
A small example : proof of a functional program

In Gallina, the language used to describe terms, types, proofs and
programs, we can express program specifications.

“The function f is a correct function for sortings lists of elements
of type A with respect to a given binary relation R”

(The predicates Permutation and Sorted are defined in Coq’s standard
library.)

Definition Sort_spec (f : list A -> list A) :=
forall l, let l' := f l in

Permutation l' l /\ Sorted R l'.

1 / 7



Our simple sorting function is described under the form of two recursive
functions on lists.

Insertion of an element a in an already sorted list l

Function insert (a:A) (l: list A) : list A:=
match l with

[] => [a]
| b::l' => if R a b then a::l else b::insert a l'

end.

Main sorting function, recursively calling insert :

Function sort (l: list A) : list A :=
match l with

nil => nil
| a::l' => insert a (sort l')

end.

2 / 7



A correctness proof of sort is a sequence of interactively proved lemmas
leading to a final correctness statement. Let us look at some extract of
this proof.

By induction on the list l , we prove that the elements of the
list insert x l contains exactly the same elements as
x :: l (with the same multiplicity).

Lemma insert_perm : forall x l, Permutation (x :: l)
(insert x l).

Proof.
induction l.

3 / 7

sort.v


The first case (the empty list) is trivially solved.

A : Type
R : A -> A -> bool
============================
Permutation [x] (insert x [])

trivial.

4 / 7



For the second case, Coq provides us with an induction hypothesis IHl
on a given list l . The new goal consists in proving the property for the
bigger list a::l .

a : A
l : list A
IHl : Permutation (x :: l) (insert x l)
============================
Permutation (x :: a :: l) (insert x (a :: l))

We solve this goal through a sequence of tactics .
simpl.
case (R x a); trivial.
+ transitivity (a:: x :: l); auto.

l : list A
IHl : Permutation (x :: l) (insert x l)
============================
Permutation (x :: a :: l) (a :: x :: l)

5 / 7



l : list A
IHl : Permutation (x :: l) (insert x l)
============================
Permutation (x :: a :: l) (a :: x :: l)

We can send queries to the libraries of already proven lemmas:

Search (Permutation (?x :: ?y ::?l) (?y :: ?x :: ?l)).

perm_swap:
forall (A : Type) (x y : A) (l : list A),
Permutation (y :: x :: l) (x :: y :: l)

apply perm_swap.
Qed.

6 / 7



Finally, we prove that our function sort is correct.

Theorem sort_correct : Sort_spec sort.
Proof.

split.
- apply sort_perm.
- apply sort_sorted.

Qed.

We can also extract our function towards a programming language like
Ocaml, Haskell or Scheme.
Extraction Language Ocaml.

Recursive Extraction sort .

7 / 7


