Zeyu LIAO, Ken HAYAMI. Department of Informatics, SOKENDAI Principles of Informatics Research Division Inner-iteration preconditioned block GMRES

どんな研究?

Algorithms for solving least squares problems.

Maninly least squares problems with many right hand sides. (Solving many problems at the same time.)

Precondition the problems to speed up CPU time.

何がわかる?

Solving numerical models to obtain the pressure distributions, parameters in biological models, price of options, the structure of the underground and etc.

TABLE : CPU time of block BA-GMRES and IP Block BA-GMRES

状況設定

$$\min \|AX - C\|_F, \quad A \in \mathbb{R}^{m \times n}, \quad m > n, \quad C \in \mathbb{R}^{m \times p}.$$

Algorithm NR-SOR inner-iteration block BA-GMRES
1: Choose $X_0 \in \mathbb{R}^{n \times p}$, $R_0 = C - AX_0$,
2: apply l steps SOR to $A^{T}Aw = A^{T}R_0$ to obtain $W_0 = P^l A^{T}R_0$, (NR-SOR),
3: $[V_1, R] = qr(W_0),$
4: for $i = 1, 2,, k$ do
5: $U_i = AV_i$,
6: apply l steps SOR to $A^{T}AW = A^{T}U_i$ to obtain $W_i = P^l A^{T}U_i$, (NR-SOR)
7: for $j = 1, 2, \dots, i$ do
8: $H_{i,j} = V_j^T W_i, W_i = W_i - V_j H_{i,j},$
9: end for
10: $[V_{i+1}, H_{i+1,i}] = qr(W_i),$
11: Compute $Y_i \in \mathbb{R}^{i \times p}$ which minimizes $ R_i _F = R - H_{(i+1)p,ip}Y_i _F$,
12: $X_i = X_0 + [V_1, V_2, \dots, V_i]Y_i, \qquad R_i = C - AX_i.$
13: if $ A^T R_i _F < \epsilon A^T R_0 _F$ then
14: stop
15: end if
16: end for

\mathbf{p}	Iter.($B=A^{T}$)	CPU (s)	Iter.(IP)	CPU (s)
1	547	0.4075	201	0.2535
2	285	0.6229	126	0.2025
3	195	0.3908	92	0.1707
4	149	0.3268	76	0.1751
5	121	0.2722	65	0.1728
6	102	0.2344	58	0.1728
7	88	0.2307	53	0.1842

${f Algorithm}$	Block NR-SOR
1: Let X^0 be	the initial solution and $R = C - AX^0$, $0 < \omega < 2$.
2: for $k = 1$,	$2, \ldots, l$ do
3: for <i>i</i> =	$1, 2, \ldots, n$ do
4: Δ_i^{T}	$= (\omega/ a_i _2^2) R^{T} a_i,$
5: X_i^k	$^{+1T} = X_i^{kT} + \Delta_i^{T},$
6: $R =$	$R = R - a_i \Delta_i^{T}$ (rank-1 update).
7: end fo	r
8: end for	