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Can we learn the correlation between audio and visual?
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Learning Joint Embedding for audio-visual Cross-Modal
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Deep learning has successtully showed excellent performances in learning joint Aiming at the cross-modal retrieval between audio and visual, we try to exploit
representations between different data modalities. Unfortunately, little research the temporal structure of audio and visual signal, and learn a deep sequential
focuses on cross-modal correlation learning where temporal structures of correlation model between them.

different data modalities such as audio and visual should be taken into account.
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A cross-modal retrieval process 1s to use a query 1n one modality to obtain relevant data in another modality. The challenging 1ssue of cross-modal retrieval lies

in bridging the heterogeneous gap for similarity computation, which has been broadly discussed in 1mage-text, audio-text, and video-text cross-modal

multimedia data mining and retrieval. However, the gap 1n temporal structures of different data modalities 1s not well addressed due to the lack of alignment
relationship between temporal cross-modal structures. Our research focuses on learning the correlation between different modalities for the task of cross-modal
retrieval. We have proposed an architecture: Supervised-Deep Canonical Correlation Analysis (S-DCCA), for cross-modal retrieval. In this forum paper, we
will talk about how to exploit triplet neural networks (TNN) to enhance the correlation learning for cross-modal retrieval. The experimental result shows the

proposed TNN-based supervised correlation learning architecture can get the best result when the data representation extracted by supervised learning.
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The MAP scores of audio-visual cross-modal retrieval o o DT
VEGAS Dataset (%) MV-10K Dataset (%) g 2
Models — . . — . . .
aundio—visual | visual—audio | audio—visual | visual—audio =
CCA [8] 32.43 32.11 18.38 18.17 g s
KCCA [17] 28.65 27.24 17.81 17.03 g : g
DCCA [2] 41.43 42.15 18.43 18.21 3 -

C-CCA [25] 65.16 64.35 19.71 19.62 g 3 2
C-KCCA [25] 32.41 32.74 18.38 18.11 3 g 3
C-DCCA [57] 70.34 69.27 21.79 20.08 <.

— - . — — £ = o

UGACH [58] 17.18 17.07 11.11 11.40 5. 3 s

AGAH [7] 57.82 56.16 20.74 20.19 = g

UCAL [9] 42 .68 41.53 18.82 18.47 . o _

ACMR [39] 15.46 43.12 19.02 18.63 : CH H
LSTM_C_CCA 66.62 71.34 19.11 18,89 | ~ CFTTTTTITIITITTITITITINNT < 2
TNN-C-CCA 74.66 73.77 23.34 21.32
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