ッツチコヒー・テーマ Gait Anonymization Using Deep Learning Ngoc-Dung T. Tieu¹, Huy H. Nguyen¹, Junichi Yamagishi^{1, 2}, Isao Echizen^{1, 2,3}

 $\widehat{X}' = [\widehat{x'}_1, \widehat{x'}_2, \dots, \widehat{x'}_t]$

colorized by the color of the background

¹ The Graduate University for Advanced Studies (SOKENDAI), ² National Institute of Informatics,³ The University of Tokyo.

Motivation

Social internet users can upload and share the videos easily People in videos may be recognized by gait recognition systems because: • Gait has become a type of personal ID

• Gait can be recognized from a distance

Generation phase

 $Y' = [y'_1, y'_2, ..., y'_t]$

Silhouette of the original gait

Silhouette of the anonymized gait

colorized by the color of

nearest pixel on the original gait

 $X' = [x'_1, x'_2, \dots, x'_t]$

Colorization

colorized by the color of

original gait

Background

Methodology Training phase

Pre-processing: Extracting the contour of the silhouettes from the input video

Noise Generator G_N : Generating the noise in gait distribution from the random noise

Discriminators: Two discriminators D_S and D_T are to distinguish the real gait and generated gait in spatial and temporal domain

Gait Generator G: Generating the anonymized gait from original gait and the noise Loss function to train generator G $L(G)=L_{Rec}(G)+\alpha*L_{Pur}(G)+L_{S}(G)+L_{T}(G)$

Post-Processing: Colorizing the anonymized gait with the color of the original gait

Reference: N.-D. T. Tieu, H. H. Nguyen, H.-Q. Nguyen-Son, J. Yamagishi, and I. Echizen, "Spatio-Temporal Generative Adversarial Network for Gait Anonymization," Journal *of Information Security and Applications*, vol. 46, pp. 307–319, June 2019

Objective

Anonymizing gaits:

- The anonymized gaits cannot be recognized by the gait recognition systems
- The anonymized gaits still maintain the naturalness (shape, color, movement)

Results

Evaluate two metrics:

- Naturalness: Using MOS test
- Success rate: The rate that the crecognition system fails to recognize the anonymized gait.

Two system are used: [S.Zheng et al. 2011], [Wu et al. 2018] α =0.3

• Baseline: [Tieu et al. 2017]

- The proposed model overcomes the problem of the anonymized gaits generated with the baseline method looking less realistic because of head distortion
- The success rate with the proposed method was higher than that for the baseline method for both gait recognition systems

Impact of α:

