ Taut(IH)) as follows:

τM(F ∪ Taut(IH)) = {¬natural(0) ∨ natural(s(0)),

¬even(0) ∨ natural(0) ∨ natural(s(0))}.

We may notice that the clause ¬natural(0) ∨ natural(s(0)) in τM(F ∪
Taut(IH)) corresponds to C3 in H, and another clause C4 = ¬even(0) ∨
natural(0) ∨ natural(s(0)) is subsumed by C2 in H. Hence, H º µM(F ∪
Taut(IH)) holds. In other words, H can be obtained from µM(F∪Taut(IH))

only by using inverse subsumption, strictly speaking, by dropping the literal

natural(s(0)) from C4. We also note that the clause C1 in τM(F ) is the re-

solvent of C3 and C4 in τM(F ∪ Taut(IH)). Hence, τM(F ∪ Taut(IH)) can

be obtained by applying an inverse resolution operator to τM(F ). This fact

implies that adding tautologies to F in fact plays a role inverting resolution.

Figure 5.6 describes the logical relation between H, τM(F ∪ Taut(IH)) and

τM(F ).

There is a well-known operator, called V − operator [47], which performs

inverting resolution. This operator is given for Horn clauses as follows:
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Figure 5.6: Inverting Resolution by Adding Tautologies

Input: Two Horn clauses C1 = L1 ∨ C ′
1 and R, where C ′

1 º R.
Output: A Horn clause C2, such that

R is an instance of a resolvent of C1 and C2.

Step 1. Choose a substitution θ1 such that C ′
1θ1 ⊆ R.

Step 2. Choose an L2 and C ′
2 such that L1θ1 = ¬L2θ2

and C ′
2θ2 = R − C ′

1θ1, for some θ2.

Step 3. Let C2 = L2 ∨ C ′
2.

The following figure describes the logical relation between two input

clauses C1 and R and the output clause C2.

Example 5.6. Let C1 = P (X) ∨ ¬Q(X) and R = P (f(Y )) ∨ ¬Q(Y ). We

here assume that L1 = P (X). Then, C ′
1 = ¬Q(X) holds.

1. There is only one substitution θ1 such that C ′
1θ1 ⊆ R, namely θ1 =

{X/Y }.

2. L2 and C ′
2 should be such that, for some θ2, L1θ1 = P (Y ) = ¬L2θ2 and

R − C ′
1θ1 = P (f(Y )) = C ′

2θ2. We here choose θ2 = {Z/Y }. Then, it

holds that L2 = ¬P (Z) and C ′
2 = P (f(Z)).
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Figure 5.7: Setting for V-operator

3. Let C2 = L2 ∨ C ′
2 = ¬P (Z) ∨ P (f(Z)).

There are several ways to select L1 and θ2. The V-operator is then non-

deterministic algorithm.

The hypothesis H in Figure 5.5 and 5.6 can be obtained by applying

a V-operator to M(F ). On the other hand, M(F ∪ Taut(IH)) itself can-

not be obtained using V-operator, though M(F ∪ Taut(IH)) should be also

obtained by inverse resolution. In this sense, V-operator is sound but incom-

plete in performing inverse resolution. Previously, it has not been studied

how inverse resolution can be completely performed due to its huge computa-

tional complexity. On the other hand, using our result to logically reduce it

into inverse subsumption, inverse resolution is embedded by add tautological

clauses associated with a given induction field to the bridge theory.

Example 5.7. Let B, E and H be a background theory, observations and

a hypothesis as follows:

B = {plus(0, 0, 0)}.

E = {plus(s(0), s(0), s2(0))}.

H = {plus(X,Y, Z) ⊃ plus(s(X), Y, s(Z)),

plus(X,Y, Z) ⊃ plus(X, s(Y ), s(Z))}.

Note that the predicate plus(X,Y, Z) means X + Y = Z. For instance, E

says 1 + 1 = 2. H corresponds to two missing rules that define the predicate
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plus. Let F be the following bridge theory wrt B and E:

F = {plus(0, 0, 0), ¬plus(s(0), s(0), s2(0))}.

Note that F is equal to B ∪ ¬E. τM(F ) is the clause ¬plus(0, 0, 0) ∨
plus(s(0), s(0), s2(0)). For deriving H from τM(F ), we need to perform

inverting resolution in some way. However, V-operator cannot be applied to

F , since F contain only one clause. Besides, any systematic operator that

enables to derive the target H has not been proposed so far. In contrast, our

approach based on inverse subsumption can give an insight to perform suf-

ficient inverse resolution by introducing an induction field IH. For instance,

let IH be as follow:

IH = 〈{ plus(0, 0, 0), ¬plus(0, 0, 0),

plus(s(0), s(0), s2(0)), ¬plus(s(0), s(0), s2(0)),

plus(s(0), 0, s(0)), ¬plus(s(0), 0, s(0))}〉.

One atom plus(s(0), 0, s(0)) is newly introduced in IH, which does not appear

in B and E. Then, τM(F ∪ Taut(IH)) is as follows:

{¬plus(0, 0, 0) ∨ plus(s(0), s(0), s2(0)) ∨ ¬plus(s(0), 0, s(0)),

¬plus(0, 0, 0) ∨ plus(s(0), s(0), s2(0)) ∨ plus(s(0), 0, s(0))}.

We notice that τM(F ) is the resolvent of two clauses in τM(F ∪Taut(IH)).

Since the target hypothesis H subsumes τM(F ∪ τTaut(IH)), it can be

obtained by dropping operators and anti-instantiation operators.

As we have described here, there has not been any proposal to inverse

resolution operators that ensure completeness for finding hypotheses so far.

For this reason, it was not straightforward to formally describe the search

space that hypothesis finding based on inverse entailment actually imposes.

Through this chapter, we have clarified that hypothesis finding based on

inverse entailment can be reduced into inverse subsumption from the minimal

complement of a bridge theory F and the tautological clauses Taut(IH).

Suppose that every target hypothesis H wrt F and IH is irredundant. In
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other words, H−{C} is no longer a hypothesis wrt F and IH for every clause

C ∈ H. In this case, we do not need to apply any anti-weankening operators

adding arbitrary clauses to M(F ∪ Taut(IH)). Every ground hypothesis can

be obtained only by applying some dropping operators to M(F ∪Taut(IH)).

Hence, under this specific condition that the target hypotheses are ground

and irredundant, the number of possible hypotheses should be at least upper

bounded by 2n − 1 where n is the number of clauses in M(F ∪ Taut(IH)).

In this way, if we consider some typical assumption to the target hypothe-

ses, it would be possible to analyze two search spaces of inverse subsump-

tion and inverse entailment by comparing the number of possible hypotheses

obtained by each approach. For this comparison, we first give the formal

definition of inverse resolution operator as follows:

Definition 5.5 (Inverse resolution operator). Let IH = 〈L〉 be an induction

field and S a ground clausal theory belonging to IH. A ground clausal theory

T is obtained by inverse entailment from S wrt IH if T is of the form:

T = (S − {C}) ∪ {(D1 ∪ {l}), (D2 ∪ {¬l})},

where D1 and D2 are two clauses such that D1 ∪ D2 = C, and l and ¬l are

complementary literals that are not contained in C but in L.

Example 5.8. Let S be the clausal theory {{a}} and IH be 〈{a, b, ¬b, c, ¬c}〉.
There are six possible clausal theories obtained by at one time applying an

inverse resolution operator to S as follows:

T1 = {{a, b}, {¬b}}. T2 = {{b}, {a, ¬b}}. T3 = {{a, b}, {a, ¬b}}.

T4 = {{a, c}, {¬c}}. T5 = {{c}, {a, ¬c}}. T3 = {{a, c}, {a, ¬c}}.

Assume that S contains only one clause C that has n literals. Each literal

in C can be included in either D1, D2 or both D1 and D2. That is why

there are 3n ways to apply an inverse resolution operator at one time for

each complementary literal in IH. Hence, the total number of possible ways

to apply an inverse resolution operator at one time should be 3n × m where

m is the number of pairs of complemental literals in a given induction field.
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Based on this inverse resolution operator, we investigate two search spaces

that inverse subsumption and inverse entailment impose.

Example 5.9. Let a bridge theory F be {{a, b, c}, {c, ¬b}, {¬a}} and

an induction field IH be 〈{a, ¬a, b, ¬b, c}〉. In the following, we assume

the target hypotheses as the ground hypotheses wrt IH and F . τM(F ) and

τM(F ∪ Taut(IH)) are as follows:

τM(F ) = {{¬c, a}}.

τM(F ∪ Taut(IH)) = {{¬c, a, b}, {¬c, a, ¬b}}.

In case of inverse subsumption, since a target hypothesis H is ground, H

can be obtained by applying dropping operators to M(F ∪ Taut(IH)). If we

should drop either b or ¬b, we obtain the single clause {¬c, a}. There are

22 − 1 ways to apply dropping operators to this clause. If we should drop

neither b nor ¬b, there are possibly 24 − 1 dropping operations. Totally, we

can possibly consider 22 − 1 + 24 − 1 = 18 hypotheses.

In another case of inverse entailment, we focus on a ground hypothesis H

such that H |= M(F ). By Subsumption Theorem, there exists a derivation

of a clause D from H that subsumes M(F ). Since D is ground, D should

be either {¬c}, {a} or {¬c, a}. For each case, we consider the number of

possible hypotheses obtained by applying inverse resolution operators. For

instance, there are six clausal theories obtained by at one once applying an

inverse resolution operator to the clause {¬c} as follows:

{{¬c, ¬a}, {a}}, {{¬c, a}, {¬a}}, {{¬c, a}, {¬c, ¬a}},

{{¬c, ¬b}, {b}}, {{¬c, b}, {¬b}}, {{¬c, b}, {¬c, ¬b}}.

Figure 5.8 shows the possible ways to apply inverse resolution opera-

tors. Since there are two pairs of complementary literals in IH, we can

apply this operator at most twice. There are possibly 3 + 6 + 9 = 18 and

7+270+42 = 319 clausal theories obtained at one operation and second op-

erations, respectively. Totally, we can possibly consider 1+3+18+319 = 341

hypotheses using inverse resolution. In the case of inverse subsumption, it
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Figure 5.8: Possible Hypotheses Obtained by Inverse Entailment

is sufficient to consider only 18 hypotheses. On the other hand, inverse en-

tailment has to deal with 341 hypotheses. This difference lies in that most

of hypotheses obtained by inverse entailment are redundant. For instance,

the clausal theory {{¬c, a}, {¬c, ¬a}} in Figure 5.8 is redundant, since it

contains the original clause {¬c, a}.

Simple applications of inverse resolution tend to produce redundant theo-

ries that is logically equivalent to the original theory. As shown in the above

example, this problem can causes the difference of search space between in-

verse entailment and inverse subsumption.

5.5 Summary

This chapter has shown that inverse subsumption is an alternative generaliza-

tion relation to ensure completeness for finding hypotheses. This result can

be applied to each IE-based procedures. Generalization in Progol [44, 75],

HAIL [61, 63] and Imparo [31] described in Section 3.1, are based on inverse

subsumption, instead of entailment, whereas it has not been clarified so far

whether or not this logical reduction makes generalization incomplete. For

this open problem, we have showed that inverse subsumption can ensure the
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completeness only by adding tautological clauses associated with a language

bias to a bridge theory. The generalization of Residue procedure [83] cor-

responds to inverse subsumption with residue complements, which has been

studied in Section 5.3. In Section 5.4, we have discussed about the corre-

spondence between inverting resolution and adding tautological clauses and

showed that the task of V -operator, which has been previously proposed for

inverse resolution, can be achieved by using inverse subsumption. We have

also analyzed the search space in each case of inverse entailment and in-

verse subsumption with minimal complement using a concrete example. As

a result, we have showed that the search space in inverse subsumption with

minimal complements could be indeed less than the one in inverse entailment.

CF-induction uses inverse entailment as the generalization relation. Hence,

the generalization of CF-induction can be reduced into inverse subsumption

with minimal complements. In next chapter, we investigate the general-

ization procedure of CF-induction and logically reconstruct it into a more

simplified form based so as to reduce the non-determinism in CF-induction.
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Chapter 6

Logical Reconstruction in
CF-induction

6.1 Introduction

CF-induction preserves soundness and completeness of finding hypotheses

in full clausal theory. Compared with the other IE-based methods, CF-

induction has three important benefits. Unlike Progol [44], HAIL [61] and

Imparo [31], it enables the solution of more complex problems in richer knowl-

edge representation formalisms beyond Horn logic. The motivating problem,

provided in Chapter 4, is indeed described in non-Horn clausal logic. Unlike

FC-HAIL [63], CF-induction is complete for finding full clausal hypotheses.

In Chapter 4, using this feature, we have shown that CF-induction can inte-

grate abduction and induction in biological inference of metabolic pathways.

Unlike the residue procedure [83], CF-induction can exploit language bias to

specify the search space so as to focus the procedure on some relevant part.

The derivation process in CF-induction can be described as follows: Note

@@ -B ∧ ¬E |= · · · |= CC (Generalization operations)

¬CC =| U1 =| · · · =| Un =| H

Figure 6.1: Hypothesis Finding in CF-induction

that CC is a bridge theory of CF-induction. After constructing a bridge the-

ory CC, its negation translated into CNF is generalized using a variety of
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generalizers, as shown in Chapter 3. Any combination of generalizers can

be also soundly applied as another generalizer. Indeed, a particular hypoth-

esis H requires several different generalizers in some specific order like the

generalization operations in Figure 6.1. This fact that these generalizers can

be sequenced in many different ways makes generalization of CF-induction

highly non-deterministic.

Our objective is to reduce the non-determinism of CF-induction in order

to make the procedure easier to apply in real-world applications. In this

chapter, we concentrate on simplifying the process of obtaining hypotheses

from a bridge theory. In particular, we propose two approaches for simplifi-

cation of CF-induction. The first approach is based on the observation that

the negated hypothesis ¬H can be computed deductively from CC, i.e.,

CC |= V1 |= V2 |= · · · |= Vm−1 |= Vm |= ¬H. (6.1)

In the interests of computational efficiency, it is convenient to work in

clausal form logic. For instance, ¬H can be represented as the minimal

complement of Hsk in which any existentially quantified variables in ¬H are

substituted by ground Skolem constants. Therefore, the first approach works

in three steps: first G is deduced from CC; then it is negated; and finally

anti-instantiation is used to result in the final hypothesis H.

To derive G from CC, we introduce a new deductive operator, which

can be regarded as simplifying the existing operators of subsumption, res-

olution and weakening that we have introduced in Chapter 5. This new

operator, called the γ-operator, warrants the insertion of literals into the

clauses of CC. We show that this single deductive operator (followed by

negation and anti-instantiation) is sufficient to preserve the soundness and

completeness of CF-induction. This new approach, called CF-induction with

γ-operator, simplifies the original CF-induction in the sense that it only re-

quires one deductive operator (γ-operator) and one generalization operator

(anti-instantiation) to be used in the construction of H from CC.

The second approach is based on inverse subsumption with minimal sub-

sumption. Using the result in Chapter 5, any hypothesis can be inductively
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derived from the minimal complement of CC ∪ Taut, i.e.,

τM(CC) ¹ R1 ¹ R2 ¹ · · · ¹ Rk−1 ¹ Rk ¹ µH. (6.2)

To use Formula 6.2, we need to logically connect production fields with

induction fields that will be extended so as to describe the syntax of target

hypotheses.

In this chapter, we also investigate another non-deterministic procedure:

construction of bridge theories. Since a bridge theory in CF-induction is de-

fined as a subset of the characteristic clauses, the number of choice points

can exponentially increase in accordance with the number of characteristic

clauses. This combinatorial explosion makes the construction of bridge the-

ories highly non-deterministic. For this problem, we propose a deterministic

way, while it preserves completeness for finding hypotheses in CF-induction.

The rest of this chapter is organized as follows. Section 6.2 describes

the first approach based on deductive operations. Section 6.3 describes the

second approach based on inverse subsumption. In Section 6.3, we also show

a deterministic way to construct bridge theories, and Section 6.4 compares

two approaches using several examples. Section 6.5 concludes.

6.2 CF-induction with Deductive Operations

Our motivation in this section is to develop a simplified generalization proce-

dure for CF-induction that uses fewer operators while preserving its sound-

ness and completeness for finding hypotheses. We present one way to simplify

the generalization process by computing generalizations deductively. Our

approach is motivated by recalling the following deductive operators, which

have been introduced in Chapter 5.

1. (resolution) T = S∪{C}, where C is a resolvent of clauses D1, D2 ∈ S.

2. (subsumption) T = S ∪ {C}, where C is subsumed by some clause

D ∈ S.

3. (weakening) T = S − {D} for some clause D ∈ S.
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Two special cases of the subsumption operator can be further distinguished

by the following two operators.

2a (instantiation) T = S ∪ {Dσ} for some clause D ∈ S and substitution

σ.

2b (expansion) T = S ∪{C}, where C is a superset of some clause D ∈ S.

We write S `r T , S `s T , S `w T , S `α T and S `β T to denote that T is

directly derivable from S by resolution, subsumption, weakening, instantia-

tion and expansion, respectively. `∗
X is the reflexive and transitive closure of

`X , where X is one of the symbols r, s, w, α, β.

We mention the following two properties concerned with reordering of

deductive operators.

Proposition 6.1 ([92]). Let U1 and U2 be clausal theories. If U1 `∗
s U2, then

there exist two clausal theories V1 and V2 such that U1 `∗
α V1 `∗

β V2 `∗
w U2.

Proof. By Definition 5.1, there exist a substitution σi and a clause Di ∈ U1

such that Diσi ⊆ Ci, for each clause Ci ∈ U2 − U1 (1 ≤ i ≤ n). Let T be a

finite set
∪n

i=1{Diσi}. Let V1 be U1 ∪ T and V2 be V1 ∪ {C1, . . . , Cn}. Then

it holds that U1 `∗
α V1 and V1 `∗

β V2. Moreover, since it holds that U2 ⊆ V2,

it holds that V2 `∗
w U2. 2

Proposition 6.2 ([92]). Let S, U and V be clausal theories. If S `∗
w U `∗

s V ,

then there exists a clausal theory U ′ such that S `∗
s U ′ `∗

w V .

Proof. Let U ′ be the clausal theory S∪ (V −U). Since U `∗
s V , there exists a

clause Di ∈ U such that Di º Ci for each clause Ci ∈ V − U . Since S `∗
w U ,

U ⊆ S holds. Since Di ∈ U , Di ∈ S holds. Therefore U ′ is obtained from S

using the subsumption operator, that is, S `∗
s U ′. Next we show that V ⊆ U ′

holds. Since U ′ = S ∪ (V − U), V − U ⊆ U ′ holds. And also, S ⊆ U ′ holds.

Since S `∗
w U , U ⊆ S holds. Accordingly, V ∩U ⊆ U ′ holds, since V ∩U ⊆ U .

Since V − U ⊆ U ′ and V ∩ U ⊆ U ′, V ⊆ U ′ holds. Hence U ′ `∗
w V holds. 2

We use the above ordering results as well as Theorem 5.5 to show how

the number of generalization operators used in CF-induction can be reduced.

Section 6.2.1 shows this result in the case of ground hypotheses and Section

6.2.2 shows it in the general case.
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6.2.1 Logical Relation Between Bridge Theories
and Ground Hypotheses

First, we show that resolution and instantiation can be incorporated into the

selection of CC. We show this with the following two lemmas.

Lemma 6.1 ([92]). Let CC be a bridge theory wrt B, E and P , and U be a

clausal theory. If CC `∗
r U , then there exist a clausal theory V and a bridge

theory CC ′ wrt B, E and P such that CC ′ `∗
s V `∗

w U .

Proof. The proof is in two parts.

(a) First we prove that, for each clause Ci ∈ U (1 ≤ i ≤ n), there exists

a clause Di ∈ Carc(B ∧ E,P) such that Di º Ci.

By the definition of characteristic clauses, for each clause K ∈ ThP(B∧E)

there exists a clause M ∈ Carc(B ∧ E,P) such that M º K. Hence it is

sufficient to show that every clause Ci ∈ U is included in ThP(B ∧E). Since

CC |= U and B∧E |= CC, it holds that every clause Ci ∈ U is a consequence

of B ∧ E. Then it remains to show that every clause Ci ∈ U belongs to P ,

which is done by mathematical induction on the number n of the applications

of `r for deriving U from CC. In the following, we write CC `n
r U to denote

that U is derived from CC by n applications of `r.

Base step: If n = 0 then U = CC and it trivially follows that every clause

in U belongs to P.

Induction step: If n = k+1 for some k ≥ 0, then it holds that CC `k
r U ′ `r U

where U ′ is a clausal theory. By the induction hypothesis, it holds that

every clause in U ′ belongs to P . Moreover, it follows that U = U ′∪{R}
for some resolvent R of two clauses in U ′. Since every clause in U ′

belongs to P and P is closed under instantiation, the resolvent R also

belongs to P . Thus every clause in U belongs to P and so part (a)

holds.

(b) Now we show how to construct the theories CC ′ and V . Start by

defining the theory T =
∪n

i=1{Di} using the clauses Di ∈ Carc(B ∧ E,P)

constructed above. Now define the bridge theory CC ′ = CC ∪ T and the
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theory V = CC ′ ∪ U . Since for each clause Ci ∈ U there exists Di ∈ T

such that Di º Ci, CC ′ `∗
s V holds. Since U ⊆ V , V `∗

w U holds. Hence

CC ′ `∗
s V `∗

w U holds. Each clause in CC ′ is an instance of a clause in

Carc(B ∧E,P). Since CC ⊆ CC ′ and CC is a bridge theory, there exists a

clause in CC ′ which is an instance of a clause in NewCarc(B, E,P). Then

CC ′ is a bridge theory. Therefore there exist a bridge theory CC ′ and a

clausal theory V such that CC ′ `∗
s V `∗

w U . 2

Lemma 6.2 ([92]). Let CC be a bridge theory wrt B, E and P , and U be

a clausal theory. If CC `∗
α U , then U is a bridge theory wrt B, E and P .

Proof. Every clause in U is an instance of a clause in Carc(B ∧E,P). Since

U ⊇ CC, there exists a clause Ci ∈ U such that Ci is an instance of a clause

from NewCarc(B, E,P). Therefore, U is a bridge theory. 2

Then, using Lemmas 6.1 and 6.2, we can show the following theorem,

which establishes the logical relation between bridge theories and ground

hypotheses.

Theorem 6.1 ([92]). Let H be a ground hypothesis wrt B, E and P . Then

there exist a bridge formula CC wrt B, E and P and a clausal theory V such

that CC `∗
β V `∗

w H.

Proof. First, we consider the case that H has no tautological clauses. Then,

by Theorem 3.1, there exists a bridge theory CC such that CC |= ¬H.

Since H is ground, H ≡ ¬H holds. Thus CC |= H holds. By Theorem

5.5, there exist clausal theories V1 and V2 such that CC `∗
r V1 `∗

s V2 `∗
w H.

By Lemma 6.1, there exist a clausal theory V3 and a bridge formula CC ′′

such that CC ′′ `∗
s V3 `∗

w V1 `∗
s V2 `∗

w H. By Proposition 6.2, there ex-

ists a clausal theory V4 such that CC ′′ `∗
s V3 `∗

s V4 `∗
w V2 `∗

w H. Thus

CC ′′ `∗
s V4 `∗

w H. By Proposition 6.1, there exist clausal theories V5 and

V6 such that CC ′′ `∗
α V5 `∗

β V6 `∗
w V4 `∗

w H. By Lemma 6.2, V5 is a bridge

theory, and by letting CC ′ = V5, it holds that CC ′ `∗
β V6 `∗

w H.

Next, in the case that H contains tautological clauses, we let T = {D1, . . . , Dn}
denote the set of the tautological clauses in H. Then, since every clause

Di ∈ T (1 ≤ i ≤ n) is a consequence of B ∧ E and Di belongs to P , for
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each Di ∈ T there exists a clause Ci ∈ Carc(B ∧ E,P) such that Ci º Di.

Let S be the clausal theory
∪n

i=1{Ci}. Then, it holds that S `∗
s S1 `∗

w T

where S1 = S ∪ T . Now, since the clausal theory H − T has no tautological

clauses, there exist a bridge theory CC and a clausal theory V7 such that

CC `∗
s V7 `∗

w H −T . Then, it holds that CC ∪S `∗
s V7 ∪S1 `∗

w H. Since the

clausal theory CC ∪ S satisfies Definition 3.4, the theorem holds. 2

Next, we introduce a new operator, which can be regarded as concate-

nating weakening and expansion.

Definition 6.1. [γ-operator] Let S and T be clausal theories. T is directly

γ-derivable from S iff T is obtained from S under the following condition:

T = (S − {D}) ∪ {C1, . . . , Cn}

for some n ≥ 0 where Ci ⊇ D for all 1 ≤ i ≤ n.

Analogously to Definition 5.1, we write S `γ T iff T is directly γ-derivable

from S and `∗
γ is a reflexive and transitive closure of `γ.

Theorem 6.2 ([92]). Let H be a ground hypothesis wrt B, E and P . Then,

there exists a bridge formula CC wrt B, E and P such that CC `∗
γ H.

Proof. Since H is a ground hypothesis, by Theorem 6.1, there exist a bridge

theory CC = {C1, . . . , Cn} and a clausal theory U such that CC `∗
β U `∗

w H.

Let FCi
be the clausal theory {C | C ∈ H and Ci ⊆ C}, for each clause

Ci ∈ CC (1 ≤ i ≤ n). Then, by Definition 6.1, for each clause Ci ∈ CC,

{Ci} `∗
γ FCi

holds. Accordingly, CC `∗
γ

∪n
i=1 FCi

holds. Hence, it is sufficient

to show that H =
∪n

i=1 FCi
. Since FCi

⊆ H for every clause Ci ∈ CC, it holds

that
∪n

i=1 FCi
⊆ H. Conversely, since CC `∗

β U , for every clause D ∈ U ,

there exists a clause Ci ∈ CC such that Ci ⊆ D. Also since U `∗
w H, it holds

that H ⊆ U . Then, for every clause D ∈ H, there exists a clause Ci ∈ CC

such that Ci ⊆ D, that is, D ∈ FCi
. This means that H ⊆

∪n
i=1 FCi

. Hence,

it holds that H =
∪n

i=1 FCi
. Therefore, it holds that CC `∗

γ H. 2
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6.2.2 Deriving Non-Ground Hypotheses

We generalize the result of the previous section to non-ground hypotheses.

We show that any hypothesis can be obtained from a bridge theory by ap-

plying the γ-operator followed by anti-instantiation.

Definition 6.2. Let B and E be clausal theories and P = 〈L〉 be a produc-

tion field. A clausal theory H is derived by CF-induction with γ-operator

from B, E and P iff H is constructed as follows:

Input: A background theory B, observations E
and a production field P .

Output: A hypothesis H wrt B, E and P .

Step 1. Construct a bridge theory CC wrt B, E and P.

Step 2. Construct a clausal theory G such that CC `∗
γ G.

Step 3. Compute the complement G of G.

Step 4. H is obtained by applying anti-instantiation to G,

such that (1) B ∧ H is consistent,

(2) H contains no Skolem constants, and

(3) for every literal L in H, ¬L belongs to P.

Several remarks are necessary for Definition 6.2.

Step 2. Even if G satisfies CC `∗
γ G for some bridge theory CC, any output

H obtained from G cannot satisfy the conditions of Definition 3.1 unless

G∧B is consistent and G belongs to P. In this respect, the constraints

of H at Step 4 are introduced to guarantee the soundness of H.

Step 3. The complement of G can theoretically include redundant clauses

such as tautological clauses and clauses properly subsumed by other

clauses. Accordingly it might be sufficient to use minimal and residue

complements, instead of complements.

Step 4. Anti-instantiation allows us to replace subterms in G with variables.

For example, for the clause p(a)∨q(a), it is possible to construct p(X)∨
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q(Y ) obtained by replacing the constant a in p(a) and q(a) with two

variables X and Y , respectively. In this way there are many possibilities

to apply anti-instantiation for clauses.

We now give soundness and completeness results for CF-induction with

γ-operator.

Theorem 6.3 ([92]). [Soundness] Let B, E and H be clausal theories, and

P be a production field. If H is derived by CF-induction with γ-operator

from B, E and P , then H is a hypothesis wrt B, E and P .

Proof. Suppose a clausal theory H is derived by CF-induction with γ-

operator from B, E and P . Then, by Definition 6.2, there exist a bridge

theory CC and a clausal theory G such that H is derived by applying

anti-instantiation to G and CC `∗
γ G. By Definition 3.4, it holds that

B ∧ E |= CC. By Definition 6.1, it holds that CC |= G. Accordingly, it

holds that B ∧ E |= G. Since H is derived by applying anti-instantiation to

G, H |= G holds. Since G |= ¬G, H |= ¬G follows. Equivalently, G |= ¬H.

Therefore, it holds that B ∧ E |= ¬H. Then, it holds that B ∧ H |= ¬E.

Since, from Step 4 of Definition 6.2, H contains no Skolem constants from

E, it holds that B ∧ H |= E. Hence, it holds that H is a hypothesis wrt B,

E and P , since, from Step 4 of Definition 6.2, B ∧ H is consistent and for

every literal L appearing in H, ¬L ∈ L. 2

Theorem 6.4 ([92]). [Completeness] Let B, E and H be clausal theories,

and P be a production field. If H is a hypothesis wrt B, E and P , then there

exists a theory H∗ ≡ H that is derived by CF-induction with γ-operator from

B, E and P .

Proof. Suppose H is a hypothesis wrt B, E and P . By Theorem 3.1, there

is a bridge theory CC wrt B, E and P such that CC ∪ H is unsatisfiable.

Using Herbrand’s theorem, there are two finite sets CC ′ and H ′ such that

CC ′ (resp. H ′) is a finite set of ground instances of CC (resp. H) and

CC ′ ∪ H ′ is unsatisfiable. In this case, H ′ can be chosen in such a way that

for every clause C in H, there is an instance C ′ of C such that C ′ ∈ H ′, and
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also, CC ′ can be chosen in such a way that CC ′ contains at least one instance

of a clause in NewCarc(B, E,P). Then, H can be obtained by applying an

anti-instantiation generalizer to H ′. We prove that H ′ is a ground hypothesis

wrt B, E, and P . That is, we will show that (1) B∧H ′ |= E, (2) B∧H ′ 6|= 2

and (3) ¬L ∈ L for every literal L appearing in H ′.

Proof of (1): CC is a bridge theory wrt B, E and P. Since every clause

in CC ′ is an instance of a clause in CC, CC ′ satisfies the first condition of

Definition 3.4. Also, CC ′ contains at least one clause C ′ such that C ′ is an

instance of a clause from NewCarc(B, E,P). Then CC ′ satisfies the second

condition of Definition 3.4. Hence, CC ′ is also bridge theory wrt B, E and

P . Thus B ∧ E |= CC ′ holds. By CC ′ |= ¬H ′, B ∧ E |= ¬H ′ holds. Then

B ∧ H ′ |= ¬E holds. By ¬E ≡ E, B ∧ H |= E holds.

Proof of (2): If it holds that B∧H ′ |= 2, then it must hold that B∧H |= 2,

by B ∧ H |= B ∧ H ′. It contradicts the fact H is a hypothesis.

Proof of (3): Since H is a hypothesis wrt B, E and P , for every literal L

appearing in H, ¬L ∈ L holds. Then it holds that ¬L ∈ L for every literal

L appearing in H ′, since P = 〈L〉 is closed under instantiation.

Now, since H ′ is a ground hypothesis wrt B, E and P , there exists a

bridge theory CC ′′ wrt B, E and P such that CC ′′ `∗
γ H ′ by Theorem 6.2.

Since E ≡ E, it holds that for every clause C in Carc(B ∧ E,P), C is

contained in Carc(B ∧ E,P). Then, it also holds that for every clause C in

CC ′′, C is contained in Carc(B∧E,P). Hence, CC ′′ is also bridge theory wrt

B, E and P . Then, from Step 1 of Definition 6.2, CC ′′ can be constructed

in a CF-induction with γ-operator from B, E and P. Moreover, H ′ can be

also constructed from CC ′′ at Step 2. Since H ′ is ground, it holds that H ′

is logically equivalent to H ′ computed from H ′ at Step 3. Recall that H

is obtained by applying anti-instantiation to H ′. Therefore a formula H∗ is

obtained at Step 4 with the application of anti-instantiation to H ′ such that

H∗ ≡ H. 2

Example 6.1. Recall Example 3.2. Let CC be the following bridge theory,

which appears in Example 3.2.

CC = (natural(0) ∨ even(0)) ∧ ¬natural(s(0)).
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Assume that a γ-operator is applied to CC so that ¬natural(s(0)) is re-

placed with the two clauses ¬natural(s(0))∨¬even(0) and ¬natural(s(0))∨
natural(0), then the following clausal theory G1 is constructed:

G1 = (natural(0) ∨ even(0))

∧ (¬natural(s(0)) ∨ ¬even(0))

∧ (¬natural(s(0)) ∨ natural(0)).

Then, we can obtain the complement G1 of G1, which is logically equivalent to

F ′
1 in Example 3.2. Next assume that another γ-operator is applied to CC so

that ¬natural(s(0)) is replaced with the two clauses ¬natural(s(0))∨even(0)

and ¬natural(s(0)) ∨ ¬natural(0), then the following clausal theory G2 is

constructed:

G2 = (natural(0) ∨ even(0))

∧ (¬natural(s(0)) ∨ even(0))

∧ (¬natural(s(0)) ∨ ¬natural(0))

Then, the complement G2 of G2 is logically equivalent to F ′
2 in Example 3.2.

Accordingly, we can obtain a clausal theory, which is logically equivalent to

F ′
3 in Example 3.2 by applying an anti-instantiation generalizer to G2. In

this way, the inverse resolution generalizer can be realized with applications

of the γ-operator.

6.2.3 Related Work

The γ-operator can be regarded as a particular downward refinement operator

[3, 34, 41, 52] for the `∗
γ order, which is closely related to the subsumption

order. Let S and T be clausal theories such that S `∗
γ T . Then S º T

holds. Compared with the subsumption order, one important feature of γ-

operator lies in restraint of the operation of instantiation, which leads to a

large number of choice points. There are certain desirable properties that a

“good” downward refinement operator should satisfy and we intend to study

which of these the γ-operator satisfies.
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We can reduce generalization under the entailment relation in the pre-

vious version to generalization under the γ-operator. It is based on the

notion that any series of processes of inductive operations on the inverse re-

lation of entailment between the negation of a bridge theory and a hypothesis

connects a certain series of processes of deductive operations on entailment

between a bridge theory and the negation of hypothesis. Accordingly, there

are two sides where we can grasp generalization processes. Yamamoto and

Fronhöefer [84] and Yamamoto [83] first have studied the connection between

two clausal theories related by entailment and negation. It will be interesting

to consider about the relation between two clausal theories ordered by the

γ-operator instead of entailment and these negations.

6.3 CF-induction with Inverse Subsumption

This section investigates how CF-induction can compute target hypotheses

based on inverse subsumption with minimal complements. Inverse subsump-

tion ensures the completeness of finding hypotheses with respect to a given

induction field. An induction field is used to describe possible literals ap-

peared in ground hypotheses. In contrast, a production field used in CF-

induction describes possible literals appeared in the negations of hypotheses.

We thus need to connect induction fields with production fields.

6.3.1 Logical Relation between Production Fields
and Induction Fields

We first extend the definition of induction fields, which has been defined in

Section 5.3.3, into a richer representation formalization so as to describe not

only literals to be possibly included, but also the syntactical structure of

ground hypotheses like the number and length of clauses.

Definition 6.3. [Extended induction field]An extended induction field IH

is a triple 〈L, num, len〉 where L is the set of literals to be appeared in

ground hypotheses, and num and len are the maximum number and length

of clauses in ground hypotheses, respectively. A ground hypothesis Hg belongs
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to IH = 〈L, num, len〉 iff every literal in Hg is included in L, the number of

clauses in Hg is less than or equal to num and for every clause C ∈ Hg, the

length of C is less than or equal to len. In the following, we simply refer

to an induction field, instead of an extended induction field, if no confusion

arises.

Note that the induction field is regarded as an extension of the previous

language bias obtained by adding the information on the number and length.

Based on this language bias, we define target hypotheses as follows.

Definition 6.4. [Hypothesis wrt B, E and IH] Let B, E and IH be a back-

ground theory, observations and an induction field, respectively. A clausal

theory H is a hypothesis wrt B, E and IH iff there is a ground hypothesis

Hg wrt B and E such that Hg consists of ground instances from H and Hg

belongs to IH.

We then reconstruct the conditions of bridge theories by reflecting the

induction field as follows:

Definition 6.5. [Bridge theory wrt B, E and IH] Let B, E and IH =

〈L, num, len〉 be a background theory, observations and an induction field.

A clausal theory CC is a bridge theory wrt B, E and IH iff CC is a bridge

theory wrt B, E and the production field PI = 〈L, max length ≤ num〉
such that CC contains at most lennum clauses.

Note that L is the set of negations of literals in L. If no confusion arises,

a “bridge theory wrt B, E and IH” will simply be called a “bridge theory”.

Theorem 6.5 ([89]). Let B, E and IH be a background theory, observations

and an induction field. Then, for any hypothesis H wrt B, E and IH, there

exists a bridge theory CC wrt B, E and IH such that H |= ¬CC.

Proof. We write IH = 〈L, num, len〉. Since H is a hypothesis wrt B, E

and IH, there is a ground hypothesis Hg wrt B and E such that H º Hg

and Hg belongs to IH. Assume the production field P1 = 〈L〉. Then, Hg

belongs to P1. Hence, there is a bridge theory CC wrt B, E and P1 such
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that CC |= ¬Hg. Since Hg is ground, ¬Hg ≡ Hg holds. Since the maximum

number and length of clauses in Hg are num and len, respectively, it holds

that every clause in Hg is less that or equal to num and Hg contains at most

lennum clauses. Since B ∧¬Esk |= CC and CC |= Hg, B ∧¬Esk |= Hg holds.

Hence, for each clause C in Hg, there is a clause D in Carc(B∧Esk,P1) such

that D º C. Since the length of the clause D is less than or equal to num,

D belongs to the production field PI . 2

6.3.2 Deriving Hypotheses with Induction Fields

In the original CF-induction, the bridge theory was selected by hand. Assume

that we have n characteristic clauses of B ∧ ¬E. The number of possible

bridge theories is briefly 2n. It is difficult to sufficiently choose one from a

large number of possible theories. Here, we show an incremental way for

constructing bridge theories that is deterministic and also preserving the

soundness and completeness in CF-induction. First, we recall Theorem 5.4.

Let S be a ground clausal theory and C a clause in S. By Theorem 5.4,

τM(S − {C}) º τM(S) holds.

Let B, E and IH be a background theory, observations and an induction

field. Let the list L be 〈C1
n, C2

n, . . . , C
m
n , C1

c , C
2
c , . . . , C

r
c 〉 where Ci

n (1 ≤ i ≤
m) and Cj

c (1 ≤ j ≤ r) is an instance of a clause in Carc(B ∧ ¬E,PI)

and NewCarc(B,¬E,PI), respectively. Note that since the set L of PI =

〈L, max length ≤ num〉 contains a finite number of ground literals, the

number of (new) characteristic clauses should be also finite.

Assume the bridge theory CCk consisting of the clauses from C1
n to Ck

x in

the list L where if k ≤ m, the symbol x is equal to the symbol n, otherwise,

x is equal to the symbol c. Then, CCk ⊃ CCk−1 holds. By Theorem 5.4,

τM(CCk−1) º τM(CCk) holds.

This fact implies that the residue and minimal complement of the previ-

ous CCk−1 can be obtained by residue and minimal complement of the cur-

rent CCk using inverse subsumption. Hence, every hypothesis obtained from

CCk−1 can be also obtained from CCk. In other words, given a sufficient
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number k, any hypothesis can be obtained by inverse subsumption from the

residue and minimal complement of τM(CCk).

Based on this notation, we can consider an alternative hypothesis finding

procedure of CF-induction that computes hypotheses wrt B, E and IH using

inverse subsumption with minimal complements as follows:

Definition 6.6. Let B and E be clausal theories and IH be an extended

induction field. A clausal theory H is derived by CF-induction with inverse

subsumption from B, E and IH iff H is constructed as follows:

Input: A background theory B, observations E
and an extended induction field IH = 〈L, num, len〉.

Output: A hypothesis H wrt B, E and IH.

Step 1. Translate IH into PI = 〈L, max length ≤ num〉.

Step 2. Compute Carc(B ∧ Esk,PI) = 〈C1, C2, . . . , Cn〉.
Step 3. i := 0 and CC0 := ∅.
Step 4. CCi+1 := CCi ∪ {Ci+1}.
Step 5. Compute τM(CCi+1).

Step 6. If necessary, return a clausal theory H such that

(1) H belongs to IH,

(2) H º τM(CCi+1), and

(3) B ∧ H is consistent.

Else, i := i + 1 and go to Step 4.

6.4 Comparison

In Section 6.2 and 6.3, we have studied two approaches for deriving a hy-

pothesis H from a bridge theory CC in CF-induction. In the first approach

based on deductive operations, we first search the complement H such that

CC `∗
γ H, and then compute the original H by translating ¬H into a CNF

formula. It would be sufficient for this dualization task to use minimal com-

plements, instead of complements, since minimal complements enables to

obtain the original hypothesis (that is, M(M(H)) = µH) by Theorem 5.3.
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In the second approach based on inverse subsumption, we directly search a

hypothesis H such that H º τM(CC). Then, a question concerning the

difference between two approached would naturally occur. Which approach

should we use to find hypotheses?

Both approaches are based on the (theory) subsumption relation. For

clausal theories S and T , S subsumes T iff there is a clause C in S such

that C º D for every clause D in T . Note that there is not necessarily a

clause D in T such that C º D for every clause C in S. In other words,

if S subsumes T , then S ∪ U also subsumes T for any clausal theory U .

Then, the first and second approaches have to consider weakening and anti-

weakening operations, respectively, in order to ensure the completeness for

finding hypotheses. This fact makes both operations with the subsumption

relation non-deterministic.

The difference lies in their target theories to be searched: On the one

hand, the first approach focuses on the minimal complement of a hypothesis

M(H). On the other hand, the second approach focuses on a hypothesis H

itself. Figure 6.2 describes their search strategies:
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Figure 6.2: Search Strategies in Two Approaches

Figure 6.2 may give an insight to the above question: For a target hy-
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pothesis H, If M(H) should be close to CC, it is sufficient to use the first

approach. Else if H should be close to τM(CC), then the second approach

is sufficient. We give the following example to describe this notation.

Example 6.2. Let a background theory B and observations E be as follows:

B = {a, b ⊃ c}. E = {d}.

Let CC be a bridge theory {a, ¬b ∨ c, ¬d}. We first assume a target

hypothesis H1 = {d ∨ b, ¬a ∨ ¬c}. τM(CC) and M(H1) are as follows:

τM(CC) = {¬a ∨ b ∨ d, ¬a ∨ ¬c ∨ d}.

M(H1) = {¬d ∨ a, ¬d ∨ c, ¬b ∨ a, ¬b ∨ c}.

Note that both CC `∗
γ M(H1) and H º τM(CC) hold. However, the

number of operations for deriving the target theory is different from each

other. Using γ-operator, we can derive M(H1) from CC in such a way that

a in CC is expanded to the clause ¬b ∨ a and replaced by it and ¬d in CC

is expanded to two clauses ¬d ∨ a and ¬d ∨ c and replaced by them. Then,

the number of expanding operations should be three. On the other hand,

using inverse subsumption, we can derive H1 from τM(CC) in such a way

that the literal ¬a of the clause ¬a ∨ d ∨ b and the literal d of the clause

¬a ∨ ¬c ∨ d are dropped. Then, the number of dropping operations should

be two. Accordingly, in terms of this target hypothesis, it would be sufficient

to use inverse subsumption, since the number of operations is lower.

We next assume another target hypothesis H2 = {¬a∨ b, ¬c∨d, ¬c∨ b}.
M(H2) is then {a ∨ c, ¬b ∨ c, ¬b ∨ ¬d}. Note that CC `∗

γ M(H2) and

H2 º τM(CC) hold. Using γ-operator, M(H2) is derived from CC in such

a way that two clauses a and ¬d in CC are expanded to the clause a∨ c and

the clause ¬b∨¬d, and replaced by them, respectively. Then, the number of

the expanding operations should be two. On the other hand, using inverse

subsumption, H is derived from τM(CC) in such a way that d of the clause

¬a ∨ b ∨ d and ¬a of the clause ¬a ∨ ¬c ∨ d are dropped and the clause

¬c ∨ b is added to τM(CC). The number of dropping operations should

be two. It is equal to the number of deductive operations. However, we
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have to apply an anti-weakening operator for deriving the clause ¬c ∨ b. As

we described before, anti-weakening operators adding arbitrary clauses are

highly non-deterministic. Then, γ-operator efficiently works for deriving H2.

As we saw in this example, which approach to be used depends on the

target hypotheses. The first approach tends to derive somewhat complex

hypotheses like H2, for which we need anti-weakening operators in the case

of inverse subsumption. Note that the clause ¬c ∨ b in H2, which is derived

by an anti-weakening operator, is not necessarily used to explain E with B.

In other words, only using the other two clauses in H2, E can be explained.

Hence, the clause ¬c∨ b does not directly concern with the explanation. The

second approach with inverse subsumption is difficult to find such redun-

dant clauses that are not used to explain E. That is because we need to

ensure the consistency of the hypotheses with the background theory. Using

anti-weakening operators, we can arbitrarily add any clauses to τM(CC).

However, we have to check if the added theory is consistent with B. We may

consider that the difficulty of consistency checking is the same as the first

approach based on deductive operations. Actually, the first approach can do

it more easily.

We recall the consistency condition between B and H that B 6|= ¬H.

Since M(H) is logically equivalent to ¬H in the ground case, it is sufficient

to satisfy B 6|= M(H). If B |= M(H), Carc(B,PI) º M(H) holds. Ac-

cordingly, if Carc(B,PI) 6º M(H) should hold, H is consistent with B. By

the initial condition of bridge theories in CF-induction, any bridge theory

includes at least one instance of a clause in NewCarc(B, E,PI). We denote

by C this instance. If M(H) should keep C, then H is consistent with B,

since Carc(B,PI) 6º M(H) holds. Else, let SC be a clausal theory such that

SC ⊆ M(H) and {C} `γ SC . SC denotes the clauses obtained by applying

some γ-operator to C. If Carc(B,PI) 6º SC holds, Carc(B,PI) 6º M(H)

also holds, since M(H) contains SC . Hence, it is sufficient to take care about

the γ-operation to the clause C for the consistency of H with B. In contrast,

if we apply the same way to the second approach using inverse subsumption,

we have to additionally compute M(H) and then check if every clause in

M(H), instead of some part CS, is subsumed by a clause in Carc(B,PI).
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From on the above consideration, the first approach with deductive op-

erations would be useful to derive active hypotheses such that refer to rules

that are not used to explain observations but are at least consistent with

the background theory. On the other hand, the second approach with in-

verse subsumption efficiently works in finding compressed hypotheses whose

description lengths tend to be short. That is because dropping operators

enable us to easily make the description length of the current theory shorter.

In the inductive learning point of view, we are used to seek more com-

pressed descriptions based on the principle of Occum’s razor. Then, the

second approach may be straightforward to this principle. In contrast, the

first approach interestingly takes the risk that hypotheses can contain some

extra rules that are not necessary to explain observations. In some cases,

this efficiently works for giving users some unexpected insights to the prior

background theory.

Example 6.3. Let a background theory B and observations E as follows:

B = {female(s) ∨ male(s)}. E = {human(s)}.

Consider a bridge theory F = {female(s) ∨ male(s), ¬human(s)}. We can

construct M(H) by applying γ-operator to F in such a way that ¬human(s)

is expanded to two clauses ¬human(s)∨female(s) and ¬human(s)∨male(s)

and replaced by them. M(H) is as follows:

{female(s) ∨ male(s), ¬human(s) ∨ female(s), ¬human(s) ∨ male(s)}.

Then, we obtain the following H by computing M(M(H)):

{¬female(s)∨human(s), ¬male(s)∨human(s), ¬female(s)∨¬male(s)}.

In addition, if we apply an anti-instantiation operator to H, we also obtain

another hypothesis represented as follows:

{female(X) ⊃ human(X), male(X) ⊃ human(X),

¬female(X) ∨ ¬male(X)}.

We notice that the last clause ¬female(X) ∨ ¬male(X) does not involve in

explaining E. Instead, it can be regarded as an integrity constraint on the

predicates female(X) and male(X) that is consistent with B.
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6.5 Summary

In this chapter, we have studied that the generalization procedure of CF-

induction can be logically simplified while preserving its soundness and com-

pleteness. In Section 6.2, we introduced the γ-operator whose task is remov-

ing some clause D in an input clausal theory and adding a set of clauses

C1, . . . , Cn for some 0 ≤ n where each clause Ci is a super set of D. We also

showed that the γ-operator and ant-instantiation are sufficient to ensure the

completeness of CF-induction. In Section 6.3, we have proposed an alter-

native approach based on inverse subsumption with minimal complements.

Induction fields have been extended so as to describe the syntax of target hy-

potheses. We have clarified the logical relation between induction fields and

production fields that enable us to integrate inverse subsumption in Chapter

6 with generalization of CF-induction. We have also studied the issue how

bridge theories are deterministically constructed. As a result, we proposed

an incremental way to add clauses one by one to the current bridge theory.

Compared with the previous version of CF-induction, the difference is that

our proposal can deterministically construct a bridge theory and any hypoth-

esis wrt B, E and IH is derived based on the inverse subsumption, instead

of entailment. In this way, the non-determinism of CF-induction has been

logically reduced, while it ensures the soundness and completeness. In Sec-

tion 6.4, we have studied two approaches in terms of their search strategies

as well as their differences using several examples.
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Chapter 7

Conclusions and Future Work

7.1 Summary

In this thesis, we have investigated the logical mechanism and computational

procedures in IE-based explanatory methods. Compared with other induc-

tive learning paradigms, their characteristic role lies in the applicability to

completion tasks for finding some missing facts or causal relations in the

prior knowledge. Based on this merit, we have provided a practical exam-

ple in systems biology. This motivating problem was necessary to find both

missing facts and general rules, simultaneously. Whereas significant progress

has been made in molecular biology, the prior biological inference is still in-

complete. For this situation, we have showed an inherent possibility to find

some missing rules and facts in the context of explanatory induction.

This example involves logical estimation of possible reaction states, that

is, activated or inactivated, in metabolic pathways. Like dynamic change

from fermentation to oxidation emerged in microorganisms, transitions of

highly-activated (master) reactions affect the emergence of phenotype. For

analyzing those reaction states, we introduced a logical model that describes

some of biological relations, and then use the ILP setting to estimate reac-

tion states with respect to the logical model. The initial experimental result

showed that CF-induction could realize an advanced inference simultaneously

integrating both abduction and induction. On the one hand, abductive in-

ference was used to estimate possible reaction states. On the other hand,
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induction was used to complete missing general rules in the prior theory. In

the initial experiment, we have shown that CF-induction could find complex

hypotheses involving in both estimation and completion tasks.

Unlike the other IE-based ILP methods, CF-induction is sound and com-

plete for finding hypotheses in full clausal theories. CF-induction consists of

two non-deterministic procedures: The first one is construction of bridge the-

ories and the second is generalization into hypotheses. These two procedures

are commonly used in the modern IE-based methods, and each one constructs

a bridge theory and generalizes into hypotheses in its own way. In terms of

the generalization relation, methods like CF-induction use the inverse rela-

tion of entailment to ensure the completeness. On the other hand, methods

like Progol are based on subsumption, instead of entailment, due to computa-

tional efficiency. However, it had not been clarified whether or not the logical

reduction from entailment to subsumption could cause some incompleteness

in generalization. For this open problem, the thesis has shown that inverse

subsumption with minimal complements can ensure the completeness in gen-

eralization. We have also investigated the case of residue complements and

pointed out their fundamental limitation that arises in the fact for a ground

clausal theory S, it does not necessarily hold R2(S) = S. In contrast, we

have shown the property of minimal complements that M2(S) = µS holds.

To treat the inverse relation of entailment, we had to deal with a variety

of generalizers each of which has many ways to be applied. This fact made

generalization highly non-deterministic. In this sense, our result can be used

to reduce the non-determinisms in IE-based methods, including CF-induction

that originally uses the inverse entailment for the generalization relation. We

then considered how the generalization procedure of CF-induction can be

logically simplified based on two approach.

The first approach uses deductive operations that enable us to directly

derive the negation of a particular hypothesis from a bridge theory. Bridge

theories of CF-induction are also constructed in manner of consequence find-

ing techniques. Hence, we may be able to regard the first approach as a spe-

cific case that deductive operations are used in deriving hypotheses as much

as possible. As a result, we have proposed a new deductive operator, called
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γ-operator, that is sufficient to derive any negations of ground hypotheses,

and showed that a concatenation of γ-operator and anti-instantiation ensures

the soundness and completeness of generalization. The second approach uses

inverse subsumption with minimal complements. In this approach, we first

clarified the logical relation between induction fields and production fields.

Along with that, we have extended induction fields into a richer represen-

tation formalization that can describe the syntax of target hypotheses (i.e.

maximum length and number of clauses in the target hypotheses). We also

compared those two approaches for generalization of CF-induction in terms of

their search strategies as well as their characteristics using several examples.

The original CF-induction contains another non-deterministic procedure:

construction of bridge theories. Let n be the number of characteristic clauses.

Then, the possible choice points to select a bridge theory should be 2n − 1.

We have shown that without losing completeness for finding hypotheses, this

non-deterministic procedure can be simplified into a deterministic way. This

result is based on the property that for every two bridge theories CC1 and

CC2 such that CC1 ⊂ CC2, τM(CC1) º τM(CC2) holds. This property

implies that any hypothesis obtained from τM(CC1) can be derived from

τM(CC2). In brief, if Carc(B ∧ Esk,P) contains a finite number of ground

clauses {C1, . . . , Cn}, it is enough to select all those ground clauses in the

bridge theory. Due to interests of computational efficiency, the thesis has

introduced an arbitrary order over characteristic clauses, and then proposed

an incremental way to construct bridge theories.

This thesis gives logical foundations for the reduction from inverse entail-

ment to inverse subsumption. Using them, we reconstruct the non-deterministic

procedures of CF-induction into more simplified ones.

7.2 Future Work

The issue on hypothesis enumeration by CF-induction needs to be addressed

in future work. The theoretical advantage of CF-induction is to preserve the

completeness for finding hypotheses in full clausal theories. In other words,

CF-induction is the unique procedure that can enumerate all the possible
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hypotheses. If it should become possible to enumerate the target hypotheses,

we would be able to obtain some new hypotheses in many cases. Currently,

we reach the fact that for every hypothesis H, it holds that CC `∗
γ M(CC)

and H º τM(CC) for some bridge theory CC. In this connection, we

remark the issue on how to realize the generalization algorithm based on

inverse subsumption as well as γ-operator. Though we have shown that

the previous generalization can be reduced into inverse subsumption or a

specific deductive operator, we do not describe those practical algorithms

in the thesis. We then intend to develop heuristics for searching relevant

hypotheses on the subsumption lattice. It would be fruitful to investigate

ways of automatically finding which literals must be added to selected clauses

by the γ-operator. We believe that studying various restrictions of the γ-

operator may allow us to systematically compare the generalisation power

of previously proposed operators. Besides, we have introduced the notion of

induction fields to efficiently focus on the target hypotheses that users wish

to obtain. As we discussed in Section 5.5, in the specific case that target

hypotheses are ground and minimal, arbitrary hypothesis can be obtained

by applying only dropping operators. Accordingly, it would be possible to

enumerate the hypotheses using dropping operators at least with brute force.

Other important future work is efficient algorithms for computing min-

imal complements. Computation of the minimal complement is equivalent

to enumeration of the minimal hitting sets, as we have shown in Chapter 2.

Though this task is solvable in quasi-polynominal time (In brief, nO(log2n))),

in case that a given induction field contains a lot of complementary literals,

the computational cost should not be ignorable. Because the number of tau-

tological clauses added to a bridge theory becomes large. This problem is

related to how relevant induction fields can be considered in advance. Progol

systems use the notion of mode declarations to describe the head and body

literals. Thus, it would be fruitful how mode declarations can be translated

into the notion of induction fields. In computational efficiency point of view,

it would be convenient to assume such an induction field where the number

of complementary literals is as small as possible. It is interesting to consider

why we have to add tautological clauses that never affect in the semantics.
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When we look back on the examples in the thesis, its role tends to invent

some unknown predicates that never appear in the prior knowledge. For

instance, in Example 3.3, neither arc(b, c) nor ¬arc(b, c) appear in B and

E. Despite that, we allow ourself to includes two complementary literals

arc(b, c) and ¬arc(b, c) in the induction field.

It would be worth considering the issue on hypotheses evaluation that

was not sufficiently described in the thesis. In general, possible hypotheses

are not unique. In other word, there are a lot of logical theories that satisfy

the two conditions of explanatory induction However, most of the previously

proposed systems output the unique hypothesis according to their own spec-

ifications. Some adherent of pragmatism may counter as follows: It will be

sufficient that the system can find a certain valid hypothesis at some point.

It is thus practically difficult especially for the situations that need highly

expensive experiments to sequentially test the current hypothesis one by one.

In terms of abduction, SOLAR can automatically compute the subsumption-

minimal abductive hypotheses. There is a recent work [28] to statistically

evaluate those abductive hypotheses by SOLAR. Then, it would be worth

considering how CF-induction can enumerate the target inductive hypotheses

and evaluate them like SOLAR.
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