Aa Zeyu LIAO, Ken HAYAMI.

Inner-iteration preconditioned block GMRES

Algorithms for solving least squares problems.

Mainly least squares problems with many right hand sides. (Solving many problems at the same time.)

Precondition the problems to speed up CPU time.

Table: CPU time of block BA-GMRES and IP Block BA-GMRES

<table>
<thead>
<tr>
<th>p</th>
<th>Iter.(B=A^T)</th>
<th>CPU (s)</th>
<th>Iter.(IP)</th>
<th>CPU (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>547</td>
<td>0.4075</td>
<td>201</td>
<td>0.2535</td>
</tr>
<tr>
<td>2</td>
<td>285</td>
<td>0.6229</td>
<td>126</td>
<td>0.2025</td>
</tr>
<tr>
<td>3</td>
<td>195</td>
<td>0.3908</td>
<td>92</td>
<td>0.1707</td>
</tr>
<tr>
<td>4</td>
<td>149</td>
<td>0.3268</td>
<td>76</td>
<td>0.1751</td>
</tr>
<tr>
<td>5</td>
<td>121</td>
<td>0.2722</td>
<td>65</td>
<td>0.1728</td>
</tr>
<tr>
<td>6</td>
<td>102</td>
<td>0.2344</td>
<td>58</td>
<td>0.1728</td>
</tr>
<tr>
<td>7</td>
<td>88</td>
<td>0.2307</td>
<td>53</td>
<td>0.1842</td>
</tr>
</tbody>
</table>

Algorithm

NR-SOR inner-iteration block BA-GMRES

1. Choose $X_0 \in \mathbb{R}^{n \times p}$, $R_0 = C - AX_0$.
2. apply t steps SOR to $A^T A w = A^T R_0$ to obtain $W_0 = P^t A^T R_0$, (NR-SOR),
3. $[W_1, R] = qr(W_0)$,
4. for $i = 1, 2, \ldots, k$ do
5. $U_i = AV_i$,
6. apply t steps SOR to $A^T A w = A^T U_i$ to obtain $W_i = P^t A^T U_i$, (NR-SOR),
7. for $j = 1, 2, \ldots, i$ do
8. $H_{i,j} = V_j^T W_i$, $W_i = W_i - V_j H_{i,j}$,
9. end for
10. $[V_i, H_{i+1}] = qr(W_i)$,
11. Compute $Y_i \in \mathbb{R}^{n \times p}$ which minimizes $\| R_i \|_F = \| R - H_{i+1} \|_F$, $X_i = X_0 + [V_1, V_2, \ldots, V_i] Y_i$,
12. if $\| A^T R_0 \|_F < \epsilon \| A^T R_0 \|_F$ then stop
13. end if
14. end for

Algorithm

Block NR-SOR

1. Let X_0 be the initial solution and $R = C - AX^0$, $0 < \omega < 2$.
2. for $k = 1, 2, \ldots, l$ do
3. for $i = 1, 2, \ldots, n$ do
4. $\Delta_i^T = (\omega / \| a_i \|_2^2) R^T a_i$,
5. $X_i^{k+1} = X_i^k + \Delta_i^T$,
6. $R = R - a_i \Delta_i^T$ (rank-1 update).
7. end for
8. end for