A small example: proof of a functional program

In Gallina, the language used to describe terms, types, proofs and programs, we can express program specifications.

"The function f is a correct function for sortings lists of elements of type A with respect to a given binary relation R"

(The predicates `Permutation` and `Sorted` are defined in Coq’s standard library.)

```coq
Definition Sort_spec (f : list A -> list A) :=
  forall l, let l' := f l in
  Permutation l' l /\ Sorted R l'.
```
Our simple sorting function is described under the form of two recursive functions on lists.

Insertion of an element a in an already sorted list l

Function insert (a:A) (l: list A) : list A :=
match l with
 [] => [a]
 | b::l' => if R a b then a::l else b::insert a l'
end.

Main sorting function, recursively calling *insert*:

Function sort (l: list A) : list A :=
match l with
 nil => nil
 | a::l' => insert a (sort l')
end.
A correctness proof of \texttt{sort} is a sequence of interactively proved lemmas leading to a final correctness statement. Let us look at some extract of this proof.

\textit{By induction on the list} \texttt{l}, we prove that the elements of the list \texttt{insert x l} contains exactly the same elements as \texttt{x :: l} (with the same multiplicity).

\textbf{Lemma} \texttt{insert_perm} : \texttt{forall x l, Permutation (x :: l) (insert x l)}.

\textbf{Proof}.
\hfill \texttt{induction l}.
The first case (the empty list) is trivially solved.

\[A : Type \]
\[R : A \rightarrow A \rightarrow \text{bool} \]

Permutation \([x] (\text{insert } x \ [])\)

trivial.
For the second case, Coq provides us with an *induction hypothesis* \(\text{IHl} \) on a given list \(l \). The new goal consists in proving the property for the bigger list \(a::l \).

\[
\begin{align*}
\text{a : A} \\
\text{l : list A} \\
\text{IHl : Permutation (x :: l) (insert x l)} \\
\end{align*}
\]

\[
\text{Permutation (x :: a :: l) (insert x (a :: l))}
\]

We solve this goal through a sequence of *tactics*.

simpl.

case (R x a); trivial.

+ transitivity (a:: x :: l); auto.

\[
\begin{align*}
\text{l : list A} \\
\text{IHl : Permutation (x :: l) (insert x l)} \\
\end{align*}
\]

\[
\text{Permutation (x :: a :: l) (a :: x :: l)}
\]
We can send queries to the libraries of already proven lemmas:

Search (Permutation (?x :: ?y ::?l) (?y :: ?x :: ?l)).

perm_swap:
 forall (A : Type) (x y : A) (l : list A),
 Permutation (y :: x :: l) (x :: y :: l)

 apply perm_swap.
Qed.
Finally, we prove that our function `sort` is correct.

Theorem sort_correct : Sort_spec sort.

Proof.
split.
- apply sort_perm.
- apply sort_sorted.
Qed.

We can also *extract* our function towards a programming language like Ocaml, Haskell or Scheme.

Extraction Language Ocaml.

Recursive Extraction sort sort .